要知道高等数学是考研数学中分值最高的一个科目,达整张卷面分值的百分之五十六(数一和数三),数三的分值占比更是高达百分之七十八,而且概率与统计的题目在解题过程中也会大量用到高数微积分的知识,毋庸置疑高数是考研数学中最重要的科目。从难度上来说,也是考研数学三科(高等数学、线性代数、概率论与数理统计)中,相对来说难度最大的一个科目。高数难度大主要体现在以下三个方面:第一,高数的内容非常多,知识体量大,光是高数教材就有七百多页,且微积分的计算要求熟练运用高中学的指数函数、幂函数、对数函数、三角函数等知识,这无疑使高数的考点变得更多,考试的难度变得更大。第二,高数不只考查的知识多,而且对知识的综合运用能力有较高的要求,也就是说只是单纯地掌握单一的知识点是远远不够的,一道题目通常会考查两个或者是更多的知识点,而且有些考查的知识点还是不同章节的,如果不能将知识融会贯通,有清晰的解题思路是很难得高分的。这就要求我们在复习的过程中,不仅要熟练掌握每一个知识点,而且要提高对知识的综合运用能力,说白了就是要大量做题,知易行难,在实际解题过程中,提高对知识的运用能力。第三,高数的题量比较大,考试的时候对解题速度和计算能力的要求较高。学生会出现有些题目虽然会做但最后时间来不及,或者是会做但是花费大量的时间,占用做其他考题的时间的情况,这就要求我们在复习的过程中,不光是要看书学习,还要不断地去计算,做题,不要停留在知识看懂了的阶段,一定要自己动手去做题,熟练掌握考题背后要求的知识点,达到拿到题目有思路,计算过程快又准的程度。希望各位同学可以在高数上找到合适的方法,顺利成研,多做题,总结经验总是有好处的!
从昨天开始,2021年考研开始拉开序幕,而在今天为期两年的全国考研考试也结束了。可能有的同学现在心里很是轻松,因为他们觉得自己考得不错,也可能有的同学现在心情非常沉重,他们会觉得自己考得不好。有的同学会说今年的高数题目较难,但是我想说的是高数难与不难不重要,重要的是你参与了。每年考研政治对于考研党来说其实并不是很难,基本上只要是在考前把《肖四》背过,到了考场直接默写就好了。今年也不例外,很多同学表示,今年的考研政治依然非常简单,基本上和《肖四》中的某一套卷一抹一样,所以同学的政治考的都还算是可以。而考研英语对于不少同学来说其实也不知道难与不难,因为考研英语的题型较多,而且很多都是选择题,所以考研英语不少同学都能做完,而且会觉得自己做的不错。但是对于高数和专业课来说,却是一个很难发挥的科目,因为你会则就能拿分,不会就拿不到分,而今年考研的高数还是有一定难度的,所以不少同学在高数考完之后,心态就变得不是很好了。看着很多同学从考研的考场出来之后,小编也不禁看到了自己曾经考研时候的样子,有的同学心情是放松,有的同学脸上挂满着疲惫,有的同学会因为考得不好而抽泣,反正没有一位同学是活泼的。我们知道考研和高考其实性质上是一样的,同学们在准备考研的时候都是拿出当年高考的劲头去准备的。所以当考完结束后想的第一件事情就是想要好好的休息,什么都不去想,只想在床上躺上几天。小编当时考研结束后,心情是非常的放松,无论考得好与不好,在笔试结束的几天中,我什么都没有想,就是安安静静的休息。每一位考研学子,其实都想考出一个好的成绩,但是会因为各种各样的原因导致自己没有考好,他们会得到父母的埋怨,甚至有的时候会怀疑自己。其实经历过考研的人才会知道,自己在准备阶段的时候是多么的辛苦与辛酸。每天在自习室外面被政治的场景,每天早上背英语的场景,每天在不断的刷数学和英语题目的场景,依然历历在目。其实别人可能会看到你的结果不尽人意,但是其中过程的心酸或许只有自己才知道。今年考研的高数有些难度,很多同学会说自己非常的沮丧,但是我想说的时候,高考难于不难不重要,重要的是你坚持了。当你决定要考研的时候,当你为考研准备了一年时,当你踏入考研考场的时候,你就比很多人厉害了,无论结果如何,只要你努力过,我认为你就是一个值得被尊重的人。大家觉得今年考研政治、英语、高数、专业课哪科难呢?
