中原新闻网邯郸讯(记者常慧杰)近日,邯郸市小学数学省、市、区三级名师工作室150余名骨干教师汇聚丛台区学步桥小学,大家听学术报告、看课例展示,写研讨随笔、论交流心得,共同探讨高效课堂的实质内涵,为促进数学教学进行了交流。 据了解,本次小学数学联合研讨会由河北省张黎辉名师工作室具体承办。在联合研讨中,来自省内外的四位专家教授分别从不同层面、不同维度诠释了数学教学的现代教育观念。天津市特级教师马向东结合京津冀一体化教育发展方向,与大家共同分享了《核心素养背景下数学文化及教学建模研究》;山东省寿光市世纪教育集团校长纪萍提出学生会看、会听、会想、会说、会问的“五会”课堂,才是让学生学会思维、获取智慧的课堂;广东省佛山微课创始人胡铁生教授做了题为《互联网+微课的设计与应用》的专题讲座;邢台市逸夫小学副校长杨志宇介绍了生动有趣的数学魔术,大家在互动中感受到了数学魔术的魅力,感受到了数学学习形式的多样化。本次联合研讨活动充分发挥工作室引领带动和示范辐射作用,促进工作室之间的区域交流,提升了教师业务水平,实现了专业化发展。
意外巨疫带来的居家学习改变了固有的教学模式,高密市教育科学研究院张爱芳主持的《小学数学自主探究性生活化课程的实践研究》,立项为2020年山东省教育科学规划“疫情与教育”专项课题,课题编号2020YZJ249,课题参与人利用线上和线下优势结合,开启适合学生居家学习的新型课程的构建研究与实践,取得了阶段性成果。第一节 认识生活化课程一、生活化课程的涵义“生活化课程”,就是以教材内容、生活背景、生活经验为基础,以掌握基础知识、提升学科素养、实现全人教育为目标,广泛应用生活素材设计课程,引领学生自读课程,自由思考,自主探索,让其在亲身体验自然生活、亲手操作实践的多向互动中,捕捉知识,解决问题,拓展思维,学会学习,实现个性化发展和社会化发展的完美融合。二、生活化课程价值1.时代发展的需求信息时代期待多元智能的开发、创新人才的培养,“跨界”、“破壁”已经成为学科教学的新理念。“核心素养”一概念已慢慢被大家了解,熟悉。文化基础、自主发展、社会参与是“全面发展”的三大方面,人文底蕴、科学精神、学会学习、健康生活、责任担当、实践创新,“三方面”所包含的“六素养”是我们课程改革的航标。超越学科,超越知识,关注人的全面发展,是新时代的新需求。生活化课程真正把学习还给学生,把知识还给生活,实现数学生活化、生活数学化。2.新一代成长的期待数学新课标强调:“数学课程应当从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”其中,几乎每一知识点的教学标准,都以学生“经历”或“体验”为前提。新标准的制定是以儿童身心发展规律为依据的,新课程教学也必须遵循他们的认知、思维规律,才能获取最佳效果。五官感触是孩子们认识身边世界的最原始方式,逻辑思维是以“感”为源的。五感学习法是发展三级思维能力的基础。选取有效方式,发展学生的直观、形象、抽象三级思维能力是数学教学的主要任务。而由简单直观的生活读物表达,到形象具体的读图、读形表达,再到抽象复杂的符号、数字、概念、算式、表格、文字表达,能力的一步步提升,是生活化课程实施的根本目的。3.特殊时期的教学需要短期居家学习及其与常规课程的有序对接,期待新型课程的构建。疫情长假,线上直播,微课录播等课程成为指导学习的主要方式,灵活便利、丰富广博的同时,也反应出一些不尽人意:长时自律性弱,视力疲劳,缺针对性指导、体验式学习……丰富童心的生活化课程,不仅能够缓解“网学”矛盾,还会真正用起知识的源泉与载体——生活,为少年儿童的整体性发展创造条件。居家学习成为自然生活的一部分,真实的生活处境取代常规课堂的虚拟情境,自主探究获得难得的多元化生活课堂,自主发展获得更自由、更广阔的生活空间。充分利用这一现实资源,从教研组的课程统整、个性化设计与实施、系统性优化组合到新课程的全面性实施,在一步步实践与改进中,极力发挥数学课程的教育引领作用。生活化课程的实践研究是一项长期工程。学科的整合拓展、学域的重构探索等是社会发展、未来教育的需要。第二节 设计生活化课程一、广泛调研,确立标准实验的每一步,都需要以真实有力的调查数据来支撑。课程改革的必要性、实践措施的可行性及其实施效果、个性问题的覆盖率及及其解决策略的有效性等等,调查数据是每一步研究“反光镜”。研究第一步,教研组利用网络平台,以电子问卷等方式展开调查,对“难以长时间连上网课”、“听课过程中某一知识点不理解而‘中途入迷’”、“因感到枯燥无味而讨厌网课”、“是否了解/喜欢自主性生活化课堂”等问题进行切实调研,一串数字为新课程对实施提供切实标准,也充分显示出课程生活化、自主性之重要程度。对于各单元教学标准对设立,既需要吃透教材,也需要熟悉学情;对于生活素材对选取,既需要了解学生的生活背景,也需要把握学生的生活经验,真实调研是“了解”与“熟悉”的有力保障。针对教学需要及不同班级学生的学习特点、知识基础、家庭处境等,确定问卷内容,掌握真实数据,以选取最适合的生活素材,构思最恰当的学习引导流程图。二、梳理文献,把握方向以年级为单位组建研究小组。各小组以本学期课程为出发点,分别从“生活化”、“自主学习”两大方面翻阅查询,梳理文献资料。针对本年级教材知识体系,及各年级学生心理特征、思维能力等,充分参考已经成型的研究结果,筛选适合本研究的实用资料。基于文献梳理,同级部资料汇总提炼,撰写文献调研报告,为课程各单元对教学框架对构建准备充分的理论支撑。三、剖析整体,调整课程教材是知识的载体,是学习的出发点。充分剖析整册书的内涵,尽量将难度低、自由探索空间大、生活依赖性强的章节往前提,为年幼孩子的独立探索创设条件。例如,一年级下册,认识钟表、图形、人民币、米与厘米是与计算穿插分布的,“统计”还在新知最后。依据知识难易、学习需求等因素,依次把“统计”、“认识图形”“认识钟表”、“厘米、米的认识”前提安排。当然,为减小集中学习“接连计算”的难度,也充分发挥生活教材的多能性,选择恰当节点对计算知识分子有所涉及。充分利用当前的生活素材,根据学生知识、能力基础,把复杂生活、繁琐学程简单化,整理出适合自由探索、独立思考的新课程体系,是实施生活化课程的第一步。四、聚焦单元,设计课程单元是新课程设计的基本单位。依据调整后的新课程,对焦于各单元的核心概念,通过以下五步完成系统性设计:1.把握核心。研读课程标准、本单元教材内容、同体系的跨单元、跨册内容,分析、提炼本单元的知识核心、素养领域,为课程设计找准航标。2.理清思维。以核心概念为统领,提炼单元知识生长线、思维发展线,构建教学思维导图。考虑本单元学习所需生活素材,融入价值体验线,三线同行,组合成完整的设计方案。3.确定目标。结合知识难度、现实学情,估测每一课时的学习目标,包括知识掌握深度、能力提升高度、素养发展广度等。4.选取素材。依据教学思维导图,选取实用性生活素材,创设问题情境引领思考,提供操作导图引领实践,推荐阅读资源引领探索。5.分层设计。由五官感知到逻辑思维,由直观思维到抽象表达,由基础知识到深远拓展,设计层层递进的问题串,以用带学,环环相扣,引导学生自主探究、步步深入。在此,特别介绍一下本课程设计所涉及的几类教学方法。(1)五感融通法人与外界接触时,会启用五种器官来感受事物,认识世界。自主探究性生活化课程,即引导学生将整副身心都融入生活,在全身心感受生活的过程中领悟知识、探究逻辑,并加以实践运用的过程。运用感官和动作多通道认知符合儿童认知规律。认知过程中,运用多种表达方式,引领学生思维发生可视化发展,数学知识与生活之间产生的关联显性化进展,伴随情感萌生、加深而变成各种或许会伴随他们一生的生活“技能”。(2)三线融合法图画、故事是儿童意识中所偏爱文本,无论是动态的还是静态的,无论是视觉观察还是听觉倾注。坚持三线融合的原则,将干枯的数学数字、图形、计算融润在他们的“最爱”中,即“数学+图画+故事”三线一体,在阅读生活的趣味游戏中,实现直观、形象、抽象思维能力的互助式转化、提升。在自主探究性生活化课程的构建框架中,以三能力层级发展为暗线、数学知识探究为明线,将图画、文字、直白等表达形式组合成故事情节,连续性呈现出来,凸显知识学习、能力发展的关联性。整个课程体系,体现的就是数学思维的可视化,数学之间与数学生活之间关联的显性化。(3)开展数学阅读生活化课程就是让学生在“读”生活、读“你知道吗”、读绘本故事、读万卷书的过程中,动口、动手、动脑,有机结合、统一协调,主动获取知识。阅读本身就是一种个性化的解读过程——因个人思路、思维方式、生活经历及感受等不同而产生不同的结论。数学计算、理解、思维及创新等能力的发展,也是在阅读、表达、交流中得以实现的。读懂文字,读懂物体,读懂图形,读懂数字,读懂符号,读懂表格......多种方式的表达,能够灵活地相互之间转化,才能够有效运用这些形式进行科学、合理、有序的、完整的表达。居家学习变被动阅读为主动阅读,在开阔视野的同时启迪智慧、提升能力。(4)发展多元智能学生先天素质的差异,在多元智能理论看来,是每个学生智力强项的不同,每个学生多元智力组合的不同,表现出个体间的智力差异。每个学生都或多或少拥有不同的言语/语言智力、逻辑/数理智力等九种多元智力,代表了每个人不同的潜能,这些潜能只有在适当的情境中才能充分发展出来。而自主探究性生活化课程的自由选择性,则为不同潜能的学生都提供了最合适的发展平台。五、合作研讨,智慧共享新课程设计是要经过多次打磨才能真正体现研究思想、获取教育效果的。个人设计成型后,同备课组、教研组研究伙伴进行合作研讨,或者对一个课题,或者聚焦一个共性问题,任课教师互相咨询,骨干教师、引领专家发表指导意见。经历个人、学校、教研团队三级研讨改进,加教研主任三次审阅修改后的至少“3+3”次打磨,新设计定型出炉。大问题,小环节,N遍咨询探讨修改,越研究越深入,越研讨越明白,合作学习结硕果。一次又一次团队智慧的共享,让知识离生活更近一步,让学习离主动更近一步,让发展离全面更近一步。第三节 实施生活化课程多元融合、多感融通的自主探究是新课程所期待的学习状态。一、发布任务,课前培训学习任务由简单明了的题号指示或清晰的数、图,变成了大片的文字。如果让学生去阅读操作,他们会变蒙的。到位的解释,才会让学生与家长做好充分的心理准备。第一次发布任务后,以直播形式教师、学生、家长“齐步走”,不是引领思考知识问题,而是向他们解释完成方法。适应是需要过程的,耐心向学生、家长介绍沟通,反复指导,注意运用鼓励性语言,激发他们的探究信心。熟悉模式后,教师慢慢撒手——只发布学习任务就可以了。二、自主探究,课中调度数学知识的创生、数学能力的发展过程是个体参与的探究过程。通过身临其境的参与、体验生成情景式的、具体化的知识体系,与个体经验有着密切的联系。与知识息息相关的生活镜头,启动好奇心统领下的多枚感官,真实的感觉触动心灵。亲手操作中,一个个的问题堡垒被击破。学习的广度、深度在慢慢扩展,对自己、对知识、对生活的有了更深层的觉知。学习动机越来越强,探究层面越来越深。这就是自主探究的过程。三、作业反馈,收集学情作业是学习过程的“照相机”,记录下自主探究的痕迹、影子。新课程不再像以前那样要求学生“40分钟或半小时把这张卷子交上来”。因为新式探究给予学生更多的自主内容。经历一段时间的实践后,学习流程熟悉了,大体时间也就成规了。利用学习过程的“相机”,把学情再现,把思维发展过程细读,归类提炼,评价“学”的同时反思“教”,特别留意预设之外的镜头或未能实现的环节,寻根究底,新设计加以改进,针对个别群体或个人进行个性化指导。最初的反馈中还发现一个问题,研究过程中家长过多介入,甚至控制,阻拦多元感应的自然焕发——很多学生的探究结果呈现出来,都有家长的影子在里面。如此一来,教师无法诊断学生学习的攀及程度、所遇问题、自我个性等教学因素,难以做出最适合他们的新设计。针对这一问题,除直接提醒家长外,也在学习任务中提示学生,鼓励他们在自主探究学会整合身边资源,使其成为一个个解决问题的策略。四、互动交流,个别指导生活化课程强调线下学生与生活、学生与文本的互动对话,既锻炼学生的自我探究能力,也为其自我个性的自由发展创造条件;生活化课程也注重线上教师与学生、学生与学生、师生与资源之间的互动对话,既解决自我学习产生的疑惑与困难,也提升学生的合作意识、交际能力,感受到不同探索的不同发现。线上交流除全员性对话群体外,也针对个别学生、个别问题组建分群,为不同层次的学生、不同需要的群体都提供到位帮助,尽量减少他们探究路上的绊脚石,力争让每一位学生都在自主研究中实现各项素养的均衡发展。线上交流与线下探索的有效互动、优化组合,能够有效促进学习的完善性、发展的全面性。由于所处的家庭、文化背景和自身潜能与思维方式的不同,学生的每一个选择、每一处感想都都反映了各自的独特性。在学习过程中,帮助学生用自己的方式进行观察、探索、思考、创造,并形成独特的创造品质,促其个性化发展。每一个学生都基于自我经验和已有认知,进行个性化学习。教师结合学生特点与其能力目标进行个性化的指导,促进不同学生得到不同层次的发展。五、检测评价,适度练习适时到位的练、评、测,是教学过程的必备环节,生活化课程依然必需。在生活化课堂上,练习由单一写、算转化为以思维、计算为基础的实践操作——写、算成为实践操作的基础,趣味性十足的操作吸引学生积极主动地为应用而算。评融于互动反馈、作业反馈中。探究过程中,虽然不再进行现场直播,但每一位老师都成为面对四五十(或近百)个表演现场的“导演”。而且,每一位“主角”都可能会遇到疑惑、困难,都在期待实施到位的评价、鼓励。对学生来说,在线跟踪、及时点评,是自主探究的动力源泉、反思航标;课后互动性研讨也是纠正错误、鼓励进取的良好途径。及时剖析、评价课堂与作业,解决各类问题,是生活化课程顺利进展的有效保证。生活即教育,课程即体验,学习即成长。用活生活这部教材,让学习回归生活之本源,引学生在捕捉文化知识的过程中发现自我、自由探索,成功与快乐之体验促其创新、成就自我。这正是生活化课程的教育目标。第四节 优化生活化课程一、在总结反思中学习提升对课程优化来说,在线答疑、作业反馈、家长评价、课后互动等都为其二次优化提供依据。教师的课程设计、反思总结,以及对学生学程资源的整理提炼,都是开创途中的优质资源。跟随课堂在线反馈,剖析线下作业反馈,随时记录每天实践的所见所想所感所悟,特别是典型学生的学情信息,及各班学生的整体学习状况,分析他们在每个环节中是怎样思考的,理解深度如何,运用什么方法来表达解决的,环节学习目标达成情况又是怎样的……针对课程实践体验和感悟,刷新自己的教学观点,修正构思框架,细化框架纲目;基于课程实施的困难点、疑惑点,反思自己的教学设计,调整下一步的教学策略与方法。学习网上与观点相关的学术论文,提高自己的理论水平,用新理论再指导自己的下一步实践。通过录制微课等途径进行成熟课例与微课的分享,指导引领其他教师进行实践研究,力争让生活化课程遍及居家学习、集中学习的每一堂课。同伴交流研讨,经验共享,问题同析,在互动中共同提升。二、在自我发展中步步创新数学知识根植于生活,但是隐性的,需要智慧教师挖掘整理,将其设计成若隐若现的、充满童趣的系统性生活化课程,才能发挥最大的引领作用,让每一次自主探究都取得理想效果。可以说,学变、生变源于师变。一次次课程设计与研讨,一次次打磨修正,一次次反馈剖析与研讨,一次次探究反思,个人、备课组、教研组进行交流互动,把感触留住,把经验分享。设计者也是学习者,一步步摆脱传统模式的束缚,提升自我技能。研究的进展就是教师的发展,教学思想随之步步更新,教学能力随之步步提升。
