近日,中国科学院武汉病毒研究所/病毒学国家重点实验室胡志红、王曼丽研究团队在蛋白质相互作用的研究方法方面取得新进展,相关研究成果以Mito-docking: A novel in vivo method to detect protein-protein interactions(《线粒体锚定:一种研究活细胞内蛋白间相互作用的新方法》)为题发表在国际学术期刊Small Methods上。蛋白质之间的相互作用对生命活动至关重要。尽管已有不少体内研究蛋白互作的方法,但由于许多蛋白互作是高度动态的,因此用传统的方法难以捕获。该研究基于“招募”和“聚集”的原理,即将“诱饵”蛋白A锚定在线粒体的外膜上,如B蛋白能与A蛋白互作,则将被“捕获”到线粒体外膜,发生富集;如C蛋白不与A蛋白互作,则不会发生定位变化(图1)。文章首先用线粒体锚定(Mito-docking)的方法有效验证了G蛋白亚基γ2和β1间的互作,并进一步运用该方法研究了核转运受体(importin α isoforms)与货物蛋白(经典的核定位信号cNLS)之间的互作,揭示了核转运受体-货物蛋白的识别特异性(图2)。研究发现,该方法不仅能有效检测如核运输过程中的短暂蛋白间互作,还能对蛋白互作的强度进行相对定量分析,是一种高效、直观、简单的研究活细胞中蛋白质互作的新方法。武汉病毒所博士生邵伟为该论文的第一作者,副研究员王曼丽和研究员胡志红是该论文的共同通讯作者。该研究得到中科院前沿科学重点研究项目(QYZDJ-SSW-SMC021)、国家自然科学基金创新研究群体项目(31621061)和病毒学国家重点实验室病毒学前沿科学重点研究项目(klv-2016-03)的资助。图1. Mito-docking研究蛋白间相互作用的原理示意图 图2. 利用Mito-docking研究importin α异构体对SV40 NLS的识别特异性。A. 将含有线粒体锚定信号的野生型NLS(NLSwt)与不同的importin α异构体共转染细胞。发现除α6外,其余几个importin α异构体均被招募到线粒体外膜,从而产生明显的荧光共定位现象。B. NLS突变后(NLSm)不能与任何importin α异构体互作。中国生物技术网诚邀生物领域科学家在我们的平台上,发表和介绍国内外原创的科研成果。注:国内为原创研究成果或评论、综述,国际为在线发表一个月内的最新成果或综述,字数500字以上,并请提供至少一张图片。投稿者,请将文章发送至weixin@im.ac.cn。本公众号由中国科学院微生物研究所信息中心承办近期热文直接点击文字即可浏览!1、补牙或将成为历史?2、科学你慢慢学,中医我先治病去了3、科学告诉你应该多久洗一次澡4、新证据:喝咖啡能延长寿命!5、据说,这是生物医学硕士博士生的真实的生活写照6、一顿早餐到底有多重要?7、情商也是把双刃剑!高情商或让你更脆弱8、施一公:压死骆驼的最后一根稻草,是鼓励科学家创业!9、“科学禁食法”真能降低重大疾病风险10、睡眠科学家揭示出8种睡好觉的秘诀11、有志者事竟成!2型糖尿病成功被逆转12、每周两半小时,任何形式的锻炼都可以使你更长寿13、喝醉以后,你以为睡一觉就没事儿了?!14、仰卧起坐等或将成为延寿运动?15、冥想、瑜伽、太极等不仅能够改善身心健康...
蛋白互作的研究背景内容比较丰富,我们分成两期定量蛋白质组学非标记定LabelFree定量蛋白质组学技术研究蛋白互作的背景进行介绍。本期我们接着说蛋白-蛋白互作方法的研究背景。蛋白互作方法的研究背景免疫印迹或免疫沉淀逐渐转向使用质谱法进行样本中的蛋白质定量,同时,也可使用该方法进行蛋白质鉴定。质谱法为高度复合的定量分析创造了条件,为它们的快速发展提供了条件,无需考虑费时的基于抗体的方法。LC-MS/MS还促进了研究人员对蛋白质异构体和翻译后修饰(PTMs)如何控制和调节多个细胞的了解。在蛋白质互作分析中,亲和纯化与多种定量质谱方法相结合非常常见。在本文中,我们将质谱采集策略分为“数据相关采集(DDA)”和“数据独立采集(DIA)”。目前为止,DDA最常见的用途是通过“鸟枪”技术鉴定化合物。在这些实验中,根据一组简单的启发式规则(通常是母离子强度)选择一个母离子进行碎片化,利用从所选母离子导出的MS/MS图谱进行蛋白质鉴定(图1)。相比之下,DIA并不是根据前体离子扫描中的信息来选择要进行碎片化的离子,而是在质谱仪可见范围内使整组前体离子碎片化,选择离子进行碎片化的方式区别对量化结果有重要影响。图1. QqTOF仪器中典型“鸟枪”实验的示意图。仪器在两种不同的扫描模式之间循环。(A) 在第一模式(MS1)中,所有离子都通过仪器传输,并在检测器处检测,随后可用于母离子测定。利用简单的规则(强度、电荷状态和离子是否已经碎裂)分析导出的质谱图。