【分析】这是一道极限的反问题,已知极限存在,求极限式中函数或参数的相关值。这是的0/0型未定式,一般来说,常用方法有等价无穷小替换,泰勒公式,洛必达法则,根式有理化,约分等方法与技巧。本题可用多种方法。【解法1】等价无穷小替换方法。根据无穷小等价公式,【解法2】式中含有二次根式,故可采用有理化方法。【评注】“加强条件法”与“特殊值法”只能用于客观题。这些解法大家觉得怎样?大家还有什么新的解法?有什么建议和意见,欢迎一起交流。
文| 陈小兵欢迎关注:说教育考研党艾特宇哥果然如当时“泄题风波”刚出来有人说的一样,如果泄题不成立,这肯定成为该团队宣传的最大的噱头。区区180分钟能搞到88分以上到手,厉害啊。不知道今年又有多少学子拿钱去上一个所谓的面授课、押题课,又不知道今年到底能不能押中?个人认为数学不存在押题这个说法,你要说政治押中材料,英语押中阅读材料,我觉得是可以理解的,但是数学就呵呵哒。把利益建立在千万学子的前途与国家的建设上,押题其实本身就存在问题。成了考研数学大神?当事情没有发生在自己身上的时候,我们永远可以以一个局外人的身份或许还会带着看热闹不嫌事大的态度去围观,但是如果我们所有人都这样,用不了多久别人也会以局外人的身份来看你这个当事人。没有别的意思,只是看到这个宣传真的被恶心到了。短短半年之内,考研数学泄题,大学生英语竞赛泄题,专四泄题。如果以后长期出现这样的状况,国内上大学的孩子不知道三观会变成什么样子!揭秘考研数学?听说经历了2018考研数学的人,愤怒完的反应是明年去听某某老师的课。教育系统烂掉了,真是摧毁年轻人的心性,庆幸自己不用经历这种考验人性的事情,因为“渣编”考不上研究生,也不配考研究生。什么是公平?没有人知道,但我们仍为此奋斗。因为一直努力的人付出的时间与精力不允许被践踏!正义之剑永远悬挂在奸诈之人的头上!考研党的无奈有一句话说的好,当你没有足够的权力去改变一件事情的时候,你再怎么抱怨也不会有人去理睬你,有时候道理是行不通的,权力强制手段才是解决问题的关键。“数学泄题”,“三色幼儿园”,“大学性侵”对于爱蹭热度的小编来说,不过是白驹过隙,这就是教育的悲哀。我不想再和这群丑恶的嘴脸争了,等我有一天真正拥有权力的时候,会让他们知道道理不如权力时的痛苦滋味。
昨天谈到考研数学的做题的近几年平均分,难度值,以及易失分的部分。今天来说说关于做真题的内容。一、真题要做多少年的?从87年开始考数学开始,到今已经有33年真题了其中:1987-2002年卷面满分是100分2003-2019年卷面满分是150分①做17年真题就是03年-19年,这17年的真题难度相对趋于稳定,和现在大家要参加的20真题应该是比较有贴近的。而87年-02年真题难度系数波动大,考察内容不是很合理。所以做这17年的真题,对于归纳出题套路,有很好的模拟考察的效果。②做23年真题97年-02年真题虽然只有100分,但98年和99年两年的真题是非常经典的,计算量大,这不是16年又出现了一回,所以要有应对出这种类型的试卷的心理准备。阿呆建议可以先把03年-19年的真题先做完,后面可以继续往前做到97年,至于更早的,大家挑一些经典题型来做即可。当然了,张宇老师每年都是让从87年开始做。二、真题书如何选择?第一类是李永乐老师的真题书(05-19年)和李正元老师的真题书(05年-19年),大家现在在一些经验贴上看到“二/双李”说的就是这两位,以前他们两个是一伙的,后来分家了。两位都是考研界的泰山北斗,质量这块是可以保证的。这两套图书,应该是比较像的,前面是历年真题权威解答,后面一半是章节的真题汇总,方便大家归纳复习;这两套书的真题解析大多数都会带有多解,并且对早年的真题中的一些经典题目也列出来了,作为习题补充给大家,这个刚好弥补了让大家自己去找前面多年真题经典题目的空白。大家选择一位老师的书就可以了。第二类就是张宇老师的真题大全解,张宇老师推荐的是从87年-19今年的全做,书名叫真题大全解太正确了,全面覆盖了33年的真题,同时搭配了高昆仑老师进行33年真题大串讲。大家如果有买了张宇老师的真题大全解的,可以按照这样去做。同样汤家凤老师也是87-19年的真题全解,老师自己讲真题,分为上下册:上册(87年-99年)这部分在汤家凤老师公众号免费解析视频;下册(00年-19年)这部分是需要大家花钱买的。这两类真题图书都有套卷做题版和章节归纳版,So两类大家可以自行选择,但是不推荐那种只按照套卷出解答的真题资料,那种不方便大家第二轮做真题归纳复习。