就总体难度而言,2019年考研数学一试题与2018年相比,难度相差无几。这与近年来的考研趋势是非常契合的,随着考研人数的增加,试题的难度也在增加,这也体现了考研是选拔性考试的特点,不过从2013年开始试题的难度整体是比较平稳的。另外,2019年的考研数学一高数部分试题体现了考研数学的一贯特点:重基础,综合性强,计算量大。首先,考题重在考查学生对基本概念的理解和运用数学的基本方法来解决基本问题的能力。其实从1990年到2019年以来,重基础这个出题的侧重点从未改变过。与此同时,近几年试题中不断凸显的综合性和灵活性增加了考试的难度,要求考生注重对方法的总结和能力的培养,从而做到活学活用。最后,计算量大的特点要求考生要多做题,只有量的积累才能把计算能力提升上来,在考场上不仅做到会,而且要快,这样才能考取理想的分数。考研是一场持久战,要把握好复习的节奏,尤其是对考研数学的复习,制定好复习计划,进而保证高数复习的效率。因此,中公考研制定了比较科学的梯度学习法,把考研数学全年的复习计划划分为四个阶段,即基础阶段(6月份之前)、强化阶段(7-9月份)、提高阶段(10-11月份)以及冲刺模考阶段(12月份)。以上四个阶段循序渐进,每个阶段都有对应的学习任务和目标,一步一个脚印,稳扎稳打。考生在复习中,最重要也是最容易忽视的就是基础阶段,只有打好基础,具备扎实的基本功,这是最关键的一个环节,这与考查目标—重基础是非常契合的。在此基础上,通过适量的练习做到灵活运用,最后才能够转化为考场上的得分能力。最后,中公考研祝各位考生取得优异的成绩,考取理想的学校!
考研数学和高等数学不是一个概念,考研之前一定要分清楚否则白学。考研数学分为数学一、数学二、数学三、数学基础四个类别。四个类别的考研数学分别对应不同的一级学科和二级学科。一、考研数学包含的科目首先来看考研数学一:考研数学一是考研数学中难度最大,范围最广的。数学一的考试科目包括高等数学、线性代数、概率统计三科。请记住,这里考的是三科可不只是高等数学哦!其中高等数学占比百分之五十六;线性代数占比百分之二十二;概率统计占比百分之二十二;其次来看考研数学二:考研数学二是考研数学中考试范围最小,但是高等数学占比最高的。考研数学二的考试科目包括高等数学和线性代数其中高等数学占比百分之七十八;线性代数占比百分之二十二。发现了吗?考研数学二考的也不只是高等数学哦。但是比较庆幸的是考研数学二不考概率统计。再次来看考研数学三:考研数学三是考研数学中考试难度最简单的(个人观点)。考研数学三的考试科目与数学一完全一样,各科目的分值占比也与考研数学一完全一样。但是考试难度相对于考研数学一而言较为简单。最后来看数学基础:看到这里很多考生可能要疑问了,考研数学还包括初等数学吗?回答是:不仅有,而且涵盖的专业还很热门。在专业硕士的考试中工商管理硕士也就是我们耳熟能详的MBA以及会计专硕MPAcc的考试科目中的《管理类联考综合能力》科目代码199,其中初等数学的考试分值为75分。考试科目有算术、代数、几何、数据分析。这一科是不包含高等数学的。金融硕士、应用统计硕士、税务硕士、国际商务硕士、保险硕士、资产评估硕士所考试的科目中《经济类联考综合能力》中初等数学的考试分值为70分。考试科目为《微积分—部分》、《概率论—部分》、《线性代数—部分》。在此科目的考试中虽然没有标明要考高等数学但是《微积分—部分》所考试的内容实际上就是高等数学的内容。二、高等数学在考研数学中的地位从上一小节的分析中我们能够看到,除管理类联考综合能力所考的初等数学外。考研数学一、二、三以及经济类联考综合能力的考试内容中高等数学的考试占比都是比较大的。当然这些只是我们能够从表面上分析出来的数据。在实际学习以及考试过程中,高等数学不仅本身分值占比大,而且还担任着一个不可或缺的角色:为线性代数和概率论提供计算方法(这一点在考研复习之初考生一般很难发现)。在关于考研数学复习指导的文章以及课程中,很多老师建议大家在考研数学复习过程中可以首先复习内容较少的《线性代数》或《概率论》。在小编看来凡是发表以上言论的老师都没有真正研究过考研数学的考试结构以及考试重点。在考研数学的考试难度以及考试重点的综合约束下,如果没有高等数学作为支撑,线性代数和概率论的很多习题根本是无从下手的,甚至是,即便你找到了思路也是需要用到高等数学的方法来进行运算的。从这个角度来讲,高等数学是考研数学的根本和基础。三、高等数学在考研数学中考试难度以及范围的区别高等数学在考研数学一二三以及经济类联考综合能力中都有涉及到,从上文的数据中我们看到了高等数学部分分值占比最大的是考研数二。那么也就有人得出结论说考研数学二所考察的高等数学范围最广、难度最大。根据小编对于考研大纲以及考研真题的分析发现,在考研数学中,数学一才是对于高等数学考核范围最关难度最大的。数学二中高等数学的分值占比最大,这主要体现在了对于高等数学的细节部分考核较多,但是考试范围和考试难度并没有数学一大。数学三的分值比例虽然跟数学一相同,但是考试难度以及考试范围也比数学一小。在考研数学中,一般情况下涉及到的相同的考试知识点考察的难度也几乎是一样的,有时甚至在考试试卷上会有同一道题同时出现在数学一二三的试卷上。四、考研数学的考试方向我们知道进入大学以后我们对于任何一个学科的学习都会有比较明确的方向性。考研数学座位研究生的入学选拔考试自然也不例外。考试数学的考试方向主要体现在考试范围上,比如空间解析几何与多元函数积分学只有数学一要求;无穷级数只有数学一和数学三有考核要求;微积分的物理应用只有数学一和数学二要求;而微积分的经济应用却是数学三的考察重点,数学一和二对其不做要求。线性代数在考试内容上是区别最小的,只有数学一会涉及到向量空间的内容,但是这一部分在实际的考试中出现的次数是极少的对于考生的复习并没有实质性影响。但是在最抽象的概率论部分,数学一却要考察参数估计包括评选标准、区间估计以及假设检验。五、数学基础就真的好学吗从管理类联考综合能力中我们看到了有一个叫做基础数学的学科居然出现在考研数学这个科目中很是费解。很多老师断文取义般的在告诉学生们,高数学不会就学初等数学。在描述中将初等数学描述的极为简单,这种引导其实是不负责任的。虽然在初等数学考试章节上我们看到的考试内容是很简单的,主要涉及到的就是小学以及初中的内容。但是在实际考试中这些题目的难度堪比奥数考试,因此对于没有数学思想的考生来讲,也是极具挑战性的学科。六、考研数学与专业选择在考研专业中,无论是学术型硕士还是专业性硕士,大部分专业的考试都是要涉及到考研数学的。在小编看来,能够进入本科学习的考生(个别大神除外)数学基础相差并不大,那么最后谁能获得高分完全取决于学习方法以及学习的态度。因此完全没有必要因为自己喜欢的专业要考数学而选择放弃。并且在考研数学中基础部分的考试内容占比80分以上,过线并不难。以上分析均基于小编对于考研数学考试大纲及考试真题的研究而得出的结论,不足之处和错误之处欢迎大家指正讨论。