最近,一位小区邻居向我吐槽孩子上小学后,辅导数学学习状态:辅导作业就如上坟,孩子对枯燥的数学知识根本不感兴趣!讲到口干舌燥,看到孩子一脸懵的模样,自己就十分受挫。控制不住,吼了几声,孩子就越反感学习,学习成绩就越差。如此循环反复,不仅孩子因为学习受挫,妈妈也陷入无奈的冰窖。在我看来,如果孩子对数学不感兴趣,又对一些知识点不理解,只是死记硬背的话,不懂得融会贯通,很难将数学学好。那么,怎么培养孩子对数学兴趣呢?这本《写给小学生的数学图鉴》有趣、易懂,是父母启发孩子发现生活中数学之美的工具书。本书是由日本筑波大学人类系教授清水美宪主编。曾任东京学艺大学副教授,印第安纳大学客座研究员等。研究领域包括数学的学历评价与数学课程的国际化比较研究。著作有《将数学课程科学化:数学课程的新方向》等。该书涵盖小学数学关键知识点,以有趣的立体图形、奇妙的平面图形、长度以及量和测量、美丽的书和比例四大主题,形象、直观地分析生活中蕴含38个数学知识的现象。另外,每个知识点都设置“试着做做”的栏目,鼓励孩子在动手中发现数学的规律,培养孩子学习数学兴趣;四大主题分别设置“博学专栏”对相关知识点进行拓展与归纳,让孩子感受学习数学的思维,把孩子培养成应用型人才。相对于市面上纯文字归纳数学知识点的练习册,这不是一本提高数学成绩的指南,而是一本可以点燃孩子数学兴趣、拓展数学课外知识、引导孩子发现数学之美的数学图鉴书。01、带领孩子欣赏无处不在的数学之美学习十多年的数学,有很多人吐槽“没什么用”。实际上,在生活中,我们每时每刻都在使用数学。从小处上看,价格、时钟、高矮、轻重等这些都运用数学知识,大处上看,计算机领域、建筑、绘画、生产等中都离不开数学的基础。拥有纵深感、立体感的绘画怎么画出来的吗?为什么天线要做成抛物面吗?古建筑与名画中蕴含的数学知识吗?书本以图鉴形式告诉我们一个个不曾了解以及认真思考的数学之美。原来有纵深感的图画,如达芬奇的《最后的晚餐》,是采用数学思维远近法、消失点进行绘画。远近法指的是同样大小的物体,距离越远就画得越小。消失点指的是在人眼看来,两条平行线越往远处延伸,他们之间的距离就越近,最后交于一点。至于把天线做成抛物面的原因在于无论信号从哪个角度传进来,最后都汇集于同一个点,利于广播卫星信号的接受。此外,帕特农神庙、米罗的维纳斯、巴黎的凯旋门、胡夫金字塔、名画《雷卡米埃夫人》、智能手机、护照等都是按照最具美感的黄金比(1:1.618)来制作。然而,比起黄金比,日本人偏爱白银比(1:1.414)来体现物品的美感,如名画《美人回首图》、名画《秋冬山水图·冬景》、日本的法隆寺五层塔等。02、带孩子动动手,探索数学的规律小学数学知识点包含数与数的运算、几何图形、概率等,对于数与数的运算中进位、退位、背乘法口诀等孩子都感到有点吃力,到了涉及到空间思维的几何图形中知识点更是难了。尤其是对于圆形、正方体、长方体等面积、体积,孩子们只是把公式背诵下来,一不小心就混了。如果理解面积、体积推理过程,那么学起来就得心应手,还收获满满成就感。有趣的立体图形主题就介绍球、多面体、切开的立体图形、正多面体、不规则多面体、旋转体等难以理解知识,以具象思维及动手做做的一步一步引导,带领孩子学会思考,探索数学奥秘。奇妙的平面图形主题就介绍立体图形投影、三角形、智慧七巧板的奥秘、什么是相似、怎样形状更容易旋转、街头看到瓷砖拼接、一笔画的数学知识等带领孩子感受生活中数学思维。如一笔画中,首先介绍一笔画的知识要点,接着让孩子思考哪些图形能够一笔画,接着拓展到格尼斯堡七桥问题、欧拉的观点,再通过推理引导孩子发现画“一笔画”的条件。如形象展示圆形面积计算方法,通过把圆等分后的扇形排列在一起来理解。03、一本孩子的数学课外读物拓展工具书学语文,我们会推荐很多的课外读物,而小学则是一本本的练习册。其实,数学不仅是做题,数学也有很多有意思的故事。本书结合知识点也拓展一些数学家的经典发现,如12-13世纪,意大利数学家莱奥纳多发现“斐波那契数列”;艾拉托色尼思考出测量地球大小的方法等。此外,还以生活中例子激发孩子应用数学的能力。怎么测量不规则图形大小?怎么把一个蛋糕五等分?怎么做七巧板?书本从实际问题出发,引导孩子思考,再一步一步带领孩子动手,边动手边总结规律,教给孩子解决问题的数学思维,而不是背公式、解题模式认识数学。总的来说,这是一本不像数学书的数学图鉴,甚至有一些知识对大人来说也是有点难度,尽管如此,这本书会让我们惊现“原来这也是数学”,引领孩子发现数学的趣味,值得给孩子们读一读,做一做,想一想。
应用题类型:1 归一问题【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】 总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解 (1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。2 归总问题【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解 (1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套? 2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?解 (1)《红岩》这本书总共多少页? 24×12=288(页)(2)小明几天可以读完《红岩》? 288÷36=8(天)列成综合算式 24×12÷36=8(天)答:小明8天可以读完《红岩》。例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)列成综合算式 50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。3 和差问题【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】 大数=(和+差)÷ 2小数=(和-差)÷ 2【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解 甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。解 长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积 =10×8=80(平方厘米)答:长方形的面积为80平方厘米。例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。4 和倍问题【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】 总和 ÷(几倍+1)=较小的数总和 - 较小的数 = 较大的数较小的数 ×几倍 = 较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解 (1)杏树有多少棵? 248÷(3+1)=62(棵)(2)桃树有多少棵? 62×3=186(棵)答:杏树有62棵,桃树有186棵。例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解 (1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为(52+32)÷(2+1)=28(辆)所求天数为 (52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(170+4-6)就相当于(1+2+3)倍。那么,甲数=(170+4-6)÷(1+2+3)=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90。5 差倍问题【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】 两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?解 (1)杏树有多少棵? 124÷(3-1)=62(棵)(2)桃树有多少棵? 62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解 (1)儿子年龄=27÷(4-1)=9(岁)(2)爸爸年龄=9×4=36(岁)答:父子二人今年的年龄分别是36岁和9岁。例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解 如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此上月盈利=(30-12)÷(2-1)=18(万元)本月盈利=18+30=48(万元)答:上月盈利是18万元,本月盈利是48万元。例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)÷(3-1)=22(吨)运出的小麦数量=94-22=72(吨)运粮的天数=72÷9=8(天)答:8天以后剩下的玉米是小麦的3倍。6 倍比问题【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解 (1)3700千克是100千克的多少倍? 3700÷100=37(倍)(2)可以榨油多少千克? 40×37=1480(千克)列成综合算式 40×(3700÷100)=1480(千克)答:可以榨油1480千克。例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解 (1)48000名是300名的多少倍? 48000÷300=160(倍)(2)共植树多少棵? 400×160=64000(棵)列成综合算式 400×(48000÷300)=64000(棵)答:全县48000名师生共植树64000棵。例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解 (1)800亩是4亩的几倍? 800÷4=200(倍)(2)800亩收入多少元? 11111×200=2222200(元)(3)16000亩是800亩的几倍? 16000÷800=20(倍)(4)16000亩收入多少元? 2222200×20=44444000(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。7 相遇问题【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解 392÷(28+21)=8(小时)答:经过8小时两船相遇。例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。8 追及问题【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】 追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解 (1)劣马先走12天能走多少千米? 75×12=900(千米)(2)好马几天追上劣马? 900÷(120-75)=20(天)列成综合算式 75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-16)]千米,甲乙两地相距60千米。由此推知追及时间=[10×(22-16)+60]÷(30-10)=120÷20=6(小时)答:解放军在6小时后可以追上敌人。