通过这些规则的离子随后被分离和碎片化。(B) 在MS/MS模式下,特定质量在第一个四极体中分离,在第二个四极体中碎片化。所有的碎片离子都被记录在分析仪中,并产生MS/MS图谱,用于鉴定化合物。质谱仪的不断创新使得检测灵敏度得到显著提高,可以检测样品中成分较少的物质。除了能够更深入地观察样品外,灵敏度的提高还可以提高仪器的扫描速度,这使得用不同的工作流程和方法进行定量和鉴定成为可能。本文我们讨论的是利用亲和纯化联合质谱技术(AP-MS)分析蛋白质-蛋白质相互作用时,肽和蛋白质的定量方法。这些方法也适用于涵盖需要量化的不同应用领域的各种其他类型样本,不过最终使用哪种方法还是由样本复杂性来决定。下期文章中,我们将切入主题,详细介绍几种目前常用的几种研究相互作用蛋白质组学的定量蛋白质组学非标记定量LabelFree法。本文由百泰派克生物科技整理编辑。百泰派克生物科技专注于基于质谱的蛋白质组学服务,结合亲和纯化与定量蛋白质组学非标记定量LabelFree、SILAC或SWATH定量技术,提供一系列定量蛋白质组研究策略,灵敏度高、重复性好,非常适合蛋白质相互作用的研究。文献参考:Stephen Tate, Brett Larsen, Ron Bonner, Anne-Claude Gingras, Label-free quantitative proteomics trends for protein-protein interactions. Journal of Proteomics, 2013.
为什么要研究蛋白质相互作用?蛋白质是细胞的功能分子,控制了细胞中所有生物系统。但是,通常它们不是“孤军奋战”,绝大多数蛋白质会与其他的蛋白质相互作用,一起参与生命的过程。因此了解未知或已知蛋白质的生物学功能和从细胞水平上确定细胞机制,已成为蛋白质组学研究的主要目标。 而当前研究蛋白质相互作用的主要技术方法,包括免疫共沉淀,荧光共定位,荧光双分子互补,荧光双分子互补,荧光能量共振转移等研究方法,通过了解各种研究方法的原理和特点,在实验中可根据不同的要求和目的选择合适的方法。免疫共沉淀(co-IP)原理是以抗原和抗体的特异性结合以及来自细菌的两种蛋白—Protein A/G—特异性结合抗体分子的现象为基础的研究蛋白质相互作用的经典方法,是确定两种蛋白质在细胞内相互作用的有效方法。 人们将抗体和大质量的琼脂糖颗粒或者磁珠进行进行交联或者亲和,然后用这个带有抗体的大颗粒物去识别溶液中的目标蛋白,此时如果目标蛋白已经与其他蛋白相互作用形成复合体,那么含有目标蛋白的蛋白复合体就会被这些大质量的颗粒物所亲和,由于抗体锚定在了这些大质量的颗粒物上。 人们通过各种缓冲液的清洗除去非特异性的结合后的颗粒物可以通过离心或者磁力架吸引进行收集,此时结合在这些颗粒物上的蛋白质理论上就是可以和目标蛋白直接或者间接相互作用的蛋白了。 通常情况下,做实验前你对于这些可能的互作蛋白已经有了猜测,那么可以将大颗粒物拖拽下来的蛋白复合体跑 SDS-PAGE。 然后用 western-blot 的方法,可以用这些可能的互作蛋白的抗体去进行检测,就能验证这种蛋白质之间的相互作用了。根据实验目的的不同,免疫共沉淀的方法可以有很多可以修改的地方。 比如,如果你希望验证蛋白之间直接的相互作用,那么你可以选择体外翻译系统,在试管中合成需要验证互作的一对蛋白,然后混合孵育,并进行检测,也可以通过原核表达系统纯化这对蛋白,然后进行混合孵育并检测等等。免疫沉淀的方法运用合理,可以玩出很多有意思的实验,回答很多问题。 荧光共定位,Fluorescenceco-localization,在过去,这个技术一般用于细胞内辅助证明蛋白相互作用,前些年,如果是其他物种的蛋白质,你应用酵母双杂交系统验证了它们的相互作用,reviewer 可能会说你这个并不能反映原物种中的真实情况,可能是假阳性。 这个时候,一些研究者就将这两个蛋白分别与不同颜色的荧光蛋白融合表达于原物种细胞当中,在高分辨显微镜下,如果两种荧光出现在同一位置,那么就证明它们空间上较为接近,很有可能产生了相互作用。然而,就如上一句话里所说的,只是很有可能,并不能作为直接证据证明它们真的相互作用了。这个技术一般都是没办法时候的办法,就不举例子啦。 荧光双分子互补, bi-molecular fluorescence complementation(BiFC), 人们把绿色荧光蛋白 GFP 分子分割成两段,分别与接受测试的两个蛋白融合表达。如果两个蛋白相互作用,那么在细胞中 GFP 的两个片段就可以在空间上相互接近,并最终能够在激光的激发下发出绿色的荧光。 这里的 GFP 也可以换成萤火虫荧光素酶 Luciferase,原理相同,不同的是荧光素酶需要有底物的存在,发出的是自发荧光而非激发光 。