三、真题要做几遍?真题至少是要做两遍滴。第一遍:按照套卷模拟考试这样,严格按照时间来做,大家要充5分利用起来,不要做一道甚至还没做出来,只是有一个思路就开始看答案了。第一轮就可以在一个专门的本子或是有打印了答题卡上模拟做,虽然只是复习练习,也要工工整整的把解题步骤写出来,草稿纸也不要随便乱画,便于检查是哪里计算错误,这点对于选择填空题尤为重要,考卷上只要一个答案。对于错题可以整理错题本或是订正后扫描到手机制成电子版。第二遍:按照章节知识点再做一遍,做的时候建议高数线代概率同时进行,考研数学的一些知识,久了不用就会生疏的,大家有没有感觉学习考研数学很需要“背”才能不忘,不单纯是理解。最后要说下关于对答案以后分数的事情,只是一个参考,真题就是用来查缺补漏的,发现问题,解决问题才是做真题的关键。
2021年考研数学(一)题库【历年真题+章节题库+模拟试题】第一部分历年真题2019年全国硕士研究生招生考试考研数学一真题及详解 2018年全国硕士研究生招生考试考研数学一真题及详解 2017年全国硕士研究生招生考试考研数学一真题及详解 2016年全国硕士研究生招生考试考研数学一真题及详解 2015年全国硕士研究生招生考试考研数学一真题及详解 2014年全国硕士研究生入学统一考试考研数学一真题及详解 2013年全国硕士研究生入学统一考试考研数学一真题及详解 2012年全国硕士研究生入学统一考试考研数学一真题及详解 2011年全国硕士研究生入学统一考试考研数学一真题及详解 2010年全国硕士研究生入学统一考试考研数学一真题及详解 2009年全国硕士研究生入学统一考试考研数学一真题及详解 2008年全国硕士研究生入学统一考试考研数学一真题及详解 第二部分 章节题库 高等数学 第一章 函数、极限、连续 第二章 一元函数微分学 第三章 一元函数积分学 第四章 向量代数和空间解析几何 第五章 多元函数微分学 第六章 多元函数积分学 第七章 无穷级数 第八章 常微分方程 线性代数 第一章 行列式 第二章 矩 阵 第三章 向 量 第四章 线性方程组 第五章 矩阵的特征值和特征向量 第六章 二次型 概率论与数理统计 第一章 随机事件和概率 第二章 随机变量及其分布 第三章 多维随机变量及其分布 第四章 随机变量的数字特征 第五章 大数定律和中心极限定理 第六章 数理统计的基本概念 第七章 参数估计 第八章 假设检验 第三部分 模拟试题 全国硕士研究生招生考试考研数学一模拟试题及详解(一) 全国硕士研究生招生考试考研数学一模拟试题及详解(二) 全国硕士研究生招生考试考研数学一模拟试题及详解(三) 更多资料2021年考研数学(一)考试大纲解析2021年考研数学(一)全套资料2021年考研数学(一)考前冲刺班找学习资料就上畅学苑学习网,助您乘风破浪一次通关!
就总体难度而言,2019年考研数学一试题与2018年相比,难度相差无几。这与近年来的考研趋势是非常契合的,随着考研人数的增加,试题的难度也在增加,这也体现了考研是选拔性考试的特点,不过从2013年开始试题的难度整体是比较平稳的。另外,2019年的考研数学一高数部分试题体现了考研数学的一贯特点:重基础,综合性强,计算量大。首先,考题重在考查学生对基本概念的理解和运用数学的基本方法来解决基本问题的能力。其实从1990年到2019年以来,重基础这个出题的侧重点从未改变过。与此同时,近几年试题中不断凸显的综合性和灵活性增加了考试的难度,要求考生注重对方法的总结和能力的培养,从而做到活学活用。最后,计算量大的特点要求考生要多做题,只有量的积累才能把计算能力提升上来,在考场上不仅做到会,而且要快,这样才能考取理想的分数。考研是一场持久战,要把握好复习的节奏,尤其是对考研数学的复习,制定好复习计划,进而保证高数复习的效率。因此,中公考研制定了比较科学的梯度学习法,把考研数学全年的复习计划划分为四个阶段,即基础阶段(6月份之前)、强化阶段(7-9月份)、提高阶段(10-11月份)以及冲刺模考阶段(12月份)。以上四个阶段循序渐进,每个阶段都有对应的学习任务和目标,一步一个脚印,稳扎稳打。考生在复习中,最重要也是最容易忽视的就是基础阶段,只有打好基础,具备扎实的基本功,这是最关键的一个环节,这与考查目标—重基础是非常契合的。在此基础上,通过适量的练习做到灵活运用,最后才能够转化为考场上的得分能力。最后,中公考研祝各位考生取得优异的成绩,考取理想的学校!