十一月已经过半,相信很多研友都在忙着刷真题,但是刷真题只是简单地做一篇、然后再对着答案改一遍就完事了吗?今天小编就来告诉大家,如何更加有效地在最后一个月的时间里利用真题。一、如何复习真题这个其实很关键了,有些同学题目一做,答案抄完,然后就把试卷扔在一边,其实这是非常错误的。这种复习方式简直是在浪费时间。第一,必须严格按照考试时间和纪律做真题。完全按照考试时间来,中途不许上厕所不许玩手机不许聊天。就假设自己正在考研,找一张白纸作为答题纸,书写工整、字迹清晰、步骤明确,不得跳步越项。切忌草草了事,敷衍应付!第二,认真根据答案批改这里要先提醒一点,每年考试难度都不一样,所以不必太在意分数。更不可因为某年的试卷分数过低还怀疑自我,保持心态最重要。批改过程中要做好记录,查漏补缺。一定要按照答案要求严格批改,必须自己对自己负责。哪怕分数低点也没关系。第三,错题集有这个相信很多同学都有。其实在复习的最后阶段,我们只需要复习错题集就足够了。有了错题集、你的目标会更加明确,心态也会更加的踏实自然,可以"有的放矢";而不会明明紧张得要死,却发现"无事可做"。也就是说,错题集存在的根本原因,是为了给你提供一个复习的目的。它会很明确地告诉你,你还有哪些软肋、还有哪些知识点没掌握。会为你后面的复习提供一个目标,不至于让你太过于盲目。下面小编来根据具体学科为大家提供真题复习的范围和推荐书籍。二、高等数学这可以说是考研最大的一个门槛,无数人都挂在那颗名叫“高数”的树上。其实考研数学的命题,都是从题库中选取的题目,出题规律很明显,真题利用价值非常高,所以做真题是性价比非常高的复习方式。1、范围考研数学的真题总共有1988-2019总共32年的试卷。其中1988-1996(共5个卷种,卷1、2相当于现在的数学一,卷3相当于现在的数学二,卷4、5相当于现在的数学三),卷面分值100分;1997-2002(数学一、二、三、四各一套试卷),卷面分值100分;2003-2008(数学一、二、三、四各一套试卷),卷面分值150分;2009-2019(数学一、二、三各一套试卷),卷面分值150分。当然没有必要把这么多试卷全做了,小编这里推荐大家只需要做1997年之后的题目就可以。有些同学可能会疑惑,为什么要做这么二十年前的试卷呢?原因有两个,第一,早年的真题有一些相当经典的题目,试卷的质量也比较高,例如98和99两年的。第二,考研大纲几十年来变化一直不大,不像中学教学大纲,隔几年就改版一次。所以即使二十年前的试卷仍然有一定参考价值。2、书籍推荐这里给大家推荐两本首先是大名鼎鼎的李永乐!这位大神不多解释了,大家都懂得。这本书主要对2005以后的真题进行了详细解析,但是也附赠了1987-2005的试卷和答案。还有一位也是很多研友耳熟能详的老师——张宇!这本书收录了1987年以后所有考研真题详解,也是非常好的真题解析教材。三、英语1、范围英语真题不需要像数学那样做那么多,建议至少做到除去近三年真题外,其他年份的真题的4篇阅读都刷过一遍。得阅读者得天下。2、错题集英语的错题主要在于词汇、语法记忆不全和长难句的分析方面。因为英语归根到底还是一个需要大量记忆及背诵的科目。3、推荐书籍张剑黄皮书,这也是考研圈中非常有名的一位老师了,相必大家都不陌生。他的真题覆盖范围也比较广,解析比较透彻,是本不错的辅导书。四、专业课这是一个非常麻烦、非常需要人脉的事情。因为大多数高校是不会提供专业课的真题的。而且各个高校、尤其是自主命题的高校,对于外校考研的学生其实不是那么友好的。很多同学在考研专业课上走了很多弯路,就是因为没有真题在手,复习的特别盲目,甚至连大概难度都无法预测,最终栽了跟头。1、直接去目标院校购买虽然大部分的高校已经不提供考研历年真题,但是还有一些学校会提供上一年的考研真题。建议你去学校的研招办询问,运气好的话他们会提供一份。在院校附近的一些打印店里,会有老板卖该院校的专业课真题,不过比较贵,大概300块一份。黑心商家啊!2、找研究生学长学姐要这个方法可谓是最靠谱的了,但是非常考研你的人脉。对于那些刚考上研究生的学长学姐们,大部分都有真题、或者有渠道获得真题。而且是考上研究生的,对于真题和复试都有自己的见解,如果此刻结交了,在你进入考研复试的时候也能对你有很大的帮助!这里注意区别真假,有的骗子就是冒充学长学姐骗钱的!每年都有无辜的研友们上当受骗,这里建议线下交易。3、网上搜索现在网络比较发达,很多读研的同学会把考研真题和经验分享到网上,这个时候考生可以根据自己掌握的信息区分。考研真题哪怕是回忆版都比没有强!但是网上信息鱼龙混杂、真假难辨,各位研友要谨慎!4、多渠道购买专业课真题,因为比较难以获得,所以网上有很多电商就是卖真题赚钱的。淘宝上这类店家层出不穷,但也要小心挂羊头卖狗肉。还有一种是考研机构,他们也有自己的内部渠道能搞到真题,这种比较靠谱,因为一般人不会干砸自己招牌的事情。最后有的研友们会问,为什么没有政治的?其实政治这门课时效性很明细,真题的意义并不大,所以就不再推荐了。至于最后的模拟考试,推荐肖秀荣的四套卷和八套卷。还是和其他科目一样,完全按照考研时间和纪律来考试。