这类技术的好处是可以再活细胞里进行观测,可以进行实时监控,定量等实验。 但是该技术的空间分辨率大概是 250nm,可以说对于蛋白质相互作用来说,依然是相当远的一个距离,因此也有很大可能是假阳性,同时融合蛋白也可能对受试蛋白的空间构象造成影响造成假阳性假阴性的结果。总的来说,这类技术还是要优于前两个的。 荧光能量共振转移,fluorescence resonance energy transfer(FRET),这个技术与第三条又有所不同。 人们将目标蛋白 A 与青色荧光蛋白 CFP 融合表达,将 A 的可能的互作蛋白 B 与黄色荧光蛋白 YFP 融合表达,CFP 的激发光是波长是 414nm 紫外光区域,而荧光波长是 475nm 蓝光区域,恰好 YFP 的激发光是 475nm 附近蓝光区域,而荧光则是 525nm 附近黄色光区域。如果 AB 两蛋白相互作用,空间上相互接近,导致 CFP 和 YFP 分子也在空间上相互接近,那么当仅用紫外光激发 CFP 时,CFP 接收能量放出的蓝光将直接被 YFP 吸收,从而发出黄色的光,如果能够定量 CFP 的蓝光被转化成为 YFP 的黄光效率的变化,那么就可以检测出两个蛋白间的距离的变化 。 因此,这项技术不仅能验证蛋白质的相互作用,还能够表征这种相互作用距离的动态变化,比如蛋白质分子直接相对运动的方向速度等。比如在这篇文章里 ,作者们就用 FRET 测定了细胞运动时的受力情况。 亲和纯化 - 质谱,affinity purification-mass spectrometry(AP-MS),刚才说了,如果你在实验之前已经对目标蛋白有推测的互作蛋白,那么你可以做 western-blot 对它进行检测。 可是,如果你想找一些以前未被报道,你自己也无法猜测的新互作蛋白呢?这个时候,你可以把免疫共沉淀后得到的样品,送去做蛋白组学质谱的实验室,通过质谱对这个复合体中的所有成员进行鉴定,理论上你就获得了整个目标蛋白复合体的成员信息。 如果说,之前的实验都是用一把枪,瞄准对面山头的敌人然后各个击破,那么质谱的方法就是拿了一门炮,将对面山头的敌人一网打尽。AP-MS 的方法还有很多变种。 比如利用一些可以对周围蛋白进行生物素标记的酶,我们可以将目标蛋白与这些酶融合表达,那么,在细胞内,这些融合蛋白就可以对目标蛋白附近的所有蛋白打上亲和素的标记,然后通过生物素与亲和素超强的亲和性,我们可以大幅提高 AP-MS 鉴定的灵敏度,在冲洗非特异性结合的时候,我们就不用担心弱相互作用被我们丢失,这类方法叫做邻近标记(proximity labeling)- 质谱法。 酵母双杂交,Yeasttwo hybrid(Y2H), 这是一个古老的技术,Stanley Fields 和 Ok-KyuSong 在 1989 年的时候利用大肠杆菌中 GAL4 乳糖操纵子的原理,开发出这个方法用于检测蛋白质之间的相互作用 。 GAL4 操纵子有两个结构域,BD(binding domain)结构域和 AD(activation domain),其中 BD 结构域可以结合在 UAS(upstreamactivating sequence)DNA 区域,在 AD 结构域可以激活 UAS 下游的基因表达。 因此,他们把 GAL4 的两个结构域切分开,这样,BD 可以与目标蛋白结合,并且先行结合在报告基因 lacZ 上游的 UAS 区域,接着,把需要检验是否与目标蛋白相互作用的蛋白与 AD 结构域融合表达,如果目标蛋白和被检测蛋白可以相互作用,它们必定会在空间上相互接近彼此,这种相互作用可以使得 AD 和 BD 结构域也在空间上相互接近,这样就可以激活报告基因 lacZ 的表达,使得人们可以检测到 。 这个方法的优势在于廉价且易操作,这个方法一度非常流行,既可以用于筛选目标基因的相互作用蛋白,也可以用于验证相互作用,以及定量检测相互作用的强度。 但是缺点在于受试蛋白都需要和 AD/BD 结构域形成融合蛋白,空间构象可能改变,其次,许多蛋白质的相互作用可能同时需要其他蛋白的协助,而这个系统并无法把这些辅助蛋白也拉进来检测,因此经常漏掉很多的蛋白相互作用,第三,由于反应发生在真菌细胞内,如果你的目标蛋白来自其他物种,这个实验可能并不能反应蛋白在原物种细胞里的真实状态,最后,有的蛋白质可能自身就能够激活报告基因表达,比如转录因子,这样,这类蛋白就没办法通过酵母双杂交进行筛选和验证相互作用了(当然也可以将该蛋白换至 AD 载体上,但是依然有其局限性)。文章来源:每日生物评论欢迎关注微信公众号:每日生物评论,或Bio-review用最专业的精神,开放性的思维,与你一起探索行业走向,快速了解这个领域!