考研数学决生死!用好真题是关键!1考研试题命题基本原则以基本概念、方法与原理为主。试题中80%的分数为基础题,考生应把基础打好再去追逐高分。大多数211/双非只要数学能及格(90分),总分过国家线就稳稳的。推荐:汤家凤1800题+汤家凤八套卷题目基础无怪题,适合基础薄弱的考生。张宇的1000题、八套卷与四套卷极具个人风格八套卷与四套卷被历年考生称为”劝退卷“难度大,出的题目偏(喜欢出历年真题中没有出现的知识点)P.S四套卷:线性代数每张卷子一个证明题=-=2真题月经问题(1)真题该做多少年?现有的考研数学真题为1988-2018一共31套其中1988-2002年真题卷面分数为100分这一段时间的真题难度系数波动大,考察内容不合理要么太简单,要么太难不建议大家在第一轮做真题的时候做2002-2018年真题卷面分数为150分 这一段时间的真题难度趋于稳定,和19年的真题极为类似皮皮灰推荐第一轮按这个顺序做真题(2)真题应该做几遍?皮皮灰推荐做两轮第一轮在汤家凤1800题做完后开始真题模拟自测将02-18的真题做完后(9.1-9.15)开始做60套模拟题(9.16-11.15)第二轮将88-18年31年真题做完(11.15-考试)(3)该如何选择真题书?推荐:2019李永乐考研数学 历年真题权威解析除了真题以外,后面一半还有分章节的真题汇总如果考生基础不太扎实,可以从真题题型的角度复习,以知识点的形式破解真题。考生通过题目的演算,巩固对应方法,反过来,通过总结方法,进一步提升解题能力,相互促进,真正做到从题目中来,到题目中去。当然考生掌握方法后,要注意此类题型的解题细节,在方法大家都掌握的基础之上,分数的差距主要是看考生对细节的把握,一些常见细节的错误要注意总结,并在下次遇见时,能有效的避开。3真题应该怎么做在第一轮真题阶段,从按章节知识点分类去做真题。这样做有两个好处:第一,检测自身的复习阶段与考试要求的差距;第二,按章节分类做真题可以检测知识点的薄弱点,查缺补漏。在第二轮真题阶段,按考试规格做真题。时间限定在早上的三个小时,做完后立马改分。模拟测试的时候不要被分数的忽高忽低所影响有时候运气好,碰到的都是自己擅长的,分数高。有时候运气差,碰到的都是自己的薄弱的,心态崩了。比起关注分数的高低,我们更应该思考是什么原因导致的错误。计算问题导致的?知识点复习的时候理解错了?发现问题,解决问题。这才是做真题的关键所在。
如何看待2020考研数学一?脱离试题完整解析的评价都是唬人的。在这个疫情凶猛的寒假,百无聊赖中,看到网上对20数学又是一片哀嚎之声,于是在这个闷在家都要发霉的春节,重新翻出留在家里、当初考研复习几乎要翻烂的《金讲》,对着它,把2020数一真题默默地做了一遍,整理了一下分析,希望以自己微弱的声音传递出考研的真相,叫醒那些希望清醒突围的人。以下是我对20真题的详细评价与分析解答,内容可能有点枯燥,但如果你能多一份耐心和用心看完,必然有对考研数学全新的认识。2020考研数学一试题详细评价与分析选择题【点评】20考研的第一道题是比较友好的,考查第一章极限中非常基础的无穷小阶数判定,只要对无穷小比较的基本方法有了解,并记住考纲要求的几个常规无穷小的形式,本题很容易得出答案,对于一个正常复习过数学的人,应该不会丢分。不过对无穷小理解程度不同的人,解答路径的复杂程度可能有些差异,这应是真题命制的精妙之所在。比较传统机械的解答是用洛必达法则找到每一个选项无穷小对应的等阶无穷小,然后再判断。对无穷小比较理解程度深一点的,由于无穷小的阶数判断本来就是一种定性的近似程度比较,而选项四个积分的被积函数都是常规等价无穷小的形式,因此可以用常规无穷小对积分中可以用等价无穷小替换的进行替换,快速定性换算出每个选项的无穷小阶数,更快地得出答案。【点评】这个题考查抽象函数一点极限与可导关系的判断,抽象函数性质的判断一直是有点让人畏惧的难题,当年我也不例外,这类题在老版《考研数学超级金讲》的第一章讲无穷小定理时,介绍了一种解决这类问题超实用的通用办法,可以通过无穷小定理将极限中的抽象函数转换为具体函数,试题就简单多了。应对这类题需要一定的运气,方法总结好的全书可以将难题化为简单题,而没有这么深刻总结的全书,这种对知识点深刻考查的题很难得分。考研数学的复习,对于一个数学基础不是非常好的同学,用到一本好的复习全书非常关键,不仅几乎决定着考研数学的成败,还决定着复习过程的轻松程度。