例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为 16×2÷(48-40)=4(小时)所以两站间的距离为 (48+40)×4=352(千米)列成综合算式 (48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米。例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为 90×12-180=900(米)答:家离学校有900米远。例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。所以 步行1千米所用时间为 1÷[9-(10-5)]=0.25(小时)=15(分钟)跑步1千米所用时间为 15-[9-(10-5)]=11(分钟)跑步速度为每小时 1÷11/60=5.5(千米)答:孙亮跑步速度为每小时 5.5千米。9 植树问题【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】 线形植树 棵数=距离÷棵距+1环形植树 棵数=距离÷棵距方形植树 棵数=距离÷棵距-4三角形植树 棵数=距离÷棵距-3面积植树 棵数=面积÷(棵距×行距)【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解 136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解 400÷4=100(棵)答:一共能栽100棵白杨树。例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解 220×4÷8-4=110-4=106(个)答:一共可以安装106个照明灯。例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解 96÷(0.6×0.4)=96÷0.24=400(块)答:至少需要400块地板砖。例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解 (1)桥的一边有多少个电杆? 500÷50+1=11(个)(2)桥的两边有多少个电杆? 11×2=22(个)(3)大桥两边可安装多少盏路灯?22×2=44(盏)答:大桥两边一共可以安装44盏路灯。10 年龄问题【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。两个数的差÷(几倍-1)=较小的数例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解 35÷5=7(倍)(35+1)÷(5+1)=6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?解 (1)母亲比女儿的年龄大多少岁? 37-7=30(岁)(2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)列成综合算式 (37-7)÷(4-1)-7=3(年)答:3年后母亲的年龄是女儿的4倍。例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?解 今年父子的年龄和应该比3年前增加(3×2)岁,今年二人的年龄和为 49+3×2=55(岁)把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为 55÷(4+1)=11(岁)今年父亲年龄为 11×4=44(岁)答:今年父亲年龄是44岁,儿子年龄是11岁。例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?(可用方程解)解这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:表中两个“□”表示同一个数,两个“△”表示同一个数。因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (61-4)÷3=19(岁)甲今年的岁数为 △=61-19=42(岁)乙今年的岁数为 □=42-19=23(岁)答:甲今年的岁数是42岁,乙今年的岁数是23岁。11 行船问题【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。【数量关系】 (顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解 由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时 320÷8-15=25(千米)船的逆水速为 25-15=10(千米)船逆水行这段路程的时间为 320÷10=32(小时)答:这只船逆水行这段路程需用32小时。例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?解由题意得 甲船速+水速=360÷10=36甲船速-水速=360÷18=20可见 (36-20)相当于水速的2倍,所以, 水速为每小时 (36-20)÷2=8(千米)又因为, 乙船速-水速=360÷15,所以, 乙船速为 360÷15+8=32(千米)乙船顺水速为 32+8=40(千米)所以, 乙船顺水航行360千米需要 360÷40=9(小时)答:乙船返回原地需要9小时。例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?解 这道题可以按照流水问题来解答。(1)两城相距多少千米? (576-24)×3=1656(千米)(2)顺风飞回需要多少小时? 1656÷(576+24)=2.76(小时)列成综合算式 [(576-24)×3]÷(576+24)=2.76(小时)答:飞机顺风飞回需要2.76小时。12 列车问题【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。【数量关系】 火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?解 火车3分钟所行的路程,就是桥长与火车车身长度的和。(1)火车3分钟行多少米? 900×3=2700(米)(2)这列火车长多少米? 2700-2400=300(米)列成综合算式 900×3-2400=300(米)答:这列火车长300米。例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?解 火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)答:大桥的长度是800米。例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?解 从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为(225+140)÷(22-17)=73(秒)答:需要73秒。例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?解 如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。150÷(22+3)=6(秒)答:火车从工人身旁驶过需要6秒钟。例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?解 车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(88-58)秒的时间内行驶了(2000-1250)米的路程,因此,火车的车速为每秒(2000-1250)÷(88-58)=25(米)进而可知,车长和桥长的和为(25×58)米,因此,车长为 25×58-1250=200(米)答:这列火车的车速是每秒25米,车身长200米。13 时钟问题【含义】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。【数量关系】 分针的速度是时针的12倍,二者的速度差为11/12。通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】 变通为“追及问题”后可以直接利用公式。例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?解 钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。每分钟分针比时针多走(1-1/12)=11/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为 20÷(1-1/12)≈ 22(分)答:再经过22分钟时针正好与分针重合。例2 四点和五点之间,时针和分针在什么时候成直角?解 钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走 (5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。再根据1分钟分针比时针多走(1-1/12)格就可以求出二针成直角的时间。(5×4-15)÷(1-1/12)≈ 6(分)(5×4+15)÷(1-1/12)≈ 38(分)答:4点06分及4点38分时两针成直角。例3 六点与七点之间什么时候时针与分针重合?解 六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。(5×6)÷(1-1/12)≈ 33(分)答:6点33分的时候分针与时针重合。14 盈亏问题【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=(盈+亏)÷分配差如果两次都盈或都亏,则有:参加分配总人数=(大盈-小盈)÷分配差参加分配总人数=(大亏-小亏)÷分配差【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?解 按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:(1)有小朋友多少人? (11+1)÷(4-3)=12(人)(2)有多少个苹果? 3×12+11=47(个)答:有小朋友12人,有47个苹果。例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?解 题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数=(大亏-小亏)÷分配差”的数量关系,可以得知原定完成任务的天数为(260×8-300×4)÷(300-260)=22(天)这条路全长为 300×(22+4)=7800(米)答:这条路全长7800米。例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?解 本题中的车辆数就相当于“参加分配的总人数”,于是就有(1)有多少车? (30-0)÷(45-40)=6(辆)(2)有多少人? 40×6+30=270(人)答:有6 辆车,有270人。15 工程问题【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷(甲工作效率+乙工作效率)【解题思路和方法】 变通后可以利用上述数量关系的公式。例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?解 题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。由此可以列出算式: 1÷(1/10+1/15)=1÷1/6=6(天)答:两队合做需要6天完成。例2 一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?解 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件?24÷[1÷(1/6+1/8)]=7(个)(2)这批零件共有多少个?7÷(1/6-1/8)=168(个)答:这批零件共有168个。解二 上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7所以,这批零件共有 24÷1/7=168(个)例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?解 必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是60÷12=5 60÷10=6 60÷15=4因此余下的工作量由乙丙合做还需要(60-5×2)÷(6+4)=5(小时)答:还需要5小时才能完成。 也可以用(1-1/12*2)/(1/10+1/15)例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?