近日,中国科学院大连化学物理研究所研究员王方军团队在蛋白质复合物形成和干预机制分析新方法研究方面取得进展,通过溶液状态蛋白质赖氨酸两步稳定同位素标记和定量蛋白质组学分析,实现对蛋白—蛋白识别关键位点区域的精确探测,并可评估小分子对蛋白质复合物的构象识别干预情况。蛋白质的结构和相互作用决定了其生物学功能,目前对溶液状态蛋白—蛋白识别和结构动态变化研究仍然缺乏高灵敏度的分析方法。此前,研究团队发现蛋白质上赖氨酸的原位标记反应性与其所处微观结构中的氢键、静电相互作用强度密切相关;提出以蛋白质上所有赖氨酸位点为内源性反应探针,通过定量赖氨酸在蛋白—蛋白,蛋白—小分子结合前后的标记反应性变化,精确探测蛋白质识别过程中的关键区域。为进一步提高赖氨酸反应性定量分析的通量和灵敏度,该团队进一步发展了溶液状态蛋白质“活性—变性”赖氨酸两步稳定同位素标记定量策略(TILLRP),系统研究了重组SARS-CoV-2 S1蛋白质和人体ACE2受体之间的相互作用情况;发现S1蛋白质RBD Lys386-Lys462区域的赖氨酸位点在S1-ACE2复合物形成前后标记反应性发生了显著改变;提出可以利用该区域赖氨酸的标记反应性调控水平评估小分子活性物质对S1-ACE2识别的干预情况,可能有助于相关治疗药物分子的研发。该研究结果发表在《化学科学》(Chemical Science)上。上述研究工作得到国家自然科学基金、大连化物所创新基金等项目的资助。大连化物所提出蛋白质相互作用识别和干预机制分析新方法【来源:大连化学物理研究所】声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 邮箱地址:newmedia@xxcb.cn
近日,中国科学院大连化学物理研究所研究员王方军团队在蛋白质复合物形成和干预机制分析新方法研究方面取得新进展。研究人员通过溶液状态蛋白质赖氨酸两步稳定同位素标记和定量蛋白质组学分析,实现对蛋白—蛋白识别关键位点区域的精确探测,并可评估小分子对蛋白质复合物的构象识别干预情况。相关研究结果发表于《化学科学》。蛋白质的结构和相互作用决定了其生物学功能,目前对溶液状态蛋白—蛋白识别和结构动态变化研究仍然缺乏高灵敏度的分析方法。此前,王方军等人发现蛋白质上赖氨酸的原位标记反应性与其所处微观结构中的氢键、静电相互作用强度密切相关。受此启发,研究团队又提出以蛋白质上所有赖氨酸位点为内源性反应探针,通过定量赖氨酸侧链氨基在蛋白—蛋白、蛋白—小分子结合前后的标记反应性变化,精确探测蛋白质识别过程中的关键区域和相关构象变化。为进一步提高赖氨酸反应性定量分析的通量和灵敏度,该研究进一步发展了溶液状态蛋白质 " 活性—变性 " 赖氨酸两步稳定同位素标记定量策略(TILLRP),系统研究了重组 SARS-CoV-2 S1 蛋白质和人体 ACE2 受体之间的相互作用情况;发现 S1 蛋白质 RBD Lys386-Lys462 区域的赖氨酸位点在 S1-ACE2 复合物形成前后标记反应性发生了显著改变,并由此提出可以利用该区域赖氨酸的标记反应性调控水平评估小分子活性物质对 S1-ACE2 识别的干预情况。该研究成果可能有助于相关治疗药物分子的研发。相关论文信息:https://doi.org/10.1039/D0SC05330A【来源:科普中国网】声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 邮箱地址:newmedia@xxcb.cn
近日,中国科学院上海药物研究所陈小华课题组和中国科学院成都生物研究所唐卓课题组合作,基于开发新的非天然氨基酸,发展了一种能够在活细胞中捕捉蛋白质相互作用的新技术,该方法兼具时空可分辨和交联位点选择性的优势。研究成果“Genetically Encoded Resie-Selective Photo-Crosslinker to Capture Protein-Protein Interactions in Living Cells”在线发表于Cell出版社子刊Chem 杂志。蛋白质相互作用在生命活动中扮演非常重要的角色,发现蛋白质新的相互作用或功能将有助于阐明特定生命过程,为相关疾病的治疗提供理论基础。然而蛋白质相互作用网络十分复杂,在活体条件下开展蛋白质相互作用研究非常具有挑战性。基于基因密码子拓展技术,在活体细胞的目标蛋白质中定点引入具有共价交联活性的非天然氨基酸,已经成为活细胞内研究蛋白质-蛋白质相互作用的有力工具。研究团队针对现有非选择性的蛋白质交联技术产生的交联肽段结构复杂、质谱数据难以解析、假阳性高等关键问题,发展了一种时空可分辨的残基选择性(resie-selective)共价交联新方法,成功实现了在活细胞中对相互作用的蛋白质复合物的有效捕捉及后续质谱的分析。