【点评】此题表面看起来是综合了向量与二元函数极限的内容,有点吓人,但如果能看清选项的本质,其实很简单,就几个极限计算结论的判断,只要把每个选项按照计算规则展开,结合题目条件算一下就能判断。这也是历年真题命题的一贯风格,形式不断的创新,但本质并没有多少改变,一方面可以考查我们透过现象看本质的能力,另外也考查大家的心理素质。这些都是以对数学知识点本质掌握为基础的。这道题对于有简单数学分析思维以及对可微知识点有理解的同学,应该很容易做对。(4) 是一道有关级数收敛半径结论的判断问题,网上本题内容有多个版本,没有一个版本的信息能进行答案的充分判断,网上几个版本的解析也都很牵强,在这里忽略掉这道信息不全的试题。【点评】本题是一道非常基础的创新试题,对矩阵初等变换的数学关系简单理解的考查。传统考查方式通常是给出一个具体矩阵经过几次初等变换到另外一个具体矩阵,让判断这个具体变换过程的等式,这里是依据一个抽象矩阵经过抽象的初等变换到另外一个矩阵进行结论的判断,在传统的题型上更进一步了,但只要理解了矩阵初等变换的实质,再怎么变也很容易得分。【点评】本题将线性代数的向量与高等数学的空间向量结合在一起考查,是一种考查频率较高的考查方式。这类题,我当时复习刚开始接触这种题时,也有些头皮发怵,但静下心认真把《金讲》对这类题目的方法总结和对应的例题独立练习了几遍之后,发现这类题只要克服胆怯的心理障碍,理清题目条件,或者说是将它的几何条件冷静地翻译成对应的向量关系,题目实质就是考查简单的向量相关性的判断而已。【点评】本题是概率论考查频率非常高的一种常规题,考查随机事件概率公式的变换能力,在本人前面提到关于20考研复习经验分享答贴也强调了这类题是概率论选择题考察的重点,还在贴子中大量的进行举例说明。20年的这道题出的非常好,不难但非常能对我们数学功底的考查。这道题,数学功底不太好,或者具体来说,对于那些整天只知道刷题的人来说,这道题花费些时间,通过机械地计算也能算出来,但对于有一点数学功底的同学,从上面条件中很容易敏锐的发现事件具有对称性,可以少算一个复杂的概率,至少可以节省3分钟时间。【点评】本题是考查多年未考过的中心极限定理,中心极限定理在概率论中地位很重要,但真的是太简单了,我想这个可能是它考查频率低的一个重要原因。今年考到这一定理也不意外,这符合我在知乎答贴中提到的,近几年考题不排除对一些冷门考点的考查,而且我在该答贴中谈到这个观点时,有强调“一些辅导机构老师将考研数学进行重点非重点的划分,实际是坑人的。考研数学内容掌握好了,其实内容并不多,都在考纲之内,当然都是需要去掌握的,而且本来也是能掌握的,尤其是一些所谓的非重点,更易于掌握”。这道题,任何有心复习过中心极限定理的,应该都能拿到分。【小结】从以上2020考研数学一的8道选择题的分析容易看出,如果复习的重心切切实实地落在数学考点内容的理解和基本数学思维的培养上,根本不需要刷太多的题,也不需要有传言中大量的计算(即使机械的去计算)就能解决掉,而复习如果总是依赖于刷题的苦练,一味的追求题型的掌握上,很多基本不太好的人很容易在临近考试的时候,由于长时间专注于刷题而模糊了数学基本内容的掌握,导致大量基础内容的混淆,结果连最基础的考题都解决不了。同时,由于真题形式上的创新性,你刷再多的题,都追不上考试中心那帮老爷子们对试题形式的创新速度,明年考试结束依然只有在网上抱怨的份。一套试题的选择题的难易程度是最能代表试卷的整体难度情况,因为接下来的6道填空题最多只可能出现一道难题,一般来说,填空题是高概率没有难题的。而9道解答题,最多只会出现2道难题,而再难的题两问中总有一问是相对比较简单的,正如我在知乎分享答贴中说的,第一问难第二问一定简单,可以直接用第一问的结论做第二问。就这样按最糟糕的方式算下来,2020年最难的数学一,考出150—4(选择题最大扣分)—4(填空题最大扣分)—20(解答题2道完全不能动手的试题扣分)—7*2(其他7道解答题每道因为小的失误可能的扣分)=108分的成绩应该不是难事情,如果在这个分数以下,要想二战,首先是要对自己一战的复习进行反思,在网上抱怨吐槽是没有任何用处的,而且害人害己!2.填空题【点评】本题是一道常规无穷大-无穷大的极限计算,实质是考查第一章极限重要知识点(无穷小的泰勒展开)的简单掌握,两式通分容易化成商式,由于两个差式的分母均有直接展开的泰勒公式,用泰勒公式展开即得到答案。估计不会有人在这道题上丢分,除非裸考数学。【点评】本题是一道常规求参数方程函数的二阶导数,直接套用求导公式就能得出答案,如果不是计算出问题,一般不应该丢分。