真题的重要作用01通过真题,知己知彼考研数学是对于考生的基本计算,推理,演算能力的测试。历年真题对于考试所涉及的重点难点均有所显示,考生可以通过考题进一步强化重点知识点及题型,并且历年考题当中一些带规律性的方法技巧参考价值还是很大的。通过真题的演练,可以查漏补缺,逐步适应考研题目的常考点,题型,技巧,难度等。做真题的时候,我们可以从远往近做,越是离现在近的,越能反映考研数学近几年的要求变化。02通过真题,查缺补漏无论是在强调考生应该掌握了三基知识点的基础阶段,还是强化冲刺阶段,我们都有可能对某些章节、某些知识点、某类题型存在不熟悉的薄弱环节,因此通过真题的练习,可以发现自己的不足,这时可以看一看错题笔记或复习笔记再次强化薄弱环节,反复练习。03强化重点题型,提高解题熟练度我们在使用真题时,尤其要系统研究近十年历年的真题。考生要做到反复比较,将重复率最高的知识点剔除出来,强化理解相应的基础概念、定理。培养做题的"手感",保证以最好的状态走上考场。同时,注重计算能力的培养,题目会做了不等于做对了,其实我们十分往往不是因为我们不会做,而是计算有误,所以我们在使用真题的时候,一定要重视计算能力的培养。04研究真题,总结出题规律我们不仅通过练习强化自身知识,而且最好是能够研究近几年的真题的出题规律,考量出题者的出题思路,大胆预测考点,变被动复习为主动复习。同时,我们要通过研究真题,突破知识点的屏障,把高数、线代和概率等知识点串联起来,让我们能够做到,无论提到哪部分知识都非常熟悉,这样才真正达到了考研数学的要求。真题该如何使用首先在复习前期,我们要自己做一遍真题,这个时候可以不限定时间,不会的题目甚至可以翻书做,但尽量做到能够不通过答案,把题目做出,这个过程是你所掌握的知识点,解题方法的强化整合过程,一定要自己多思考,多翻查以前所学。但在考研复习后期,如冲刺阶段,我们就应该体验真实考试状态,提前熟悉真实考试场景,参加正式考试的感觉,这个时候做真题,应该做到设定考试时间,不翻书,独立作答等要求,培养自己的应试心理。其次,改错误。参考标准答案,修正自己的错误,或者积累解题思路,最好能够附上自己错误的原因:马虎,公式用错,无思路等,再针对自身错误在相关资料中找出相似题型,强化训练,消除盲点。这个时候,我们要重视对解析的研读,通过解析了解答题思路,真正掌握正确答案。因为很多人都容易出错的一个原因就是自己的固执心态,没有原因的坚持自己的答案,所以只有顺着解析的方向去思考,真正理解答案的意思,才能够很大程度地减少这种固执心态。再次,总结考点。对于考题真题的把握要非常透彻。考生在做完真题以后一定要把自己当作是出题者去想一想这套题是怎么出出来的,每个知识点上下了多少工夫,下了多少分数的比例。总结考点,对比前几年的真题,归纳出常考题型。还有,发现出题规律,举一反三。每道试题都有它的出题规律,数学真题也不例外,它一定是有几个知识点,相互关联,互相推导,或互相替换,最后得到另一个知识点的,只要你认真研究,就不难能发现这些真题的了出题规律,所谓世上无难事,只怕有心人。真题复习注意事项01做多少年真题在这里,建议大家至少要做近20年的真题。这是因为考研数学和考研英语、考研政治不一样,英语和政治的时代感比较强,时效性也比较强,比如说,大家在做10年前的英语和政治真题和现在真题是完全不一样的感觉。然而,数学恰恰与此相反,经过近30年的萃取,考研数学早已发展成熟,不会在知识点和深度上面有太多的变化。并且,考过的真题有可能再考。在2012年考过一道和1994年完全一样的题目,可以告诉大家,纵然不会考原题,至少也会在做题的思路和做题的思想上是完全一样的,所以说,建议大家至少要做近20年的考研真题。02什么时候做真题建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。考研数学知识点繁多,计算量大,所以需要我们在复习的时候投入大量时间和精力。但同时,这种付出又是值得的,因为很多同学能够考入理想的学校,就是因为他的考研数学没有拉分。所以,还在等什么,快去复习考研数学吧,它是实现考研梦想的一块非常重要的基石。
文都考研汤老师叫你起床的视频,不晓得你看过没?犀利的反问,曾一度让考研学子记忆深刻,即使到了2021考研学子,怕也是会听到现场版“叫你起床学习”。汤老师作为文都考研数学辅导老师,可以说是“考研界”红人,每年全程指导出大量高分甚至满分学生,被学生誉为“满分教练”。汤老师编撰的《考研数学接力题典1800》《考研数学绝对考场最八套题》等,也被考生们奉为必练必备习题册。听小编说了这么多,还不了解汤老师的2021考研学弟学妹们,还不赶紧抓紧时间来听课!汤老师亲授2021考研数学高等数学难点直播课!下面就来给大家说说文都2021考研【科科通】系列讲座时间,文都考研数学汤家凤老师将在5月19日9:00-16:00,为大家带来文都教育2021考研数学基础班高等数学!更多精彩2021考研直播课内容,敬请关注文都考研网!
中国科学院大学硕士研究生入学考试高等数学(甲)考试大纲一、 考 试 性 质中国科学院大学硕士研究生入学高等数学(甲)考试是为招收理学非数学专业硕士研究生而设置的选拔考试。它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。考试对象为参加全国硕士研究生入学考试、并报考理论物理、原子与分子物理、粒子物理与原子核物理、等离子体物理、凝聚态物理、天体物理、天体测量与天体力学、空间物理学、光学、物理电子学、微电子与固体电子学、电磁场与微波技术、物理海洋学、海洋地质、气候学等专业的考生。二、 考试的基本要求要求考生系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力和综合运用所学的知识分析问题和解决问题的能力。三、 考试方法和考试时间高等数学(甲)考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。四、考试内容和考试要求(一)函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:, 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念考试要求1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。2. 理解函数的有界性、单调性、周期性和奇偶性。掌握判断函数这些性质的方法。3. 理解复合函数的概念,了解反函数及隐函数的概念。会求给定函数的复合函数和反函数。4. 掌握基本初等函数的性质及其图形。5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。7. 掌握极限存在的两个准则,并会利用它们求极限。掌握利用两个重要极限求极限的方法。8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。10. 掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质。11.理解函数一致连续性的概念。