通过对多种相互作用蛋白质(如乙酰化酶与底物)的研究,该技术可以捕捉活细胞中微弱的蛋白质相互作用;其获得蛋白质的交联肽段可以很大程度上简化质谱的分析、作为确定蛋白质相互作用的直接证据、确定相互作用的界面以及验证酶与特定底物的相互作用。该方法在一定程度上突破了传统蛋白质相互作用分析、发现方法的瓶颈,有望被广泛用于传统方法难以发现的活细胞中微弱的、瞬间的或呈动态作用方式的蛋白相互作用的研究。陈小华、唐卓为论文的共同通讯作者,陈小华课题组胡伟为该论文第一作者;上海药物所谭敏佳课题组参与此项工作。该研究得到上海药物所质谱技术服务部的支持,该项目得到国家自然科学基金委、中科院、上海市科委项目的资助。具有时空可分辨的捕捉活细胞中蛋白质相互作用技术示意图中国生物技术网诚邀生物领域科学家在我们的平台上,发表和介绍国内外原创的科研成果。注:国内为原创研究成果或评论、综述,国际为在线发表一个月内的最新成果或综述,字数500字以上,并请提供至少一张图片。投稿者,请将文章发送至weixin@im.ac.cn。近期热文直接点击文字即可浏览!1、补牙或将成为历史?2、科学你慢慢学,中医我先治病去了3、科学告诉你应该多久洗一次澡4、新证据:喝咖啡能延长寿命!5、据说,这是生物医学硕士博士生的真实的生活写照6、一顿早餐到底有多重要?7、情商也是把双刃剑!高情商或让你更脆弱8、施一公:压死骆驼的最后一根稻草,是鼓励科学家创业!9、“科学禁食法”真能降低重大疾病风险10、睡眠科学家揭示出8种睡好觉的秘诀11、有志者事竟成!2型糖尿病成功被逆转12、每周两半小时,任何形式的锻炼都可以使你更长寿13、喝醉以后,你以为睡一觉就没事儿了?!14、仰卧起坐等或将成为延寿运动?15、冥想、瑜伽、太极等不仅能够改善身心健康...
科技日报记者 刘海英美国哥伦比亚大学研究人员开发出一种用于推断病毒蛋白质和人类蛋白质间相互作用的计算框架,利用该方法获取了大量关于病毒是如何感染人类的信息,并绘制出了所有已知可感染人类的病毒与其感染细胞间蛋白质相互作用的图谱。相关论文发表在近日的《细胞》杂志上。病毒是细胞内的寄生微生物,它会通过蛋白质间的相互作用来利用细胞机制,而细胞也同样依靠这种作用来启动应对病毒入侵的免疫反应机制。因此,了解蛋白质间的相互作用对于理解病毒与宿主细胞的关系至关重要。目前,科学家主要通过高通量方法来研究蛋白质间的相互作用,虽然获取了很多新发现,但这种方法在可扩展性方面的不足也限制了研究。此次,哥伦比亚大学研究人员开发的计算框架P-HIPSTer,利用蛋白质结构信息推断病毒蛋白和人类蛋白之间的相互作用,能有效弥补高通量方法扩展性不足的缺陷。通过P-HIPSTer,研究人员对已知的1000余种可感染人类的病毒及其编码的大约13000种蛋白质进行了研究,最终绘制出人类—病毒蛋白质间相互作用图谱。该图谱涵盖了大约28.2万个可能的相互作用蛋白对,其所揭示的生物学信息对人类免疫学和传染病研究具有重要价值。除了确认人类—病毒蛋白质相互作用外,P-HIPSTer还帮研究人员获取了大量关于病毒如何感染人类细胞并导致疾病的信息,包括雌激素受体在调节寨卡病毒感染中的作用、人乳头瘤病毒如何导致癌症、病毒如何影响人类基因组等等。研究人员表示,目前科学家对病毒蛋白质与人类蛋白质间相互作用的了解并不深入,希望新绘制的图谱能为科学界提供更多的研究资源,帮助科学家获取更多的生物学信息。下一步,他们打算将P-HIPSTer用于一些更复杂病原体,如寄生虫和细菌的研究;而未来,他们可能用这一工具来研究影响农作物或牲畜的病毒或病原体。
一、前言酵母双杂交由Fields和Song在1989年提出. 他的产生是基于对真核细胞转录因子特别是酵母转录因子GAL4性质的研究。酵母双杂交就是基因转录所需的转录因子的两个结构域在两个互作蛋白的吸引下位置靠近,诱导了基因的表达。酵母双杂交系统的最主要的应用是快速、直接分析已知蛋白之间的相互作用,及分离新的与已知蛋白作用的配体及其编码基因。酵母双杂交系统检测蛋白之间的相互作用具有以下优点:⑴ 作用信号是在融合基因表达后, 在细胞内重建转录因子的作用而给出的, 省去了纯化蛋白质的繁琐步骤。⑵ 检测在活细胞内进行, 可以在一定程度上代表细胞内的真实情况。⑶ 检测的结果可以是基因表达产物的积累效应, 因而可检测存在于蛋白质之间的微弱的或暂时的相互作用。⑷ 酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA文库, 能分析细胞浆、细胞核及膜结合蛋白等多种不同亚细胞部位及功能的蛋白。