解 注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知每小时的排水量为 (1×2×15-1×4×5)÷(15-5)=1即一个排水管与每个进水管的工作效率相同。由此可知一池水的总工作量为 1×4×5-1×5=15 又因为在2小时内,每个进水管的注水量为 1×2,所以,2小时内注满一池水至少需要多少个进水管? (15+1×2)÷(1×2)=8.5≈9(个)答:至少需要9个进水管。16 正反比例问题【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。【数量关系】 判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。正反比例问题与前面讲过的倍比问题基本类似。例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?解 由条件知,公路总长不变。原已修长度∶总长度=1∶(1+3)=1∶4=3∶12现已修长度∶总长度=1∶(1+2)=1∶3=4∶12比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为 300÷(4-3)×12=3600(米)答: 这条公路总长3600米。例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?解 做题效率一定,做题数量与做题时间成正比例关系设91分钟可以做X应用题 则有 28∶4=91∶X28X=91×4 X=91×4÷28 X=13答:91分钟可以做13道应用题。例3 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?解 书的页数一定,每天看的页数与需要的天数成反比例关系设X天可以看完,就有 24∶36=X∶1536X=24×15 X=10答:10天就可以看完。例4 一个大矩形被分成六个小矩形,其中四个小矩形的面积如图所示,求大矩形的面积。解 由面积÷宽=长可知,当长一定时,面积与宽成正比,所以每一上下两个小矩形面积之比就等于它们的宽的正比。又因为第一行三个小矩形的宽相等,第二行三个小矩形的宽也相等。因此,A∶36=20∶16 25∶B=20∶16解这两个比例,得 A=45 B=20所以,大矩形面积为 45+36+25+20+20+16=162答:大矩形的面积是162.17 按比例分配问题【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?解 总份数为 47+48+45=140一班植树 560×47/140=188(棵)二班植树 560×48/140=192(棵)三班植树 560×45/140=180(棵) 答:一、二、三班分别植树188棵、192棵、180棵。例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?解 3+4+5=12 60×3/12=15(厘米)60×4/12=20(厘米)60×5/12=25(厘米)答:三角形三条边的长分别是15厘米、20厘米、25厘米。例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。解 如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到1/2∶1/3∶1/9=9∶6∶29+6+2=17 17×9/17=917×6/17=6 17×2/17=2答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。例4 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?解 80÷(12-8)×(8+12+21)=820(人)答:三个车间一共820人。18 百分数问题【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。【数量关系】 掌握“百分数”、“标准量”“比较量”三者之间的数量关系:百分数=比较量÷标准量 标准量=比较量÷百分数【解题思路和方法】 一般有三种基本类型:(1) 求一个数是另一个数的百分之几;(2) 已知一个数,求它的百分之几是多少;(3) 已知一个数的百分之几是多少,求这个数。例1 仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?解 (1)用去的占 720÷(720+6480)=10%(2)剩下的占 6480÷(720+6480)=90%答:用去了10%,剩下90%。例2 红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几? 解 本题中女职工人数为标准量,男职工比女职工少的人数是比较量 所以 (525-420)÷525=0.2=20%或者 1-420÷525=0.2=20%答:男职工人数比女职工少20%。例3 红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几? 解 本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此(525-420)÷420=0.25=25%或者 525÷420-1=0.25=25%答:女职工人数比男职工多25%。例4 红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?解 (1)男职工占 420÷(420+525)=0.444=44.4%(2)女职工占 525÷(420+525)=0.556=55.6%答:男职工占全厂职工总数的44.4%,女职工占55.6%。例5 百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有:增长率=增长数÷原来基数×100%合格率=合格产品数÷产品总数×100%出勤率=实际出勤人数÷应出勤人数×100%出勤率=实际出勤天数÷应出勤天数×100%缺席率=缺席人数÷实有总人数×100%发芽率=发芽种子数÷试验种子总数×100%成活率=成活棵数÷种植总棵数×100%出粉率=面粉重量÷小麦重量×100%出油率=油的重量÷油料重量×100%废品率=废品数量÷全部产品数量×100%命中率=命中次数÷总次数×100%烘干率=烘干后重量÷烘前重量×100%及格率=及格人数÷参加考试人数×100%19 “牛吃草”问题【含义】 “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。【数量关系】 草总量=原有草量+草每天生长量×天数【解题思路和方法】 解这类题的关键是求出草每天的生长量。例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?解 草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛? 设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以1×10×20=原有草量+20天内生长量同理 1×15×10=原有草量+10天内生长量由此可知 (20-10)天内草的生长量为1×10×20-1×15×10=50因此,草每天的生长量为 50÷(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1×15×10-5×10=100(3)求5 天内草总量5 天内草总量=原有草量+5天内生长量=100+5×5=125(4)求多少头牛5 天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。因此5天吃完草需要牛的头数 125÷5=25(头)答:需要5头牛5天可以把草吃完。例2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完?解 这是一道变相的“牛吃草”问题。与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。设每人每小时淘水量为1,按以下步骤计算:(1)求每小时进水量因为,3小时内的总水量=1×12×3=原有水量+3小时进水量10小时内的总水量=1×5×10=原有水量+10小时进水量所以,(10-3)小时内的进水量为 1×5×10-1×12×3=14因此,每小时的进水量为 14÷(10-3)=2(2)求淘水前原有水量原有水量=1×12×3-3小时进水量=36-2×3=30(3)求17人几小时淘完17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是30÷(17-2)=2(小时)答:17人2小时可以淘完水。20 鸡兔同笼问题【含义】 这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有 兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有 鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。例1 长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?解 假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解 此题实际上是改头换面的“鸡兔同笼”问题。“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。例3 李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元。问作业本和日记本各买了多少本?解 此题可以变通为“鸡兔同笼”问题。假设45本全都是日记本,则有作业本数=(69-0.70×45)÷(3.20-0.70)=15(本)日记本数=45-15=30(本)答:作业本有15本,日记本有30本。例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?解 假设100只全都是鸡,则有兔数=(2×100-80)÷(4+2)=20(只)鸡数=100-20=80(只)答:有鸡80只,有兔20只。例5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?解 假设全为大和尚,则共吃馍(3×100)个,比实际多吃(3×100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(3-1/3)个。因此,共有小和尚(3×100-100)÷(3-1/3)=75(人)共有大和尚 100-75=25(人)答:共有大和尚25人,有小和尚75人。21 方阵问题【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。【数量关系】 (1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=(外边人数)-(内边人数)内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4【解题思路和方法】 方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?解 22×22=484(人)答:参加体操表演的同学一共有484人。例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数。解 10*10-(10-3×2)*(10-3×2)=84(人)答:全方阵84人。例3 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?解 (1)中空方阵外层每边人数=52÷4+1=14(人)(2)中空方阵内层每边人数=28÷4-1=6(人)(3)中空方阵的总人数=14×14-6×6=160(人)答:这队学生共160人。例4 一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?解 (1)纵横方向各增加一层所需棋子数=4+9=13(只)(2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只)(3)原有棋子数=7×7-9=40(只)答:棋子有40只。例5 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?解 第一种方法: 1+2+3+4+5=15(棵)第二种方法: (5+1)×5÷2=15(棵)答:这个三角形树林一共有15棵树。22 商品利润问题【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。【数量关系】 利润=售价-进货价利润率=(售价-进货价)÷进货价×100%售价=进货价×(1+利润率)亏损=进货价-售价亏损率=(进货价-售价)÷进货价×100%【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?