(二)一元函数微分学考试内容导数的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数的四则运算 复合函数、反函数、隐函数的导数的求法 参数方程所确定的函数的求导方法 高阶导数的概念 高阶导数的求法 微分的概念和微分的几何意义 函数可微与可导的关系 微分的运算法则及函数微分的求法 一阶微分形式的不变性 微分在近似计算中的应用 微分中值定理 洛必达(L’Hospital)法则 泰勒(Taylor)公式 函数的极值 函数最大值和最小值 函数单调性 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 弧微分及曲率的计算考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的求导公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。3. 了解高阶导数的概念,会求简单函数的n阶导数。4. 会求分段函数的一阶、二阶导数。5. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数6. 会求反函数的导数。7. 理解并会用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理。8. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。9. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。10. 掌握用洛必达法则求未定式极限的方法。11.了解曲率和曲率半径的概念,会计算曲率和曲率半径。(三)一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分(无穷限积分、瑕积分) 定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念。2. 熟练掌握不定积分的基本公式,熟练掌握不定积分和定积分的性质及定积分中值定理。掌握牛顿-莱布尼茨公式。熟练掌握不定积分和定积分的换元积分法与分部积分法。3. 会求有理函数、三角函数有理式和简单无理函数的积分。4. 理解变上限定积分定义的函数,会求它的导数。5. 理解广义积分(无穷限积分、瑕积分)的概念,掌握无穷限积分、瑕积分的收敛性判别法,会计算一些简单的广义积分。6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、截面面积为已知的立体体积、功、引力、压力)及函数的平均值。(四)向量代数和空间解析几何考试内容向量的概念 向量的线性运算 向量的数量积、向量积和混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程考试要求1. 熟悉空间直角坐标系,理解向量及其模的概念。2. 熟练掌握向量的运算(线性运算、数量积、向量积),掌握两向量垂直、平行的条件。3. 理解向量在轴上的投影,了解投影定理及投影的运算。理解方向数与方向余弦、向量的坐标表达式,会用坐标表达式进行向量的运算。4. 熟悉平面方程和空间直线方程的各种形式,熟练掌握平面方程和空间直线方程的求法。5. 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。6. 会求空间两点间的距离、点到直线的距离以及点到平面的距离。7. 了解空间曲线方程和曲面方程的概念。8. 了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求其方程。9. 了解常用二次曲面的方程、图形及其截痕,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。(五)多元函数微分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限和连续 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分的概念及求法 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 高阶偏导数的求法 空间曲线的切线和法平面 曲面的切平面和法线 方向导数和梯度 二元函数的泰勒公式 多元函数的极值和条件极值 拉格朗日乘数法 多元函数的最大值、最小值及其简单应用 全微分在近似计算中的应用考试要求1. 理解多元函数的概念、理解二元函数的几何意义。2. 理解二元函数的极限与连续性的概念及基本运算性质,了解二元函数累次极限和极限的关系 会判断二元函数在已知点处极限的存在性和连续性 了解有界闭区域上连续函数的性质。3. 理解多元函数偏导数和全微分的概念 了解二元函数可微、偏导数存在及连续的关系,会求偏导数和全微分,了解二元函数两个混合偏导数相等的条件 了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。4. 熟练掌握多元复合函数偏导数的求法。5. 熟练掌握隐函数的求导法则。6. 理解方向导数与梯度的概念并掌握其计算方法。7. 理解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。8. 了解二元函数的二阶泰勒公式。9. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。10. 了解全微分在近似计算中的应用(六)多元函数积分学考试内容二重积分、三重积分的概念及性质 二重积分与三重积分的计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分之间的关系 格林(Green)公式 平面曲线积分与路径无关的条件 已知全微分求原函数 两类曲面积分的概念、性质及计算 两类曲面积分之间的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1. 理解二重积分、三重积分的概念,掌握重积分的性质。2. 熟练掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标),掌握二重积分的换元法。3. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。熟练掌握计算两类曲线积分的方法。4. 