【点评】本题将微分方程与广义积分结合在一起考查,看起来有点唬人,但如果有基本的数学解决问题的思维,并不难。【解析】积分与导数可互消,被积函数很容易通过微分方程表示成导数的形式,代入积分即可化简。【点评】本题是加了一点点变形的变限积分的求导计算,如果直接套用变限积分求导公式按照问题给出的求导顺序显然没办法先求得x的偏导数,因为积分号里面有关于x的函数,它没办法移出积分号,因此需要换一个思维,只能先求y的偏导数可以很快去掉积分号,再求x的偏导数,可以求得问题的答案。【点评】本题考查最常见的有一定特征的低阶行列式计算,属于极为常见的行列式计算,丢分的应该会很少。先利用特征尽量化元素为0,然后展开。【点评】本题考查随机变量数字特征(协方差)的基本计算,利用协方差公式一步步计算即可。【小结】填空题是以考查基本的数学量计算为目标的题型,一般来说,很难命制难题,历年中有难题的最多一道,一般是对古典概率模型的考查。20年这6道题,如果扎实理解了每一章计算量的计算过程,应该一分都不会丢。3.解答题【点评】这是一道非常基础的无条件求极值问题,只要按照求最值的基本步骤走下来就能解,这可能是数学史上解答题第一题难度最小的试题。【点评】本题是《新考研数学超级金讲》上的一道原题,被积函数分母显著地为积分变量的平方和结构,《新金讲》上对这类特征的曲线积分计算有专题总结,一般都用挖洞格林公式法。知晓这种方法的,这道原题相当于送分题,不知晓这种方法的,本题可能有点无从下手。《新金讲》上对这道题已经有很好的解答了,以下解答过程照搬了《金讲》,如有侵权,请联系删除。【点评】本题是关于抽象级数收敛性证明和求和,属于难度比较大的试题,不过较难的第一问证明几乎是《新考研数学超级金讲》417页例11.25的原题,除了数列关系式有微小差异外,证明过程几乎一致。这道题属于卷面可以放弃的题。一般来说,一道解答题,5分钟之内找不出思路就可以放弃了。【点评】本题完全是考查大家的心理素质,一道常规的曲面积分的计算题,只不过是在曲面积分计算最不重要的环节(被积函数)上设置了一点唬人的新形式,如果对命题特点稍有意识,必然会想到被积函数中的抽象函数必能在计算过程中消掉,否则曲面积分的值是计算不出来的。本题也几乎是《新考研数学超级金讲》382页的一道原题,除了被积函数有微小差异外,计算过程完全一致的。这道题很能区分数学复习是靠机械刷题来进行的还是靠对数学知识点深入思考理解掌握来进行的,对于前者,这是一道可能读完题目就得放弃的难题,对于后者,一瞬间的慌乱之后能快速看清本质的简单题。看清本质了,按照曲面积分的基本步骤按部就班的就可以得到答案。【点评】本题是一道创新性对中值定理掌握深度考查的试题,应该是卷面难度最大的试题,尤其是第二问,坦白地说,第二问我没有独立证出来,解答过程参考的是21版《新金讲》的电子版。第一问难度对于一般人来说应该也非常大,因为带绝对值的中值定理不等式证天生就是难题,这里几乎没办法利用到中值定理中构造函数的核心的思路。我能证明出来是因为它几乎是老版《金讲》第四章中值定理的一道原题,而且《金讲》对中值定理应用总结的找点取值方法确实给力。【点评】本题在历年线性代数的解答题中也是一道极具创新性的试题,通常二次型经过正交变换之后得到新的二次型为标准型,而这里经过正交变换之后,二次型既不是标准型,更不是规范型,可能考场上不少同学看到这里就已经懵到无法动笔了。基础知识掌握稍强一点的从题目条件应该能反应过来,一个二次型经过正交变换到另外一个二次型,两个二次型对应的矩阵是相似关系,因此通过相似关系可以很容易地解决第一问,第二问则空白。只有基础知识掌握非常全面深刻的同学,在解答第二问时会意识到两个二次型的矩阵最终都能通过正交变换转化为同一个相似对角型,从而建立联系,解得正交矩阵。这就是考研命题的科学之处,一道题可以很明确地区分出不同学习水平的人。令人很惊讶的是,这道题和接下来的一道线性代数题居然是《新考研数学超级金讲—线性代数》177页中连续的两道例题数字符号替换的结果,只不过在这里,真题把《新金讲》中两个矩阵的相似关系用二次型的形式同义替换了,两者计算过程完全一致。【点评】本题第一问求证矩阵P可逆等价证明构成该矩阵的两个向量线性无关,由题目条件不需要拐弯就能直接得到证明,因此,只要对向量组性质与特征向量有点基础认识,第一问就是一个送分题。有时候真想不明白,一些一眼都能看穿的题怎么还会有人能把它做错。应该是刷题太多,把自己刷糊涂的结果吧。