解 设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了1-(1+10%)×(1-10%)=1%答:二月份比原价下降了1%。例2 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?解 要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的,所以成本为 52÷80%÷(1+30%)=50(元)可以看出该店是盈利的,盈利率为 (52-50)÷50=4%答:该店是盈利的,盈利率是4%。例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?解 问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,每册的原定价是0.25×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元)剩下的作业本每册盈利 7.20÷[1200×(1-80%)]=0.03(元)又可知 (0.25+0.03)÷[0.25×(1+40%)]=80%答:剩下的作业本是按原定价的八折出售的。例4 某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。解 设乙店的进货价为1,则甲店的进货价为 1-10%=0.9甲店定价为 0.9×(1+30%)=1.17乙店定价为 1×(1+20%)=1.20由此可得 乙店进货价为 6÷(1.20-1.17)=200(元)乙店定价为 200×1.2=240(元)答:乙店的定价是240元。23 存款利率问题【含义】 把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。利率一般有年利率和月利率两种。年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。【数量关系】 年(月)利率=利息÷本金÷存款年(月)数×100%利息=本金×存款年(月)数×年(月)利率本利和=本金+利息=本金×[1+年(月)利率×存款年(月)数]【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长。解 因为存款期内的总利息是(1488-1200)元,所以总利率为 (1488-1200)÷1200 又因为已知月利率,所以存款月数为 (1488-1200)÷1200÷0.8%=30(月)答:李大强的存款期是30月即两年半。例2 银行定期整存整取的年利率是:二年期7.92%,三年期8.28%,五年期9%。如果甲乙二人同时各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取出,那么,谁的收益多?多多少元?解 甲的总利息[10000×7.92%×2+[10000×(1+7.92%×2)]×8.28%×3=1584+11584×8.28%×3=4461.47(元)乙的总利息 10000×9%×5=4500(元)4500-4461.47=38.53(元)答:乙的收益较多,乙比甲多38.53元。24 溶液浓度问题【含义】 在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。【数量关系】 溶液=溶剂+溶质浓度=溶质÷溶液×100%【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?解 (1)需要加水多少克? 50×16%÷10%-50=30(克)(2)需要加糖多少克? 50×(1-16%)÷(1-30%)-50=10(克)答:(1)需要加水30克,(2)需要加糖10克。例2 要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?解 假设全用30%的糖水溶液,那么含糖量就会多出 600×(30%-25%)=30(克)这是因为30%的糖水多用了。于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。这样,每“换掉”100克,就会减少糖 100×(30%-15%)=15(克) 所以需要“换掉”30%的溶液(即“换上”15%的溶液) 100×(30÷15)=200(克)由此可知,需要15%的溶液200克。需要30%的溶液 600-200=400(克)答:需要15%的糖水溶液200克,需要30%的糖水400克。例3 甲容器有浓度为12%的盐水500克,乙容器有500克水。把甲中盐水的一半倒入乙中,混合后再把乙中现有盐水的一半倒入甲中,混合后又把甲中的一部分盐水倒入乙中,使甲乙两容器中的盐水同样多。求最后乙中盐水的百分比浓度。解 由条件知,倒了三次后,甲乙两容器中溶液重量相等,各为500克,因此,只要算出乙容器中最后的含盐量,便会知所求的浓度。下面列表推算:由以上推算可知,乙容器中最后盐水的百分比浓度为 24÷500=4.8%答:乙容器中最后的百分比浓度是4.8%。25 构图布数问题【含义】 这是一种数学游戏,也是现实生活中常用的数学问题。所谓“构图”,就是设计出一种图形;所谓“布数”,就是把一定的数字填入图中。“构图布数”问题的关键是要符合所给的条件。【数量关系】 根据不同题目的要求而定。【解题思路和方法】 通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。例1 十棵树苗子,要栽五行子,每行四棵子,请你想法子。解 符合题目要求的图形应是一个五角星。4×5÷2=10因为五角星的5条边交叉重复,应减去一半。例2 九棵树苗子,要栽十行子,每行三棵子,请你想法子。解 符合题目要求的图形是两个倒立交叉的等腰三角形,一个三角形的顶点在另一个三角形底边的中线上。例3 九棵树苗子,要栽三行子,每行四棵子,请你想法子。解 符合题目要求的图形是一个三角形,每边栽4棵树,三个顶点上重复应减去,正好9棵。4×3-3=9例4 把12拆成1到7这七个数中三个不同数的和,有几种写法?请设计一种图形,填入这七个数,每个数只填一处,且每条线上三个数的和都等于12。解 共有五种写法,即 12=1+4+7 12=1+5+6 12=2+3+712=2+4+6 12=3+4+5在这五个算式中,4出现三次,其余的1、2、3、5、6、7各出现两次,因此,4应位于三条线的交点处,其余数都位于两条线的交点处。26 幻方问题【含义】 把n×n个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方。最简单的幻方是三级幻方。【数量关系】 每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。三级幻方的幻和=45÷3=15 五级幻方的幻和=325÷5=65【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。例1 把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个数的和相等。解 幻和的3倍正好等于这九个数的和,所以幻和为(1+2+3+4+5+6+7+8+9)÷3=45÷3=15九个数在这八条线上反复出现构成幻和时,每个数用到的次数不全相同,最中心的那个数要用到四次(即出现在中行、中列、和两条对角线这四条线上),四角的四个数各用到三次,其余的四个数各用到两次。看来,用到四次的“中心数”地位重要,宜优先考虑。设“中心数”为Χ,因为Χ出现在四条线上,而每条线上三个数之和等于15,所以 (1+2+3+4+5+6+7+8+9)+(4-1)Χ=15×4即 45+3Χ=60 所以 Χ=5接着用奇偶分析法寻找其余四个偶数的位置,它们分别在四个角,再确定其余四个奇数的位置,它们分别在中行、中列,进一步尝试,容易得到正确的结果。例2 把2,3,4,5,6,7,8,9,10这九个数填到九个方格中,使每行、每列、以及对角线上的各数之和都相等。解 只有三行,三行用完了所给的9个数,所以每行三数之和为(2+3+4+5+6+7+8+9+10)÷3=18假设符合要求的数都已经填好,那么三行、三列、两条对角线共8行上的三个数之和都等于18,我们看18能写成哪三个数之和:最大数是10:18=10+6+2=10+5+3最大数是9: 18=9+7+2=9+6+3=9+5+4最大数是8: 18=8+7+3=8+6+4最大数是7: 18=7+6+5 刚好写成8个算式。首先确定正中间方格的数。第二横行、第二竖行、两个斜行都用到正中间方格的数,共用了四次。观察上述8个算式,只有6被用了4次,所以正中间方格中应填6。然后确定四个角的数。四个角的数都用了三次,而上述8个算式中只有9、7、5、3被用了三次,所以9、7、5、3应填在四个角上。但还应兼顾两条对角线上三个数的和都为18。最后确定其它方格中的数。如图。27 抽屉原则问题【含义】 把3只苹果放进两个抽屉中,会出现哪些结果呢?要么把2只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把3只苹果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一个抽屉中放了2只或2只以上的苹果。这就是数学中的抽屉原则问题。【数量关系】 基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。【解题思路和方法】 (1)改造抽屉,指出元素;(2)把元素放入(或取出)抽屉;(3)说明理由,得出结论。例1 育才小学有367个2000年出生的学生,那么其中至少有几个学生的生日是同一天的?解 由于2000年是润年,全年共有366天,可以看作366个“抽屉”,把367个1999年出生的学生看作367个“元素”。367个“元素”放进366个“抽屉”中,至少有一个“抽屉”中放有2个或更多的“元素”。 这说明至少有2个学生的生日是同一天的。例2 据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?解 人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5 根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。例3 一个袋子里有一些球,这些球仅只有颜色不同。其中红球10个,白球9个,黄球8个,蓝球2个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有4个球颜色相同?解 把四种颜色的球的总数(3+3+3+2)=11 看作11个“抽屉”,那么,至少要取(11+1)个球才能保证至少有4个球的颜色相同。答;他至少要取12个球才能保证至少有4个球的颜色相同。28 公约公倍问题【含义】 需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。【数量关系】 绝大多数要用最大公约数、最小公倍数来解答。【解题思路和方法】 先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。例1 一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?解 硬纸板的长和宽的最大公约数就是所求的边长。60和56的最大公约数是4。答:正方形的边长是4厘米。例2 甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?解 要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。 36、30、48的最小公倍数是720。答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。例3 一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?解 相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。所以,至少应植树 (60+72+96+84)÷12=26(棵)答:至少要植26棵树。例4 一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。解 如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为60×3+1=181(个)答:棋子的总数是181个。29 最值问题【含义】 科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。【数量关系】 一般是求最大值或最小值。【解题思路和方法】 按照题目的要求,求出最大值或最小值。例1 在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?解 先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。答:最少需要9分钟。例2 在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?解 我们采用尝试比较的方法来解答。