熟练掌握格林公式,会利用它求曲线积分。掌握平面曲线积分与路径无关的条件。会求全微分的原函数。5. 理解两类曲面积分的概念,了解两类曲面积分的性质及两类曲面积分的关系。熟练掌握计算两类曲面积分的方法。6. 掌握高斯公式和斯托克斯公式,会利用它们计算曲面积分和曲线积分。7. 了解散度、旋度的概念,并会计算。8. 了解含参变量的积分和莱布尼茨公式。9. 会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、曲面的面积、物体的体积、曲线的弧长、物体的质量、重心、转动惯量、引力、功及流量等)。(七)无穷级数考试内容常数项级数及其收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域、和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 泰勒级数 初等函数的幂级数展开式 函数的幂级数展开式在近似计算中的应用 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数。函数项级数的一致收敛性。考试要求1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件2. 掌握几何级数与p级数的收敛与发散情况。3. 熟练掌握正项级数收敛性的各种判别法。4. 熟练掌握交错级数的莱布尼茨判别法。5. 理解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。6. 了解函数项级数的收敛域及和函数的概念。7. 理解幂级数的收敛域、收敛半径的概念,并掌握幂级数的收敛半径及收敛域的求法。8. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。9. 了解函数展开为泰勒级数的充分必要条件。10. 掌握一些常见函数如ex、sin x、cos x、ln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。11. 会利用函数的幂级数展开式进行近似计算。12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会将周期为2l的函数展开为傅里叶级数。13. 了解函数项级数的一致收敛性及一致收敛的函数项级数的性质,会判断函数项级数的一致收敛性。(八)常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降价的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 欧拉(Euler)方程 微分方程的幂级数解法 简单的常系数线性微分方程组的解法 微分方程的简单应用考试要求1. 掌握微分方程及其阶、解、通解、初始条件和特解等概念。2. 熟练掌握变量可分离的微分方程的解法,熟练掌握解一阶线性微分方程的常数变易法。3. 会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换求解某些微分方程。4. 会用降阶法解下列方程:y(n) =f(x),y″ =f(x,y′ )和y″ =f(y,y′ )5. 理解线性微分方程解的性质及解的结构定理。了解解二阶非齐次线性微分方程的常数变易法。6. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。7. 会解自由项为多项式、指数函数、正弦函数、余弦函数、以及它们的和与积的二阶常系数非齐次线性微分方程。8. 会解欧拉方程。9. 了解微分方程的幂级数解法。10.了解简单的常系数线性微分方程组的解法。11 会用微分方程解决一些简单的应用问题。五、主要参考文献《高等数学》(上、下册),同济大学数学教研室主编,高等教育出版社,1996年第四版,以及其后的任何一个版本均可。
一、 考 试 性 质中国科学院大学硕士研究生入学高等数学(乙)考试是为招收理学非数学专业硕士研究生而设置的选拔考试。它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。考试对象为参加全国硕士研究生入学考试、并报考大气物理学与大气环境、气象学、天文技术与方法、地球流体力学、固体地球物理学、矿物学、岩石学、矿床学、构造地质学、第四纪地质学、地图学与地理信息系统、自然地理学、人文地理学、古生物学与地层学、生物物理学、生物化学与分子生物学、物理化学、无机化学、分析化学、高分子化学与物理、地球化学、海洋化学、海洋生物学、植物学、生态学、环境科学、环境工程、土壤学等专业的考生。二、考试的基本要求要求考生比较系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力和综合运用所学的知识分析问题和解决问题的能力。三、考试方式和考试时间高等数学(乙)考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。四、考试内容和考试要求(一)函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:, 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念考试要求1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。2. 理解函数的有界性、单调性、周期性和奇偶性。掌握判断函数这些性质的方法。3. 理解复合函数的概念,了解反函数及隐函数的概念。会求给定函数的复合函数和反函数。4. 掌握基本初等函数的性质及其图形。5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。7. 掌握极限存在的两个准则,并会利用它们求极限。掌握利用两个重要极限求极限的方法。8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。10. 掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质。