第二问明确地求一个可以通过矩阵P的变换得到矩阵A的相似矩阵B,解答这一问需要一点基本的处理数学问题的分析思维,即逆向推演。利用某个条件求某一个量,从正面难以得出答案的情况下,一般可以通过设出所求量,代入求解表达式中,反推来找思路。如果有这种最基本的数学思维意识,这一问也不难,如果机械地希望通过矩阵方程式凑,则几乎难以解答。这较难的一问与《新考研数学超级金讲—线性代数》177页的例5.29的第一问几乎是同一道题,只不过真题把《新金讲》中的三维矩阵、三维向量和矩阵方程做了替换,其他完全一致。【点评】本题是对概率论中唯一的重点内容(离散与联系随机变量的复合函数分布)的考查,在命题上超越传统的两个随机变量之间的函数复合分布的求解,而拓展到了三个随机变量的函数结构,如果没有对这一重点内容求解的本质理解,而依靠机械刷题停留在题型形式上的掌握,本题估计看完题目就胆怯地放弃了。但如果从内容本质理解了这一重点,这类题其实相对比较简单,无非就是把复合函数展开成全部离散变量的交集和,然后化简就直接得到问题的解答了,这个题的两问都是对这一重点内容的考查。老版《金讲》有对这一重点的诸多详解,看20版《新金讲》把它整合为了一个独立的专题,且直接标注为重点内容,相信应该总结的更好。【点评】每年数学最后一道解答题都是固定的考查极大似然估计,这一重要考点是没办法命制出创新性的难题,都只需要按照极大似然估计的固定步骤,建立连乘似然函数,求最值,然后得到解答。因此,每年数学的最后一题几乎都是送分题,可惜不少人会因为前面存在的难题浪费了不少时间,而无时间完成最后的送分题,这也说明很多人在复习的过程中缺乏对应试策略的基本思考,醉心于不动脑子的刷题游戏。本题第一问求两个概率值,只需要按照定义计算即可,很基础的一个问题。【结束语】作为曾经的数学菜鸟,有幸在高人的指点下在2019年考出140+的成绩,自觉个人的经历应该可以给很多像我一样的数学菜鸟以借鉴,于是在2019年的暑假花了两周时间,借回答“不看全书复习考研数学是怎样一种体验?”的答贴分享过一篇关于2020备考的经验文章。幸运又必然的是,在20考研数学一真题中,9道大题中7道难度大一点的解答题几乎都是我在该答贴中重点提到《考研数学超级金讲》20版例题的原题,之所以说必然,因为我当时使用的是2015版,发现2016、2017、2018的绝大部分真题都能在这本书中找到原型,再加上这本书对数学的解析确实让我学起来很给力,当时接触到这本书的时候距离考试的时间已经有些紧迫了,于是我把超过80%以上的时间聚焦于这本书上,我把这本书的高数部分看了4轮、例题当作练习独立做了2遍,线代和概率各看了3遍、把例题当作独立练习也做了2遍,几乎做到翻到书中的每一章就可以把它这一章的全部内容,包括考点解析、例题应用、关键注意事项等按照书中梳理的内在逻辑脉络把它快速在脑海里完整地呈现一遍。2019年大部分考题又在书上能找到对应的原型,因此2019年能考出140+的成绩也不特别意外,而20版《新金讲》比2015版的内容要充实全面得多,一次性能命中这么多真题也不算意外。不得不说,这本几乎低调到尘埃的全书除了每年能命中大量考题外,对数学每章知识点深入本质的解析和对数学知识点内在逻辑的梳理真的给力,尤其是后者,能很快帮助学习者形成数学内容掌握的系统性,对比其他全书,大多是一个个孤立考点的罗列说明。网上可以找到这本书的电子版,我也保留了它的电子版,当时我也是通过电子版认识它的,如果需要可以私信我。某些怀疑论者大可找出来与其他书一比,用事实来说话,不要一提到某个自己没见过的东西就阴暗一厢情愿的乱喷,害人害己。实际上,作为一个考研经历有些波折的过来人,走过之后总结发现,考研数学复习其实很简单,并没有那么多花里胡哨的东西,根本精髓就是找到一本好的复习全书,聚焦于它,把它反复的学透做透,而不是杂七杂八应付任务般地刷上七八上十本题集。不少人可能认为对于考研数学来说,最重要的是一本好的真题解析,这其实是一个根本错误的认识。虽然好的真题解析很重要,但再好的真题解析也只不过是停留在不成系统的、知识散点的、不全面的应用解析,真题只有系统融于数学考点中掌握才能最大发挥其学习的有效性,而一本真正好的全书都会萃取历年真题精华,帮助我们实现这一点。在这方面,我还是要像前面分享的那篇答贴一样疯狂地安利大家在考研中如扫地僧一般低调的《金讲》。20考研数学,我浏览了一下网上各家辅导机构的考后宣传,几乎没有一家能真正拿得出押中或命中20真题的实锤证据,而20版《新金讲》一本书即实锤命中9道解答题中的7道难度相对较大的题目,这就是人家的实力。