二、酵母单/双杂交简介1、酵母单杂交 酵母单杂交技术是在酵母双杂基础上发展而来的一种研究核酸-蛋白相互作用的工具,被广泛用于研究真核细胞内基因的表达调控,如鉴别DNA结合位点发现潜在的结合蛋白基因、分析DNA结合结构域信息等。2、酵母双杂交酵母双杂交及系统是一种鉴定和检测蛋白质相互作用的研究方法,因其具有灵敏性高、功能强大、适用范围广等特点,现已被应用于多个研究领域。①核蛋白酵母双杂交: 核蛋白酵母双杂交技术最初由Fields等人在研究酵母转录因子GAL4性质时建立,后续经过不断改进已发展成为一种成熟的蛋白-蛋白互作研究工具,具有简便、灵敏、可反映蛋白在活细胞内互作真实情况的特点,被广泛应用于互作蛋白的筛选、蛋白相互作用的鉴定/验证、蛋白互作机理的探究、蛋白连锁图谱绘制等工作。②膜蛋白酵母双杂交:DUALmembrane技术在传统的酵母双杂交系统的基础上,巧妙地利用分离的泛素系统(split-ubiquitin)进行蛋白质相互作用的筛选;泛素作为降解信号分子,人为分成两部分:N端(Nub),C端(Cub),互补重构的完整泛素分子可被泛素专一性蛋白酶(UBPs)识别,从而导致与泛素相连的蛋白被酶解。三、核酵母单/双杂交点对点验证流程简介及图片分析A为诱饵,B为猎物。筛选涉及到的报告基因:(1)HIS3。(2)ADE2。(3)MEL1。诱饵质粒PGBKT7携带trp基因, , 猎物质粒PGADT7携带Leu基因。筛选涉及到的平板:DDO[SD/-Leu/-Trp],DDO/X[SD/-Leu/-Trp/X-α-gal],TDO /X [SD/-Leu/-Trp/HIS3/X-α-gal],QDO /X[SD/-Leu/-Trp/HIS3/Ade2/X-α-gal]1、诱饵自激活验证分析:诱饵质粒重组质粒PGBKT7-A和猎物空载PGADT7共转化Y2Hgold酵母菌株。(1)涂布DDO平板能够生长,说明诱饵PGBKT7-A+ PGADT7已成功转入宿主菌中且对宿主菌无毒性;(2)涂布TDO平板,不能生长,说明诱饵PGBKT7-A+ PGADT7无自激活现象,不能激活宿主菌报告基因his的表达;(3)涂布QDO平板没长,说明诱饵PGBKT7-A+ PGADT7无自激活现象,没有激活报告基因ADE2。2、共转验证——阴阳性对照3、共转验证——实验组分析:诱饵重组质粒PGBKT7-A和猎物重组PGADT7-B共转化Y2Hgold酵母菌株。(1)涂布DDO平板能够生长,说明诱饵PGBKT7-A+ PGADT7-B已成功转入宿主菌中且对宿主菌无毒性;(2)涂布TDO平板能生长,说明诱饵PGBKT7-A+ PGADT7-B能够互作,激活了宿主菌报告基因HIS3的表达;(3)涂布QDO平板能长,说明诱饵PGBKT7-A+ PGADT7-B能够互作,同时激活了报告基因HIS3和ADE2的表达。4、双杂点种图1自激活: Y2H[PGBKT7-A+ PGADT7]2实验组: Y2H[PGBKT7-A+ PGADT7-B]3阳性对照: Y2H[pGBKT7-53+pGADT7-T]4阴性对照: Y2H[pGBKT7-lam+pGADT7-T]5、酵母单杂点对点验证示意图P为诱饵启动子,B为猎物。单杂筛选报告和抗性基因:AbAr/ AUR-C,AUR1基因的一个显性突变版本,编码肌醇磷酸化神经酰胺syn- thase酶。AUR1-C在Y2HGold/ Y1HGold酵母株中表达,是由于蛋白质与蛋白质的相互作用,使GAL4转录激活和DNA结合域接近。可以添加ABA进行背景抑制。,诱饵质粒PABAI携带Ura基因,猎物质粒PGADT7携带Leu基因。筛选所用到的平板:SD/- Leu,SD/- Leu/+AbA自激活结果分析:PGADT7空载转化含诱饵启动子PAbAi-PY1Hgold酵母菌株。(1)涂布SD/-Leu平板能够生长,说明诱饵PAbAi-P已成功转入宿主菌中且对宿主菌无毒性;(2)涂布SD/-Leu/AbA(100ng/ml), SD/-Leu/AbA(200ng/ml) 平板能生长,说明200ng/ml的AbA不能抑制报告基因AbAr/ AUR-C ;(3)涂布SD/-Leu/AbA(500ng/ml) ,SD/-Leu/AbA(800ng/ml),SD/-Leu/AbA(1000ng/ml)平板没长,说明能够抑制报告基因AUR1-C的最低AbA浓度为500ng/ml,后续可用AbA(500ng/ml)进行共转验证。如果AbA最高抑制浓度1000ng/ml仍然能够生长,则只能考虑截短诱饵启动子。