(二)一元函数微分学考试内容导数的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数的四则运算 复合函数、反函数、隐函数的导数的求法 参数方程所确定的函数的求导方法 高阶导数的概念 高阶导数的求法 微分的概念和微分的几何意义 函数可微与可导的关系 微分的运算法则及函数微分的求法 一阶微分形式的不变性 微分在近似计算中的应用 微分中值定理 洛必达(L’Hospital)法则 泰勒(Taylor)公式 函数的极值 函数最大值和最小值 函数单调性 函数图形的凹凸性、拐点及渐近线 函数图形的描绘考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的求导公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。3. 了解高阶导数的概念,会求简单函数的n阶导数。4. 会求分段函数的一阶、二阶导数。5. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数6. 会求反函数的导数。7. 理解并会用罗尔定理、拉格朗日中值定理和泰勒定理。8. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。9. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。10. 掌握用洛必达法则求未定式极限的方法。(三)一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分(无穷限积分、瑕积分) 定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念。2. 熟练掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理。掌握牛顿-莱布尼茨公式。掌握不定积分和定积分的换元积分法与分部积分法。3. 会求有理函数、三角函数有理式和简单无理函数的积分。4. 理解变上限定积分定义的函数,会求它的导数。5. 理解广义积分(无穷限积分、瑕积分)的概念,掌握无穷限积分、瑕积分的收敛性判别法,会计算一些简单的广义积分。6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、截面面积为已知的立体体积、功、引力、压力)及函数的平均值。(四)向量代数和空间解析几何考试内容向量的概念 向量的线性运算 向量的数量积、向量积和混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程考试要求1. 熟悉空间直角坐标系,理解向量及其模的概念。2. 熟悉向量的运算(线性运算、数量积、向量积),掌握两个向量垂直、平行的条件。3. 理解方向数与方向余弦、向量的坐标表达式,会用坐标表达式进行向量的运算。4. 熟悉平面方程和空间直线方程的各种形式,熟练掌握平面方程和空间直线方程的求法。5. 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。6. 会求空间两点间的距离、点到直线的距离以及点到平面的距离。7. 了解空间曲线方程和曲面方程的概念。8. 了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求其方程。9. 了解常用二次曲面的方程、图形及其截痕,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。(五)多元函数微分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限和连续 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分的概念及求法 多元复合函数、隐函数的求导法 高阶偏导数的求法 空间曲线的切线和法平面 曲面的切平面和法线 方向导数和梯度 二元函数的泰勒公式 多元函数的极值和条件极值 拉格朗日乘数法 多元函数的最大值、最小值及其简单应用 考试要求1. 理解多元函数的概念、理解二元函数的几何意义。2. 理解二元函数的极限与连续性的概念及基本运算性质,了解有界闭区域上连续函数的性质,会判断二元函数在已知点处极限的存在性和连续性。3. 理解多元函数偏导数和全微分的概念 了解二元函数可微、偏导数存在及连续的关系,会求偏导数和全微分。4. 熟练掌握多元复合函数偏导数的求法。5. 掌握隐函数的求导法则。6. 理解方向导数与梯度的概念并掌握其计算方法。7. 理解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。8. 了解二元函数的二阶泰勒公式。9. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。(六)多元函数积分学考试内容二重积分、三重积分的概念及性质 二重积分与三重积分的计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分之间的关系 格林(Green)公式 平面曲线积分与路径无关的条件 已知全微分求原函数 两类曲面积分的概念、性质及计算 两类曲面积分之间的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1. 理解二重积分、三重积分的概念,掌握重积分的性质。2. 熟练掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标),掌握二重积分的换元法。3. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。熟练掌握计算两类曲线积分的方法。4. 熟练掌握格林公式,会利用它求曲线积分。掌握平面曲线积分与路径无关的条件。会求全微分的原函数。5. 理解两类曲面积分的概念,了解两类曲面积分的性质及两类曲面积分的关系。熟练掌握计算两类曲面积分的方法。6. 掌握高斯公式和斯托克斯公式,会利用它们计算曲面积分和曲线积分。7. 了解散度、旋度的概念,并会计算。8. 会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、曲面的面积、物体的体积、曲线的弧长、物体的质量、重心、转动惯量、引力、功及流量等)。