绝大部分考研数学的失败者,从根本原因讲是过于贪婪,随大流,盲目地跟随他人刷完一本又一本题集,而把考试最本质的数学理论的系统掌握抛在一边,求量不求质,失败之后也不思考自己真正失败的原因,只是一味的在网上煽情地抱怨、吐槽试题命制的科学性,于是每年数学考完之后,都是一片哀嚎。后人哀之而不鉴之,亦使后人而复哀后人也。实际上,中国的数学考试命题,在全球都是领先的,每年数学的试题出的都非常好,不偏不怪,考的是大家数学真正知识掌握的功底,20年的数学也是一样,并不离谱。数学的失败的根本原因在于个人学习方法的失败,而不是命题方。览20年数学试题,除了2题的抽象函数判断、17题的抽象级数、19题的中值定理确实有些难度,其他试题虽然在形式上有史无前例的创新,但如果能对数学知识点有真正的理解和简单联系思维,本质都是很容易解决的。作为曾经的数学菜鸟,有幸在高人的指点下在2019年考出140+的成绩,反复总结考研数学成功的经历,其实两点最关键: 1.清晰的认知考试情况;2.遇上一本好的复习全书,并聚焦于它进行复习。做到这两点,数学至少130+,而不是像各种网帖搞得那么玄乎苦逼。希望这套试题的详细点评和解析能帮助你。在这个漫长的寒假,希望以自己微弱的声音传递出考研的真相,分享有价值的东西,选择回答了一些自己认为比较重要的考研问题,先将全部答贴汇聚于下方,希望能帮助你。
未来你想要和看哪种书的人私定终生?给你三种人1. 看文学艺术书的人2. 看专业工具书的人3. 看说明书的人未来的日子里,你必须选一个人去私定终生,你会选择那一个?我会选择那个看说明书的人。什么是说明书?说明书就是关于物品的用途、规格、性能和使用方法等的文字说明。因为看懂说明书的人,在知道这个东西的底层逻辑是什么的同时,花费了更少的时间。说明书才是更贴近产品本质的东西;而不看说明书的人,很多东西你需要琢磨很久才能明白。比如你买了一个航拍,许多人说凭借着自我摸索一样可以玩的很转,但那毕竟是少数人。同样也跟你平时生活中所接触到的人、事、知识都有关联。但我们不得不承认在很多问题面前我们只是芸芸众生的普通人。我们没有学富五车,可我们却要解决生活、工作、学习中的接踵而至的问题。当然如何定义问题解决的好坏程度:1.解决问题的质量2.解决问题的速度很多时候,你解决问题的能力并不取决于你的思维深度,也不取决于你看过的东西有多少----所谓“见多识广”。取决于你是否能在短时间内发现问题产生的原因。马云是当代中国顶级的大佬。一个被哈弗拒绝10次只能去读师范大学、连续30次应聘失败的人成就了如今的阿里帝国。可你并不知道马云为了提高自己的英语能力,厚着脸皮去大街上找外国友人交谈。在美国接触到互联网后,他在短时间内读懂了互联网说明书,坚信未来的大方向并付诸于行动,推进了中国的发展。语言的本质是交流,交流是语言的说明书。在其他人在研究如何应付考试,钻研套路的时候,马云读懂了它。互联网的本质是分享、互动、虚拟、服务。这也正是阿里巴巴一直发展的方向试着回想一下你第一次接触淘宝时的想法,我想大多数人都会和我一样“为什么会这么便宜,会不会被骗?”但事实上1995年亚马逊就开始依靠互联网出售图书了,电商模式在当时的中国马云一定不是第一个知道的人,也不是第一个去做的人,但他却是第一个读懂了这种商业模式说明书的人,所以才成就了今天的淘宝网。我们在新媒体、融媒体上看到各种成功人士的报道的时候,往往都会觉得他们说的十分离谱,换而言之,你成功说什么都是对的,失败就算再有理有据也没人理会。你会抱怨这个社会现实,殊不知在身边所有人都不理解、不支持的时候,他承受了多大的压力才有了今天的成功。你没有经历过他的经历,凭什么去评价他人的话。这世上本就没有绝对的感同身受。其实你从更长的时间线去看,是历史在选择这些人:谁先发现,谁能以最快速的速度玩起来,机会就是谁的。趋势总会发生,机会的坑总会被填上,不是人创造了机遇,而是机遇选择了人。所以成功人士不过是时代的代言人,牛逼的是时代。考研亦是如此,真题就是考研的说明书。无论是数学、英语、政治乃至专业课。真题是才是最接近考研本质的,真题才是在成千上万的题目中选出的最优质的题目。也许十年前,二十年前,在那个信息闭塞,在那个竞争还没那么激烈的年代。没有人会告诉你真题到底有多么多么的重要。甚至那个年代大部分考生会嘲笑那些去反复钻研真题的人,题都考过了,你做再多遍也不会出同样的题,愚蠢至极,浪费时间。