集中到1号场总费用为 1×200×10+1×400×40=18000(元)集中到2号场总费用为 1×100×10+1×400×30=13000(元)集中到3号场总费用为 1×100×20+1×200×10+1×400×10=12000(元)集中到4号场总费用为 1×100×30+1×200×20+1×400×10=11000(元)集中到5号场总费用为 1×100×40+1×200×30=10000(元)经过比较,显然,集中到5号煤场费用最少。答:集中到5号煤场费用最少。例3 北京和上海同时制成计算机若干台,北京可调运外地10台,上海可调运外地4台。现决定给重庆调运8台,给武汉调运6台,若每台运费如右表,问如何调运才使运费最省?解 北京调运到重庆的运费最高,因此,北京往重庆应尽量少调运。这样,把上海的4台全都调往重庆,再从北京调往重庆4台,调往武汉6台,运费就会最少,其数额为500×4+800×4+400×6=7600(元)答:上海调往重庆4台,北京调往武汉6台,调往重庆4台,这样运费最少。30 列方程问题【含义】 把应用题中的未知数用字母Χ代替,根据等量关系列出含有未知数的等式——方程,通过解这个方程而得到应用题的答案,这个过程,就叫做列方程解应用题。【数量关系】 方程的等号两边数量相等。【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。(2)设:把应用题中的未知数设为Χ。(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。(4)解;求出所列方程的解。(5)验:检验方程的解是否正确,是否符合题意。(6)答:回答题目所问,也就是写出答问的话。同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在Χ后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的Χ值也不带单位名称,在答语中要写出单位名称。检验的过程不必写出,但必须检验。例1 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?解 第一种方法:设乙班有Χ人,则甲班有(90-Χ)人。找等量关系:甲班人数=乙班人数×2-30人。列方程: 90-Χ=2Χ-30解方程得 Χ=40 从而知 90-Χ=50第二种方法:设乙班有Χ人,则甲班有(2Χ-30)人。列方程 (2Χ-30)+Χ=90解方程得 Χ=40 从而得知 2Χ-30=50答:甲班有50人,乙班有40人。例2 鸡兔35只,共有94只脚,问有多少兔?多少鸡?解 第一种方法:设兔为Χ只,则鸡为(35-Χ)只,兔的脚数为4Χ个,鸡的脚数为2(35-Χ)个。根据等量关系“兔脚数+鸡脚数=94”可列出方程 4Χ+2(35-Χ)=94 解方程得 Χ=12 则35-Χ=23第二种方法:可按“鸡兔同笼”问题来解答。假设全都是鸡,则有 兔数=(实际脚数-2×鸡兔总数)÷(4-2)所以 兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:鸡是23只,兔是12只。例3 仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?解 第一种方法:求出甲乙两车一次共可运的袋数,再减去甲车一次运的袋数,即是所求。940÷4-125=110(袋)第二种方法:从总量里减去甲汽车4次运的袋数,即为乙汽车共运的袋数,再除以4,即是所求。(940-125×4)÷4=110(袋)第三种方法:设乙汽车每次运Χ袋,可列出方程 940÷4-Χ=125解方程得 Χ=110第四种方法:设乙汽车每次运Χ袋,依题意得(125+Χ)×4=940 解方程得 Χ=110答:乙汽车每次运110袋。消去法在一些应用题中,有时会出现两个或两个以上并列的未知数,我们可以根据数据特点,设法消去一个或两个未知数,只保留其中的一个未知数,在求得这个未知数后,再求出其它的未知数。这种解题思路和方法就是消去法。[例1]学校买了4张办公桌和1把椅子,共用去510元,后又买来6张办公桌和1把椅子共用去750元。求每张办公桌和每把椅子各多少元?[分析与解]根据已知条件,列出关系式:4张桌子的价钱+1把椅子的价钱=510元---------------①6张桌子的价钱+1把椅子的价钱=750元---------------②观察比较两个等式,②式比①式多买了(6-4)张桌子,就多用了(750-510)元,从而可以求出每张办公桌为(750-510)÷(6-4)=120元,每把椅子为510-120×4=30元
龙川校园ID:lcxy100为实现“以研促教,教研相长”,凸显课题研究引领教育教学的功效,增进教师间的交流与学习,11月14日下午,老隆镇第二小学全体数学老师齐聚录播室,观摩学校《信息技术环境下培养小学生数学素养的学习模式的实践研究》课题组的推广实验课《加法结合律》。此次推广实验课由该课题组组长、四年级数学备课组长张清红老师执教。张老师通过对教学内容和学习目标的深入分析,采用“问题引领式”的课堂教学模式,同时教学全过程又是基于交互白板来展开。精彩课堂在这里课程伊始,学生与老师针对授课课题用问题的形式,共同设定本节课的学习目标,然后围绕设定的目标铺开教学,课堂氛围 “轻松、和谐、平等”,充分体现了“学生是学习的主体”。这样的课堂教学使在座的老师有种耳目一新的感觉。观摩现在进行时黄民东校长与全校数学老师一起观摩推广实验课。研讨课后,全校数学老师分组评课,共同探讨本节推广实验课的亮点和存在的不足,以及推广价值,并派代表曾新娟、杨平招、何东丽老师总结发言。黄民东校长参与评课黄校长从教学理念、教学思路、教学重难点、教学效果等方面进行了详细的点评。他首先赞扬了张老师勇于尝试新技术,新方法的精神,然后对“问题引领式教学模式”提出了他的看法。“教无定法,贵在得法”,他勉励数学老师们要以学生为本,以教学大纲为本,选择适合的教学方法,提高课堂教学效率。黄校长的点评为数学老师们的教研之路指明了方向。数学教研活动既为课题组提供了展示课题研究成果的平台,也为全校数学老师提供了探讨、交流的机会,通过探讨、交流,实现了经验共享、互学共进。以研促教研教结合老隆二小一直在努力!END
4月7日,山东师范大学教育学院王红艳教授带领小学教育专业研究生团队来我校听课。王红艳教授北京大学教育学博士,山东省“互联网+教师专业发展”研修专家,主要研究方向是小学数学教育,本次听课的主要目的是课堂教学数据收集和教学诊断。山东师范大学小学教育专业37位研究生进行全覆盖听课,共听取了我校5个年级14位老师的数学课,内容包括一年级《比较大小》、二年级《有余数的除法》、三年级《两位数乘法》、四年级《小数大小比较》、六年级《比例的意义》等内容。课后大家针对听课情况进行了激烈的研讨。研讨方向主要针对教师的提问、对学生的关注情况、课堂教学流程、教师教学语言的规范等方面,并将讨论结果制作成图表。讨论后他们主要从三个方面进行交流汇报。1.本节课教师教学的优点。2.本节课教学不足及建议。3.我在本节课的收获。大家发言积极、思路清晰,从研究者的角度看问题,发言直指课堂教学的问题所在,指出了数学教学中共性和个性的问题,有助于老师们下一步更好的改进课堂教学。一上午的活动紧张而热烈,不知不觉已是下午一点了,虽然饥肠辘辘,但是总感觉意犹未尽,研究生们给我们留下的不只是意见和建议,更多的是对数学课堂、数学教学的思考和感悟。
中宏网山东7月30日电 近日,为期两天的山东省小学数学“教研大讲堂”如期举行。本次会议以基于数学文化的“数与代数”专题教学为研讨主题,旨在推进实施山东省基础教育教学改革重点项目《数学文化教学促进小学生数学核心素养发展的研究》,探索“数学文化融入课堂”的教学策略,交流各地市“基于数学文化教材单元教学研究”典型经验。会议分别由威海、临沂、济南三个地市的小学数学教研员主持,来自全省各地市、县区小学数学教研员、数学骨干教师近3万人同步在线参加了会议。本次会议聚焦青岛版小学数学三年级下册《两位数乘两位数》单元,分别展示了来自威海、临沂、济南三个地市的数学团队基于数学文化的研究成果。作为威海市的代表,高区团队在会上分享了1节课例展示和4个专题报告,系统介绍了我市小学数学团队在数学文化和单元整体教学研究方面的阶段性成果。会议伊始,由高区大岚寺小学梁娟校长执教单元起始课《两位数乘两位数(口算)》,本节课创造性地运用了点子图来揭示算理、算法的本质,将乘法口诀和十进制的由来等数学文化内容有机融入到计算教学中,充分彰显了数学的科学价值和人文价值。随后,高区第三小学王晓萍老师做了《基于数学文化的单元教学设计》交流展示,深入阐释了如何整体把握单元教学内容、确立多维单元教学目标和系统规划单元教学活动等研究成果。接着,高区教研中心于华静老师做了《基于数学文化的教材分析框架与改进研究》的专题报告,详细介绍了教材分析框架的研究缘起、研究历程、探索成果和效果反馈,从一线教师的实际需求出发,开发出了一套条目清晰、方便运用的表格式分析框架。基于此研究框架,高区沈阳路小学的贺言霞和高区第二实验小学的毕欣荣两位老师分别做了单元整体数学文化分析和教材修订建议的交流分享。最后,山东省教科院徐云鸿主任以《做研究型教师,从优秀走向卓越》为题进行了大会总结,对威海、临沂、济南三个团队的研究和展示给予了充分肯定和高度赞可;并结合实例,围绕教师数学文化的研究和专业成长,重点讲解了研究什么、怎样开展研究、怎样提炼研究成果,为下一步实验学校的数学文化研究指明了方向,提出了可操作性建议。本次线上会议,在全省范围内展示了威海市小学数学团队“数学文化融入课堂”的典型经验和实证研究,从“数学文化的教材分析框架”“数学文化融入教材”“单元整体教学分析”“课时教学设计”等方面完整系统地介绍了开展数学文化研究的基本范式,凸显了威海小学数学团队的研究特色,呈现了我市基于数学文化的单元整体教学研究的丰硕成果,获得了全省小学数学教师的一致好评。近年来,我市小学数学团队深入推进“小学生深度学习的教学策略实践研究”项目,以“基于深度学习的单元整体教学设计”为抓手,将课题研究、学科教研与课堂教学紧密结合,立足学科,扎根课堂,深入贯彻落实立德树人根本任务,教学研究精准指向小学生高阶思维能力的发展,切实提升了小学数学教师的专业素养和教学水平。本次会议展示的“单元整体教学设计”成果正是在我市前期研究的基础上,结合数学文化研究的内容进行的创新性设计。(通讯员 威海市教育教学研究中心 陈梅)
数学到底多有用,它不仅是许多学科的基础,更是人类认知世界底层的思维方式。如果能够运用好数学,威力甚至能胜过百万雄兵。很多人觉得数学难学,是因为没有建立数学思维。究竟什么是数学思维呢?简单地说,就是用数学的观点去思考问题和解决问题的能力。一个人的数学好不好,关键看数学思维强不强。题海战术、套公式,中国孩子学数学的方法,几乎都是错的下面就来一一拆解,中国孩子最常见2种学习数学的误区。第1种,题海战术——学习兴趣的灭顶之灾。很多人认为题海战术是有效的。嗯,我承认,低效也是一种“有效”。这很容易理解——当你不断重复做题,自然会对各种题目产生条件反射,通过机械记忆解题。但,代价真的太大。大多数的孩子会因为题海战术,消磨掉学习数学的兴趣,从此闻风丧胆,形成心理阴影,能离多远有多远,甚至此生不再碰与数字相关的工作。第2种,套用题型和公式——学习成果的表面高效。有一种孩子,每节课的作业都完成得很好,一到考试,题目稍微一变就懵了,这时若你告诉他“这是什么题型”,他马上可以套用公式完成解题。他有真正理解这个公式吗?显然没有。他并没有判断题型的能力,只会套用公式。见过太多长期受“题型+公式”训练的孩子,很多有明显的畏难情绪,只要是他没做过的题目就直接放弃,因为他已经习惯套用现成的。这是件很可怕的事情。一他是不是真正理解原理,二他会不会养成习惯,影响他未来的生活和工作。因为我们在生活中所遇到的绝大多数问题,都是没有现成公式可套的,教会孩子如何思考问题、解决问题,才能真正实现教育的目的啊。原来数学可以这样学这套《给孩子的数学三书》系列,就是著名数学教育家刘薰宇给中小学生的数学科普经典。第一册是《马先生谈算学》:化身为马先生,在里面讲解了一百多道数学题,主要是通过趣味性方式,讲如何用图解法求解一些算术四则问题。第二册是《数学趣味》:主要以趣味性的方式讲日常生活中碰到的数学问题,我们讲万物皆数学,通过万物来学数学是最快的。孩子需要引导,教科书上太过于生硬,而趣味性讲解法,让数学融入故事中,给孩子一个正确的数学启蒙教育。第三册是《数学的园地》:这一册就有点难度了,里面讲了函数、连续、诱导函数、微分、积分和总集等概念及它们的运算法的基本原理。虽然有点深,但讲解的方法很妙,也很容易理解。《数学三书》通过生动有趣的讲解,来深挖学习数学的内在趣味,枯燥、乏味的数学题材和算法,在刘薰宇教授的书中,都变成趣味丰富、令人爱读的文字了,那么做数学题也不是一件苦差事了。我们知道,兴趣是最好的老师,只有在对我们所学的知识充满着探究欲望,以及极强好奇心时,那么才会激发内心的主动学习性,这才是学好知识的首要条件。这其实也是刘薰宇教授一直致力研究的方向,并且把自己的心得和实践经验编写成了这套书,帮助更多的孩子轻松学好数学。这套书不仅内容堪称硬核,而且品质一流,而且图文并茂,印刷上乘,字大行疏,给孩子一个非常完美的阅读体验。通过此书的阅读,不仅培养孩子浓厚的数学兴趣,还可以帮助他们建立起一套完整的数学体系,那么在学习数学上必然事半功倍。感兴趣的家长朋友可以点击下面的链接购买,一顿饭的钱,就有可能改变孩子的数学成绩,何乐而不为呢?