(七)无穷级数考试内容常数项级数及其收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域、和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 泰勒级数 初等函数的幂级数展开式 函数的幂级数展开式在近似计算中的应用 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数。考试要求1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件2. 掌握几何级数与p级数的收敛与发散情况。3. 熟练掌握正项级数收敛性的各种判别法。4. 熟练掌握交错级数的莱布尼茨判别法。5. 理解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。6. 了解函数项级数的收敛域及和函数的概念。7. 理解幂级数的收敛域、收敛半径的概念,掌握幂级数的收敛半径及收敛域的求法。8. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。9. 了解函数展开为泰勒级数的充分必要条件。10. 掌握一些常见函数如ex、sin x、cos x、ln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。11. 会利用函数的幂级数展开式进行近似计算。12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数。(八)常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降价的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 欧拉(Euler)方程 微分方程的简单应用考试要求1. 掌握微分方程及其阶、解、通解、初始条件和特解等概念。2. 熟练掌握变量可分离的微分方程的解法,熟练掌握解一阶线性微分方程的常数变易法。3. 会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4. 会用降阶法解下列方程:y(n) =f(x),y″ =f(x,y′ )和y″ =f(y,y′ )5. 理解线性微分方程解的性质及解的结构定理。6. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。7. 会解自由项为多项式、指数函数、正弦函数、余弦函数、以及它们的和与积的二阶常系数非齐次线性微分方程。8. 会解欧拉方程。9. 用微分方程解决一些简单的应用问题。五、主要参考文献《高等数学》(上、下册),同济大学数学教研室主编,高等教育出版社,1996年第四版,以及其后的任何一个版本均可。
在前面的内容中,小编已经给大家梳理了高等数学中的所有核心知识点。如果要说高等数学中哪一个部分的内容最难,那不好说。但微分中值定理一定是最难的内容之一,且微分中值定理这部分的内容往往以考察高分值的大题的为主。许多同学往往觉得微分中值定理的题构造十分的复杂且繁多,所以做题有些困难。其实,不只是构造,而且其形式多变,还可以结合积分等多部分内容来考核。下面,小编带大家一起来盘点一下常见的微分中值定理题型。考研基础知识首先,我们应该熟悉几个常见的中值定理,并且能够独立的推导出他们的证明过程。之所以这么严格要求,原因有下面两个。①因为在考研数学中,很有可能直接考察定理的证明。②定理证明过程的思想往往就是我们做题的证明过程思路。基础下面,小编根据自己的理解,给大家大致的叙述一下主要的几个定理的证明思想。由于许多定理证明的方法不止一种,所以小编提供的方法仅供参考。(1)介值定理(与根的存在性定理等价,也称作为零点定理,证明了解即可,基本不会考。)证明思想:通过构造,结合确界原理,推出在函数值等于0的点在区间的两端取不到。其次,在利用反证法设函数在开区间中取不到0。(2)最大、最小值定理(了解即可)证明思想:想要证明最大最小值定理,我们首先要知道有界性定理,即若一个函数在闭区间上连续,那么这个函数在闭区间上也有界。其次,我们再通过结合确界原理使用反证法,证明函数在闭区间上存在上确界是错误的。考研(3)Rolle(罗尔)定理(重点)证明思想:因为函数f在闭区间上连续,所以满足最大、最小值定理,一定存在最大值与最小值,分两种情况讨论。①最大值等于最小值时,那么函数为常数函数。②最小值小于最大值时,我们发现函数f满足费马定理的条件,可以使用费马定理,从而直接得到证明。(4)lagrange(拉格朗日)定理(重点)证明思想:证明拉格朗日中值定理时,我们常常需要构造辅助函数,其中我们最常见的是构造助函数:F(x)=f(x)-f(a)-(x-a)(f(b)-f(a)/(b-a)然后使用罗尔中值定理即可。同学其实想不太明白这个函数的构造是如何得到的,其实这个构造只是为了方便验算罗尔中值定理。直接把拉格朗日中值定理两等式两边,进行积分构造也是可行的,只是验证罗尔定理条件的时候麻烦一点。考研(5)cauchy(柯西)中值定理(重点)证明思想:要通过构造辅助函数,利用罗尔定理就可以证明。(6)积分第一中值定理(重点)证明思想:同样我们利用最大、最小值定理,函数f在闭区间上存在最大值与最小值,使用积分不等式结合连续函数的介值定理就可以得到证明。题型总结小编大致总结了一下常见的几种微分中值定理题型,共为6种题型。其中,整理的许多题目来自考研数学真题,值得去斟酌思考。(电子版领取方式在文末)总结总结总结总结我的学习建议微分中值定理的学习,对于初学者或者是第一遍考研复习的同学而言,做题会显得十分吃力,几乎每一题都要校对答案才能明白,甚至有了答案也不明白答案的函数构造是从何思想而来。其实,这是一种正常状态。学习微分中值定理的内容,首先,就是要把几个中值定理本身的证明思想吃得通透,然后再对常见题型、常用方法进行总结归纳。事实上,考研数学也逃不过在这几个题型上反复考察。难就难在题型和方法的总结上,每一道题,每一个题型都要耗费大量的时间。现在,小编在这里总结出了完整的版本,希望这篇文章对考研同学们或初学者有所帮助。由于篇幅有限,小编只能放几张整理的题型图片,有需要电子版的同学,关注我,私信回复中值定理即可领取电子版。大学高等数学核心内容大总结,掌握这些知识,高数成绩杠杠的!