6、共转验证——阴阳性对照7、共转验证——实验组分析:诱饵启动子重组质粒PAbAi-P转化Y1Hgold酵母菌株涂布SD/-Ura平板,挑取单克隆菌制备成感受态,将猎物重组质粒PGADT7-B转化到Y1Hgold【 PAbAi-P 】中。(1)涂布SD/- Leu平板能够生长,说明猎物重组质粒PGADT7-B已成功转入宿主菌中且对宿主菌无毒性;(2)涂布SD/- Leu /+AbA (500ng/ml)平板能生长,说明诱饵PAbAi-P + PGADT7-B能够互作,激活了宿主菌报告基因AbAr/ AUR-C的表达。8、单杂稀释点种图更多参考案例:1、Construction and characterization of a high-quality cDNA library of Cymbidium faberi suitable for yeast one- and twohybrid assays.2、SlAREB1 transcriptional activation of NOR is involved in abscisic acid-molated ethylene biosynthesis ring tomato fruit ripening.四、核蛋白酵母杂交点对点验证简介五、酵母单/双杂点对点技术优势:1. 转化效率高,较少假阴性;2. 设置严格的对照实验,排除假阳性和假阴性;3. 酵母双杂系统采用多个报告基因,且每个报告基因上游调控区各不相同,可大幅度减少假阳性;4. 报告基因整合到染色体上,使基因表达水平稳定,消除了由于质粒拷贝数变化引起基因表达水平波动而造成的假阳性;5. 严格设置点种验证实验菌体生长状态,进一步验证是否互作及互作强弱;6. 严格保存原始实验数据便于溯源。
研发对抗新冠病毒的药物应该从何着手?近日,一项多中心合作研究已经产生了一份广泛的药理再利用试验的目标清单,这应该会让研究人员忙上一段时间。这篇论文于3月22日发表于预印本平台bioRxiv上。研究人员来自加州大学旧金山分校、欧洲分子生物学实验室(EMBL)、密歇根大学等多所研究机构。对于新冠病毒SARS-CoV-2,目前没有有效的抗病毒药物,也没有预防的疫苗。科学界对SARS-CoV-2感染的分子细节知之甚少。为了阐明这一点,研究人员在人类细胞中克隆、标记和表达了29种病毒蛋白中的26种,并使用亲和纯化质谱法(AP-MS)鉴定了与每一种蛋白物理相关的人类蛋白,鉴定出332种高度可信的SARS-CoV-2-人的蛋白质-蛋白质相互作用(PPIs)。(图1:用于识别SARS-CoV-2宿主蛋白质-蛋白质相互作用的AP-MS工作流程。)(图2:SARS-CoV-2蛋白相互作用的全球分析。)其中,研究人员确定了66种可用药的人类蛋白或宿主因子,这些蛋白或宿主因子由69种现有FDA批准的药物、临床试验中的药物和/或临床前化合物靶向,他们目前正在评估这些药物对SARS-CoV-2感染试验的有效性。研究人员称,鼓励其他人也这么做,并从该图谱中发现可能具有治疗价值的见解。宿主依赖因子介导病毒感染的鉴定可能为开发广泛有效的针对SARS-CoV-2和其他致命冠状病毒株的抗病毒治疗提供重要的分子靶点。研究人员提到,事实上,一些在相互作用图谱内的被药物靶向的人类蛋白,其相关药物已经成为治疗Covid-19的候选疗法,如氯喹72、73。他们注意到,这种药物分别以中nM和低mM浓度的Sigma1和Sigma2受体为靶点。类似地,阿奇霉素等抗生素也被认为是治疗Covid-19的药物。研究人员注意到阿奇霉素对人类线粒体核糖体具有脱靶活性,其组分与SARS-CoV-2 Nsp8蛋白相互作用(MRPS5、MRPS27、MRPS2和MRPS25)。其他对线粒体核糖体也有脱靶作用的抗生素,如氯霉素、替加环素和利奈唑胺74,75也值得研究其疗效。病毒-人类蛋白质图谱在病毒感染人类的过程中,病毒需要利用复杂的蛋白质-蛋白质相互作用(PPI)来侵入宿主的活体细胞。这种PPI过程也同样被宿主细胞利用来启动激活先天抗病毒防御和适应性免疫系统来对抗病毒。因此,理解病毒与人的蛋白质与蛋白质相互作用(PPI)十分重要。2019年8月,《Cell》杂志发表了一项重磅研究,研究人员开发了一种新开发的计算框架,称为P-HIPSTer,能利用蛋白质结构信息推断病毒蛋白和人类蛋白之间的相互作用。他们已通过P-HIPSTer对已知的1000余种可感染人类的病毒及其编码的大约13000种蛋白质进行了研究,该算法预测了大约28.2万个可能的相互作用蛋白对,其准确度接近80%。研究人员称,接下来P-HIPSTer将被使用于一些更复杂病原体的研究,如寄生虫和细菌的研究;未来,关于农作物或牲畜的病毒或病原体的研究也会在P-HIPSTer技术的推动下不断深入进行。参考资料:https://www.biorxiv.org/content/10.1101/2020.03.22.002386v1.full.pdf