丸子呦 - 怪我咯04:18来自网络擎源基本概念第一章 数和数的运算一、概念(一)整数1、整数的意义 自然数和0都是整数。2、自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。 6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。⑴ 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。⑵ 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。⑶ 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。 8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。以此类推。(二)小数1、小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。如1/10记作0.1,7/100记作0.07。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……5、小数的分类⑴ 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。⑵ 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。⑶ 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。⑷ 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……⑸ 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏⑹ 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。⑺ 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……⑻ 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。(三)分数1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。4、比较分数的大小:⑴ 分母相同的分数,分子大的那个分数就大。 ⑵ 分子相同的分数,分母小的那个分数就大。 ⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。 ⑷ 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。5、分数的分类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数⑴ 真分数:分子比分母小的分数叫做真分数。真分数小于1。⑵ 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。⑶ 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。6、分数和除法的关系及分数的基本性质⑴ 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。 ⑵ 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。 ⑶ 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。7、约分和通分 ⑴ 分子、分母是互质数的分数,叫做最简分数。 ⑵ 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。 ⑶ 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。 ⑷ 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 ⑸ 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。8、倒 数 ⑴ 乘积是1的两个数互为倒数。 ⑵ 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 ⑶ 1的倒数是1,0没有倒数(四)百分数1、百分数的意义表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。4、百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。5、纳税和利息: 税率:应纳税额与各种收入的比率。 利率:利息与本金的百分率。由银行规定按年或按月计算。 利息的计算公式:利息=本金×利率×时间6、百分数与分数的区别主要有以下三点: ⑴ 意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。 ⑵ 应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。 ⑶ 书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。7、数的互化 ⑴ 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。⑵ 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。⑶ 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。⑷ 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。⑸ 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。⑹ 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。⑺ 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(五)数的整除 1、整除的意义整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。2、约数和倍数⑴ 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。⑵ 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。⑶ 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。3、奇数和偶数 ⑴ 自然数按能否被2 整除的特征可分为奇数和偶数。① 能被2整除的数叫做偶数。0也是偶数。② 不能被2整除的数叫做奇数。⑵ 奇数和偶数的运算性质: ① 相邻两个自然数之和是奇数,之积是偶数。 ② 奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。 4、整除的特征⑴ 个位上是0、2、4、6、8的数,都能被2整除。⑵ 个位上是0或5的数,都能被5整除。⑶ 一个数的各位上的数的和能被3整除,这个数就能被3整除。⑷ 一个数各位数上的和能被9整除,这个数就能被9整除。⑸ 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。⑹ 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。⑺ 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。5、质数和合数⑴ 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。⑵ 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。⑶ 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。6、分解质因数⑴ 质因数每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。⑵ 分解质因数把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。⑶ 公因(约)数几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质;②相邻的两个自然数互质;③当合数不是质数的倍数时,这个合数和这个质数互质;④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。⑷ 公倍数① 几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。② 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。二、性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时,要用“0"补足位。(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。(五)分数与除法的关系1、被除数÷除数= 被除数/除数2、因为零不能作除数,所以分数的分母不能为零。3、被除数 相当于分子,除数相当于分母。三、运算法则(一)整数四则运算的法则1、整数加法:把两个数合并成一个数的运算叫做加法。在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。加数+加数=和 一个加数=和-另一个加数2、整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。加法和减法互为逆运算。3、整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。一个因数× 一个因数 =积 一个因数=积÷另一个因数4、整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。乘法和除法互为逆运算。在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。被除数÷除数=商 除数=被除数÷商 被除数=商×除数5、乘方:求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32(二)小数四则运算1、小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2、小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.3、小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。4、小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。(三)分数四则运算 1、分数加法:分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。2、分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。3、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。4、分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。(四)运算定律 1、加法运算定律⑴ 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。⑵ 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。2、乘法运算定律⑴ 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。⑵ 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。⑶乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,即(a+b)×c=a×c+b×c 。⑷ 乘法分配律扩展:两个数的差与一数相乘,可以先把它们与这个数分别相乘,再相减,即(a-b) ×c=a×c-b×c3、减法运算定律⑴ 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。⑵ 一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数,即a-b-c=a-c-b。4、除法运算定律⑴ 一个数连续除以两个数,可以除以这两个数的集,即a÷b÷c=a÷(b×c)。⑵ 一个数连续除以两个数,可以先除以第二除数,再除以第一个除数,即a÷b÷c=a÷c÷b。5、其它a-b+c=a+c-ba-b+c=a+(b-c)a÷b×c=a×c÷ba÷b×c=a÷(b÷c)6、积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。 推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。 一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。7、商不变性质:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。m≠0 a÷b=(a×m) ÷(b×m)=(a÷m) ÷(b÷m)推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。 被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。(五)计算方法 1、整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2、整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。3、整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。4、整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。5、小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。 6、除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。7、除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。 8、同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。9、异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。10、带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。11、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。12、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。(六) 运算顺序 1、小数四则运算的运算顺序和整数四则运算顺序相同。2、分数四则运算的运算顺序和整数四则运算顺序相同。3、没有括号的混合运算:同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。4、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。5、第一级运算:加法和减法叫做第一级运算。6、第二级运算:乘法和除法叫做第二级运算。四、应用(一)整数和小数的应用1、简单应用题 (1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。(2)解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。2、复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。(2)含有三个已知条件的两步计算的应用题。求比两个数的和多(少)几个数的应用题。比较两数差与倍数关系的应用题。(3)含有两个已知条件的两步计算的应用题。已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。(4)解答连乘连除应用题。(5)解答三步计算的应用题。(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。d答案:根据计算的结果,先口答,逐步过渡到笔答。(7)解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。(8)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。(9)解答乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。( 10) 解答除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。d已知一个数的几倍是多少,求这个数的应用题。(11)常见的数量关系:总价= 单价×数量路程= 速度×时间工作总量=工作时间×工效总产量=单产量×数量3、典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。(1)平均数问题:平均数是等分除法的发展。解题关键:在于确定总数量和与之相对应的总份数。算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。加权平均数:已知两个以上若干份的平均数,求总平均数是多少。数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。数量关系式:单一量×份数=总数量(正归一) 总数量÷单一量=份数(反归一)例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。解题规律:(和+差)÷2 = 大数 大数-差=小数(和-差)÷2=小数 和-小数= 大数例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)(5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。解题规律:和÷倍数和=标准数 标准数×倍数=另一个数例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆) (6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。解题关键及规律:同时同地相背而行:路程=速度和×时间。同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米,甲几小时追上乙?分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。船速:船在静水中航行的速度。水速:水流动的速度。顺水速度:船顺流航行的速度。逆水速度:船逆流航行的速度。顺速=船速+水速逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。解题规律:船行速度=(顺水速度+ 逆流速度)÷2流水速度=(顺流速度逆流速度)÷2路程=顺流速度× 顺流航行所需时间路程=逆流速度×逆流航行所需时间例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。(9)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。解题关键:要弄清每一步变化与未知数的关系。解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人)三班原有人数列式为 168 ÷ 4-3+6=45 (人)。 (10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。解题规律:沿线段植树棵树=段数+1 棵树=总路程÷株距+1株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)(11 )盈亏问题:是在等分除法的基础上发展起来的。他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。解题规律:总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足 ,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足, 总差额= 大不足-小不足例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。 (12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年) (13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数兔子只数=(总腿数-2×总头数)÷2如果假设全是兔子,可以有下面的式子:鸡的只数=(4×总头数-总腿数)÷2兔的头数=总头数-鸡的只数例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)鸡的只数 50-35=15 (只)(二)分数和百分数的应用 1、分数加减法应用题: 分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。2、分数乘法应用题: 是指已知一个数,求它的几分之几是多少的应用题。特征:已知单位“1”的量和分率,求与分率所对应的实际数量。解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。3、分数除法应用题: 求一个数是另一个数的几分之几(或百分之几)是多少。特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。已知一个数的几分之几(或百分之几 ) ,求这个数。特征:已知一个实际数量和它相对应的分率,求单位“1”的量。解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。4、出勤率 发芽率=发芽种子数/试验种子数×100%小麦的出粉率= 面粉的重量/小麦的重量×100%产品的合格率=合格的产品数/产品总数×100%职工的出勤率=实际出勤人数/应出勤人数×100%5、工程问题: 是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。数量关系式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率工作总量÷工作效率和=合作时间6、纳税 纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。