殊不知那些人才是考研届中的“Jack马”。现在只要你花一些精力去询问一些考研成功的学长、学姐,甚至老师,所有的人都会告诉你真题到底有多么珍贵,不要浪费。而33年真题同样早已完完全全覆盖了所有的考研知识点并且每个考生都知道真题的重要性,那么差距应该如何拉开呢?有这样一个人要用他的知识、他的能力、带着你认认真真去做好每一道题,一同摸透出题人的心思,总结各种解题技巧。你是否愿意和他一同读懂这本说明书呢?数学其实很可爱,把数学妖魔化的是六十岁的出题老头。但是今天也想告诉你,老爷爷们也是很可爱的,真题犹如自己的孩子,天底下哪一个父母不希望自己的孩子是优秀的。所以真正把数学妖魔化的是你们自己,你们内心的不坚定和自身的懒散。这个夏天莫名的炎热,这个年份莫名的难熬。请你务必稍安勿躁,重新去认识一下这群老爷爷,像老爷爷们一样去爱他的孩子们。记住念念不忘,必有回响步步实踏,心才踏实不管你的朋友是否相信你不管你的家人是否相信你只要你在路上,这个时代相信你
大家好,我是老梁考研数学!今天老梁继续给大家推送《考研数学真题分类解析系列》第五期,精选了一道极限计算方面的真题。通过这一道真题就几乎能把最常用的极限计算方法进行复习,是一道质量非常高的真题。真题解析【例005】(2008数1&2)【分析一】0/0未定式极限,可使用洛必达法则计算,计算前先利用无穷小等价化简先。【分析二】使用在x=0处的泰勒公式。【分析三】利用无穷小等价替换。【分析四】极限式中含有函数差,所以可以尝试利用拉格朗日中值定理。【分析五】极限式中的sinx比较多,故可采用变量替换。总结本题从不同角度出发进行分析,使用了5种方法进行计算。这五种方法:洛必达法则、泰勒公式、等价无穷小替换、变量替换以及拉格朗日中值定理都是常用方法。方法总结 归纳题型奇思妙解 就找老梁想了解更多精彩内容,快来关注老梁考研数学往期回顾考研数学|真题一题多解系列,精选001考研数学|真题一题多解系列,精选002|最后那种方法你肯定想不到考研数学|真题一题多解,精选003|∞-∞型未定式移位变形小技巧考研数学|真题分类解析系列,精选004|反用等价无穷小考研数学|方法总结,递推数列单调有界原理方法之单调性证明
大家好,我是老梁!今天继续推出《考研数学真题一题多解系列》第二期!本期为大家精选了一道2019年考研数学一、二、三试卷共同的一道题,是一道无穷小量比较的问题。无穷小量比较问题是考研数学高频考点之一,每一年都会考(尤其是数学二)。通常以客观题(多数选择题,少量填空题)的形式出现,也会以主观题的形式出现。经常出现的有两种题型:一是无穷小量关系的比较,即将若干个无穷小量(通常是三个)放在一起,比较谁是谁的高阶、低阶、同阶、等价无穷小量等,二是已知两个无穷小量的关系(例如高阶、低阶、同阶、等价等等),然后把无穷小量中所含的参数反求出来。不管是哪种考法,其解决方法都是类似的,即洛必达法则法,泰勒公式法及无穷小等价公式法等。对于客观题,有时还可以根据函数、极限相关的知识点或技巧解决。先看真题,这是第二种考法。已知两个无穷小量的同阶关系,反求无穷小量中所含的参数的问题,难度并不大,利用常规方法就可以解决。【例002】(2019数一、二、三)【分析一】常用的方法就是定义法和无穷小等价公式法。(1)定义法根据无穷小同阶的定义写出下面的极限式然后利用求极限的方法:洛必达法则、泰勒公式等计算其极限。(2)无穷小等价公式法利用已知的无穷小等价关系,将两个无穷小都等价于同一个幂函数无穷小,然后再求参数。【分析二】上述两种方法都是常规方法,然而有时客观题常常需要根据本题条件及选项的特点采取非常规方法,如排除法。本题即可根据函数(无穷小)的奇偶性以及两个等价无穷小的性质排除掉错误选项,从而得到正确选项。【评注】本题难度不大,对于无穷小比较问题,解法一和解法二,洛必达法则,泰勒公式法及等价无穷小这三种方法最为常用,其中解法二简单,但要记住此等价公式。解法三,利用函数奇偶性质和两个等价无穷小之差一定高阶无穷小性质求解这类问题,则比较新颖。实际上,无穷小比较的本质上还是函数极限的问题,因此函数的性质(四大特性)及极限的性质(保号性,有界性等)都可以用来解决这类问题。同学们这些方法,都get到了吗? 如果是你,会用哪些方法解题呢?欢迎留言分享。相关链接考研数学|真题一题多解系列,精选001考研数学|上岸985,等价无穷小要掌握到什么程度?考研数学,一文搞懂无穷小可以等价替换的5个情形考研数学|变限积分函数无穷小的等价性