责编 | 兮G 蛋白偶联受体(GPCRs)是最大的一类膜蛋白家族受体,通过偶联下游异源三聚体G蛋白将信号从胞外传递至胞内。GPCR是人类基因组编码最大的膜蛋白超家族,也是最大的药物靶点。异源三聚体G蛋白主要有四个家族: Gi/o, Gs, Gq/11, G12/13, 它们所介导和调控的细胞质信号级联反应在哺乳动物细胞功能的各个方面都起着非常关键的作用【1-3】。研究发现,单个GPCR可以同时激活一个以上的G蛋白家族,并且具有不同的效率。表现出最高的效率和最快的动力学特性的称为“初级偶联”,而表现出较低的效率或较慢的动力学特性的则称为“次级偶联”。这一现象使得GPCR介导的细胞信号转导更加复杂。近年来,随着冷冻电镜技术的发展,许多GPCRs及其下游G蛋白复合物的结构得以解析,为人们在分子水平理解GPCRs与G蛋白的互作提供了重要的结构信息,揭示了G蛋白主要是通过Gα亚基的C-末端与受体跨膜核心区域结合【4-6】。然而,这些结构未能清楚地阐明初级和次级偶联观察到的不同偶联效率的结构机理。2020年6月22日,香港中文大学(深圳)杜洋与韩国成均馆大学KaYoung Chung在Nature Communications上发表了题为“Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family”的研究成果。研究发现,G蛋白α亚基 C-末端与受体的结合对于区分初级和次级Gi/o偶联起到关键作用;此外,研究还发现受体第二个胞内环上的一个保守疏水残基对初级Gi/o-偶联并不是至关重要的; 然而,它可能对于次级Gi/o偶联非常重要。本研究中,作者分别利用M2 毒蕈碱受体(M2R)和β2肾上腺素受体(β2AR)作为研究初级Gi/o偶联和次级Gi/o偶联的模式受体,通过氢氘交换质谱(hydrogen deuterium exchange mass spectrometry, HDX-MS)的方法,研究两种模式受体与下游Gi/o蛋白的动态组装过程。研究者首先分析了Gi/o蛋白的氢氘交换变化,发现当Gi/o蛋白与初级偶联受体M2R反应时,可以检测到在G蛋白C-末端的氢氘交换水平会明显降低,表明Gi/o蛋白C-末端与M2R发生稳定的结合。然而,当Gi/o蛋白与次级偶联受体β2AR反应时,Gi/o 大部分区域的氢氘交换变化与M2R 反应类似,但是其C-末端的氢氘交换没有发生明显变化,这一现象表明Gi/o蛋白与β2AR相互作用时,其C-末端可能没有形成稳定的α螺旋或者没有深入的插到受体的跨膜核心区域(图1)。进一步的脉冲氢氘交换质谱(pulsed HDX-MS)实验 (即在不同的时间尺度上观察Gi/o蛋白与受体互作时各个区域的氢氘交换变)也验证了这一结果。图1 G 蛋白与分别与M2R和β2AR结合时Gα 的氢氘交换水平变化随后作者截短了 Gi/o蛋白C-末端的最后5个与受体互作的5个氨基酸,功能实验发现这些截短可以显著降低Gi/o蛋白与初级偶联受体M2R偶联的效率,然而并没有使其完全丧失功能,而是使其效率和次级偶联受体相当。有意思的是,这些截短对于Gi/o蛋白与次级偶联受体β2AR偶联的效率并没有显著影响。这些结果表明Gi/o蛋白C-末端的5个氨基酸对于区分G初级偶联和次级偶联发挥了重要作用。之前的结构和功能研究揭示GPCRs 第二个胞内环上的一个保守氨基酸在与G蛋白互作过程中发挥关键作用。研究者进一步分析了这一保守氨基酸对于初级偶联和次级偶联是否有发挥不同作用。通过突变和功能实验以及一系列的序列分析,研究者发现该保守氨基酸在次级Gi/o 偶联中发挥关键作用,然而对于初级Gi/o偶联的作用并不是至关重要。图2 GPCRs 与Gs、Gi/o初级偶联以及Gi/o 次级偶联机制示意图这项工作利用氢氘交换质谱等方法,在已有的结构基础上对GPCRs与Gi/o蛋白的初级和次级偶联进行了深入的分析,揭示了受体偶联Gi/o蛋白产生不同效率可能的分子机制。同时,对比先前β2AR与Gs蛋白的氢氘交换实验数据7,该研究还发现GPCR与Gi/o的偶联可能遵循某种与Gs蛋白不同的机制,这种差异可能为理解GPCR-G蛋白选择性提供更多线索,还需要进一步深入的研究。这是继两人在2019年在Cell期刊(详见BioArt报道:专家点评| Brian Kobilka等两篇Cell揭示GPCR-G蛋白的时序组装),利用氢氘交换质谱等生物物理技术研究GPCR偶联构象动态性又取得的重要进展,进一步的合作研究正在顺利进行中。