缴纳的税款叫应纳税款。应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。7、利息 存入银行的钱叫做要本金。取款时银行多支付的钱叫做利息。利息与本金的比值叫做利率。利息=本金×利率×时间常用的数量关系式1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数8、因数×因数=积 积÷一个因数=另一个因数9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数10、总数÷总份数=平均数 11、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数12、和倍问题和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)13、差倍问题差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)14、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间15、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)第二章 度量衡一、概述1、事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。2、数+单位名称=名数只带有一个单位名称的叫做单名数,如:5小时, 3千克。 带有两个或两个以上单位名称的叫做复名数,如:5小时6分,3千克500克。56平方分米=(0.56)平方米 就是单名数转化成单名数 。560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子。3、高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.二、长度1、什么是长度长度是一维空间的度量。2、长度常用单位* 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)3、单位之间的换算 * 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米=1000 米三、面积1、什么是面积面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。2、常用的面积单位 * 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米3、面积单位的换算 * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米 * 1公倾 =10000 平方米 * 1平方公里 =100 公顷四、体积和容积1、什么是体积、容积① 体积,就是物体所占空间的大小。② 容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。2、常用单位① 体积单位:* 立方米 * 立方分米 * 立方厘米② 容积单位:* 升 * 毫升3、单位换算① 体积单位* 1立方米=1000立方分米 * 1立方分米=1000立方厘米① 容积单位* 1升=1000毫升 * 1升=1立方米 * 1毫升=1立方厘米五、质量1、什么是质量质量,就是表示表示物体有多重。2、常用单位 * 吨 t * 千克 kg * 克 g3、常用换算 * 一吨=1000千克 * 1千克=1000克六、时间1、什么是时间 是指有起点和终点的一段时间 2、常用单位 世纪、 年 、 月 、 日 、 时 、 分、 秒3、单位换算 *1世纪=100年(公元1年—100年是第一世纪,公元1901—2000是第二十世纪)* 平年一年365天,闰年一年366天。*1年12个月(一、三、五、七、八、十、十二是大月,大月有31 天 ; 四、六、九、十一是小月小月,小月有30天;平年2月有28天 闰年2月有29天)*闰年年份是4的倍数,整百年份须是400的倍数。*1天= 24小时 1小时=60分 一分=60秒七、货币1、什么是货币货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。2、常用单位 * 元 * 角 * 分 3、单位换算* 1元=10角 * 1角=10分常用单位换算1、长度单位换算1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米2、面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米 3、体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升4、重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤5、人民币单位换算1元=10角 1角=10分 1元=100分 6、时间单位换算1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒第三章 代数初步知识一、用字母表示数1、用字母表示数的意义和作用 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式⑴ 常见的数量关系① 路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vt v=s/t t=s/v② 总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bc b=a/c c=a/b⑵ 运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c) =a-b-c⑶ 用字母表示几何形体的公式① 长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。c=2(a+b) s=ab② 正方形的边长a用表示,周长用c表示,面积用s表示。c=4a s=a③ 平行四边形的底a用表示,高用h表示,面积用s表示。s=ah④ 三角形的底用a表示,高用h表示,面积用s表示。s=ah/2⑤ 梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。s=(a+b)h/2 s=mh⑥ 圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。c=∏d=2∏r s=∏ r⑦ 扇形的半径用r表示,n表示圆心角的度数,面积用s表示。s=∏ nr/360⑧ 长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。v=sh s=2(ab+ah+bh) v=abh⑨ 正方体的棱长用a表示,底面周长c用表示,底面积用s表示, 体积用v表示.s=6a v=a⑩ 圆柱的高用h表示,底面周长用c表示,底面积用s表示, 体积用v表示.s侧=chs表=s侧+2s底 v=sh圆锥的高用h表示,底面积用s表示, 体积用v表示.v=sh/33、用字母表示数的写法① 数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写;数与数相乘,乘号不能省略。② 当“1”与任何字母相乘时,“1”省略不写。③ 数字和字母相乘时,将数字写在字母前面。④ 在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。⑤ 用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。4、将数值代入式子求值① 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。② 同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。二、简易方程1、等式:表示相等关系的式子叫等式。2、方程:含有未知数的等式叫做方程。判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立 。3、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。4、解方程 :求方程的解的过程叫做解方程。5、解方程的方法⑴ 直接运用四则运算中各部分之间的关系去解。如x-8=12 加数+加数=和 一个加数=和-另一个加数 被减数-减数=差 减数=被减数-差 被减数=差+减数 被乘数×乘数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=除数×商 ⑵ 先把含有未知数x的项看作一个数,然后再解。如3x+20=41,先把3x看作一个数,然后再解。 ⑶ 按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。 ⑷ 利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20,先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。 四、列方程解应用题 在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先应将所求的未知数设为x。1、列方程解应用题的意义* 用方程式去解答应用题求得应用题的未知量的方法。2、列方程解答应用题的步骤① 弄清题意,确定未知数并用x表示;② 找出题中的数量之间的相等关系;③ 列方程,解方程;④ 检查或验算,写出答案。3、列方程解应用题的方法① 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。② 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。4、列方程解应用题的范围小学范围内常用方程解的应用题:a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算;d 分数、百分数应用题;e 比和比例应用题。五、比和比例 1、比的意义和性质 ⑴ 比的意义两个数相除又叫做两个数的比。“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。比值通常用分数表示,也可以用小数表示,有时也可能是整数。比的后项不能是零。根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。⑵ 比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。⑶ 求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。⑷ 比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。⑸ 按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。2、比例的意义和性质 ⑴ 比例的意义表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。⑵ 比例的性质在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。⑶ 解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。3、正比例和反比例 ⑴ 成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)⑵ 成反比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)4、比和比例应用题 ⑴ 在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。⑵ 按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答 ⑶ 正、反比例应用题的解题策略 ① 审题,找出题中相关联的两个量 ② 分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。 ③ 设未知数,列比例式 ④ 解比例式 ⑤ 检验,写答语第四章 几何的初步知识一、线和角1、线 ⑴ 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。⑵ 射线射线只有一个端点;长度无限。⑶ 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。⑷ 平行线在同一平面内,不相交的两条直线叫做平行线。两条平行线之间的垂线长度都相等。⑸ 垂线 两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。2、角 ⑴ 从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。⑵ 角的分类① 锐角:小于90°的角叫做锐角。② 直角:等于90°的角叫做直角。③ 钝角:大于90°而小于180°的角叫做钝角。④ 平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。⑤ 周角:角的一边旋转一周,与另一边重合。周角是360°。二、平面图形 1、三角形⑴ 特征:由三条线段围成的图形;内角和是180度;三角形具有稳定性;从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,一个三角形有三条高。⑵ 计算公式:s=ah/2⑶ 分类① 按角分A、锐角三角形 :三个角都是锐角。B、直角三角形 :有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。C、钝角三角形:有一个角是钝角。② 按边分A、不等边三角形:三条边长度不相等。B、等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。C、等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。2、四边形⑴ 特征:① 四边形是由四条线段围成的图形。 ② 任意四边形的内角和是360度。 ③ 只有一组对边平行的四边形叫梯形。 ④ 两组对边分别平行的四边形叫平行四边形,它容易变形。长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。⑵分类① 长方形 A、特征:对边相等,4个角都是直角的四边形。有两条对称轴。B、计算公式:c=2(a+b) s=ab② 正方形A、特征:四条边都相等,四个角都是直角的四边形。有4条对称轴。B、计算公式:c=4a s=a③ 平行四边形 A、特征:两组对边分别平行的四边形;相对的边平行且相等;对角相等;相邻的两个角的度数之和为180度;平行四边形容易变形。B、计算公式:s=ah④ 梯形 A、特征:只有一组对边平行的四边形;中位线等于上下底和的一半;等腰梯形有一条对称轴。B、计算公式:s=(a+b)h/2=mh3、圆 ⑴ 圆的认识圆是平面上的一种曲线图形。圆中心的一点叫做圆心。一般用字母o表示。半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。在同一个圆里,有无数条半径,每条半径的长度都相等。通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。同一个圆里有无数条直径,所有的直径都相等。同圆或等圆的直径都相等同一个圆里,直径等于两个半径的长度,即d=2r。圆的大小由半径决定。 圆有无数条对称轴。圆心确定圆的位置,半径确定圆的大小。⑵ 圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。⑶ 圆的周长围成圆的曲线的长叫做圆的周长。把圆的周长和直径的比值叫做圆周率。用字母∏表示。⑷ 圆的面积:圆所占平面的大小叫做圆的面积。⑸ 计算公式:d=2r r=d/2 c=∏d c=2∏r s=∏r4、扇形 ⑴ 扇形的认识一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。(半圆与直径的组合也是扇形)。显然, 它是由圆周的一部分与它所对应的圆心角围成。 圆上AB两点之间的部分叫做弧,读作“弧AB”。顶点在圆心的角叫做圆心角。在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。扇形有一条对称轴,是轴对称图形。⑵ 计算公式:s=n∏r/3605、环形 ⑴特征:由两个半径不相等的同心圆相减而成,有无数条对称轴。⑵ 计算公式:s=∏(R-r)6、轴对称图形 ⑴ 特征① 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。② 线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等:正方形有4条对称轴, 长方形有2条对称轴。等腰三角形有2条对称轴,等边三角形有3条对称轴。等腰梯形有一条对称轴,圆有无数条对称轴。菱形有4条对称轴,扇形有一条对称轴。三、立体图形(一)长方体 1、特征 六个面都是长方形(有时有两个相对的面是正方形)。相对的面面积相等,12条棱相对的4条棱长度相等。有8个顶点。相交于一个顶点的三条棱的长度分别叫做长、宽、高。两个面相交的边叫做棱。三条棱相交的点叫做顶点。把长方体放在桌面上,最多只能看到三个面。长方体或者正方体6个面的总面积,叫做它的表面积。2、计算公式:s=2(ab+ah+bh) V=sh V=abh(二)正方体1、特征 六个面都是正方形六个面的面积相等12条棱,棱长都相等有8个顶点正方体可以看作特殊的长方体2、计算公式:S表=6a v=a(三)圆柱 1、圆柱的认识 圆柱的上下两个面叫做底面。圆柱有一个曲面叫做侧面。圆柱两个底面之间的距离叫做高 。进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。2、计算公式:s侧=ch s表=s侧+s底×2 v=sh/3(四)圆锥 1、圆锥的认识 圆锥的底面是个圆,圆锥的侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。把圆锥的侧面展开得到一个扇形。2、计算公式:v= sh/3(五)球 1、认识 球的表面是一个曲面,这个曲面叫做球面。球和圆类似,也有一个球心,用O表示。从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。2、计算公式:d=2r四、周长和面积1、平面图形一周的长度叫做周长。 2、平面图形或物体表面的大小叫做面积。 3、常见图形的周长和面积计算公式小学数学图形计算公式1、正方形 (C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长 S=a×a2、正方体 (V:体积 a:棱长 )表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh5、三角形 (s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积 ×2÷底 三角形底=面积 ×2÷高6、平行四边形 (s:面积 a:底 h:高)面积=底×高 s=ah7、梯形 (s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷3 第五章 简单的统计一、统计表 (一)意义 * 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。(二)组成部分* 一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。(三)种类 * 单式统计表:只含有一个项目的统计表。* 复式统计表:含有两个或两个以上统计项目的统计表。* 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。(四)制作步骤 1、搜集数据 2、整理数据: 要根据制表的目的和统计的内容,对数据进行分类。3、设计草表: 要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。4、正式制表: 把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。二、统计图(一)意义 * 用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。(二)分类 1、条形统计图 用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。取一个单位长度表示数量的多少要根据具体情况而确定;复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。制作条形统计图的一般步骤:(1)根据图纸的大小,画出两条互相垂直的射线。(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。(4)按照数据的大小画出长短不同的直条,并注明数量。2、折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。制作折线统计图的一般步骤:(1)根据图纸的大小,画出两条互相垂直的射线。(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。3、扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。优点:很清楚地表示出各部分同总数之间的关系。制扇形统计图的一般步骤:(1)先算出各部分数量占总量的百分之几。(2)再算出表示各部分数量的扇形的圆心角度数。(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。
4月15日,武江区教育局在田家炳沙湖绿洲小学开展广东省教育信息化融合项目(教学改革)“基于智慧课堂环境的小学数学核心素养教学研究”成果推广活动。武江区教师发展中心相关教研员,区智慧课堂开展学校教师近50人参加活动。活动通过课例展示、项目介绍向与会老师呈现了智慧课堂中“互联网+”条件下的人才培养新模式。展示课上,学生以平板电脑为学习载体,通过智慧课堂软件系统,将教师端、学生端和教学资源平台连接在一起,课堂上授课教师以课前微课推送、初步感悟,课中自主探究、构建知识,课后分层检测、个性评价等环节,构建“课前悟学——课中探学——课后省学”的教学模式,培养学生分析问题、解决问题的能力,提升学生数学素养,提高课堂教学效率。课后,“基于智慧课堂环境的小学数学核心素养教学研究”项目组负责人武江区田家炳沙湖绿洲小学刘艳校长对项目进行了介绍,该项目于2019年9月启动,项目组成员通过教学实践、主题学习、分享交流三条路径不断进行反思和改进,让信息技术与学科教学高度融合,从而达到高效课堂,满足学生个性化学习需求,让智慧课堂真正智慧起来。目前该项目已到推广应用阶段。本次项目推广交流活动,让田家炳沙湖绿洲小学项目成果得以推广,为其他学校提供了经验,也为该项目的深入研究提供了方向。【来源:武江区教育局】声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 邮箱地址:newmedia@xxcb.cn