2018最“坑人”的4大专业,报了你就会后悔,毕业前景一片惨淡现在很多考生可能都已经拿到自己的录取通知书了,能考上好大学已经很不容易了,如果你的专业报的不好那就前功尽弃了,毕竟以后的工作和未来的前景才是最重要的,所以专业一定要选对。本来专业没有什么好坏之分,但是因为考虑到综合因素所以还是总结归纳了一些前景不是很好的专业,今天小臂那就跟大家聊聊这些前景堪忧的专业,如果你填报了估计以后你就会很头疼!一. 生物工程听名字你感觉它很高大上,以后出来肯定是个高级白领。其实不然,这个专业属于就业率垫底的专业,往年他的分数要求非常高,并且还有单科成绩的要求,很多学生满怀信心的到了大学,等到接触之后发现专业知识复杂难懂,很难学,期末考试的挂科率还高。更重要的是中国目前的生物制药公司很少,基本上没什么大的公司所以毕业以后很难找工作。有的学生不服输就考研考博,最后发现情况还是没什么太大的变化,只能跨专业找工作。二. 化学工程工艺这个专业的名字叫化学工程与工艺,上课需要经常跟化学的东西打交道,当时录取的时候还是有要求的。接触这些化学类的东西对身体的伤害非常大,可能你见过一些学识渊博的化学专家,他们都是稀松的头发,皮肤是非常差,这也跟他们经常从事的专业有关。现在很多的化工厂缺人都是这个原因所以他们会找一些刚毕业,什么都不懂的大学生从事相关工作。有相关统计记录他们的均工资在2500左右,现在大学生的要求都很高,环境好待遇高才是生活,所以很多人都接受不了。三. 物理学物理这门学科我们应该都有过接触,它是一门研究物质基本属性及其发展规律的综合性学科。可能对很多女孩来讲这门学科非常难,确实如此,大学的物理更不容易,大学毕业后,这个专业除了从事相关专业的事务别的就什么都做不了,很难找到对口工作,所以每年高校招生物理这个专业基本上都是凉了一大片,本身比较冷门。报考的时候还需要谨慎,对未来的发展考虑好!四. 市场营销这个专业属于管理类别的,他要学习的东西很多,很多学生都是学到一点皮毛根本谈不上懂这个专业。在毕业后的就业方面没有什么竞争优势,工作容易找但都是靠业绩吃饭,性质跟我们以前经常听说的推销差不多,每年都有大批的毕业生面临着失业,所以想要有个好的前景非常困难。
物理学专业“最好的”三所大学,就业前景广阔,还没毕业就被聘用如今早已过了“学好数理化,走遍天下都不怕”的年代,那么现在的大学物理专业的学生毕业后,主要从事什么工作呢,哪几所大学的物理专业比较好呢?就由小编来一一解答。大学物理主要涉及到高深的理论研究,从微观、宏观到宇观,从少体到多体,从简单到复杂的各种系统都是物理学研究的范畴。除了理论研究也有实际应用,所以物理学也能与很多不同领域进行交叉,培养相应科学技术领域中从事科研、教学、技术、应用和管理等方面的创新性人才。毕业后主要从事教育、新能源、电子技术等行业工作。中国每年培养本科应用物理专业人才约12000人。和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,中国对应用物理专业的人才需求,仍旧是供不应求。像应用物理这样基础性专业的人才,由于其可塑性强,基础知识扎实,反而越来越能得到各个行业的重视,可见物理专业并不是想象中那样没落。但这就对开设该专业的大学要求就比较严格,优秀的物理学专业大学会有很好的就业机会,但如果是一般的大学可能就比较尴尬,所以小编接着给大家介绍三所比较好的大学。01、北京大学北京大学的物理专业,在全国排名第一,1913年开设物理学。1919年更名为物理系。抗战时期,北大、清华、南开三校物理系合并于西南联合大学。1952年全国院系调整后,北京大学物理系集原北大、清华、燕大三校物理精英成为我国高校实力最强的物理重镇,并先后创办或参与创建全国高校第一个核科学专业、半导体物理专业、地球物理专业等。在物理方面,学院现有物理学、核物理、2个国家理科基础研究和教学人才培养基地,物理学一级学科博士点及博士后流动站,物理学为国家一级重点学科(含理论物理、凝聚态物理、光学、粒子物理与原子核物理、大气物理学与大气环境、多个国家二级重点学科)02、清华大学清华大学物理系成立于“清华学校”设立大学部后的第二年——1926年的秋天,是清华大学成立最早的十个系之一。清华大学物理系是目前国内发展最快、最好的物理系之一,在凝聚态物理、原子分子和光物理、高能物理、核物理、天体物理以及生物物理等多个学科方向有所建树。03、中国科学技术大学中国科学技术大学是中国科学院所属的一所的综合性全国重点大学。1958年9月创建于北京,首任校长由郭沫若兼任。建校后,中国科学院实施“全院办校,所系结合”的办学方针,学校紧紧围绕国家急需的新兴科技领域设置系科专业,创造性地把理科与工科即前沿科学与高新技术相结合,注重基础课教学,高起点、宽口径培养新兴、边缘、交叉学科的尖端科技人才。中国科学技术大学物理学院内建有核探测与核电子学国家重点实验室,量子信息、星系与宇宙学、强耦合量子材料物理、微观磁共振、光电子技术、物理电子学等6个中国科学院及安徽省重点实验室。同时,物理学院还紧密依托合肥微尺度物质科学国家实验室、同步辐射国家实验室以及中国科学院强磁场科学中心开展研究工作。物理学为国家一级学科。以上就是我今天为大家介绍的关于物理学的就业前景,以及国内物理学专业的比较好的三所大学。
自20世纪初期诞生的量子论、相对论,中期泡利和杨政宁等人提出了规范场论,标准模型之后,物理科学的研究进入了高能粒子物理、宇宙学和统一理论的时代,而凝聚态物理学如今也是如火如荼。但是许多人却感觉物理学停滞了好久。人们到现在还在研究100多年前的相对论,量子力学,证明引力波的存在还是最近的事情。从20世纪以来,人们在物质方向的研究是从大到小,在宇宙方面则是从近到远。人类就好像处于这二者中间的观测地位。随着各种研究,这颗科技之树开始了长出了各式各样的分支,错综复杂,令人眼花缭乱。引用一下卢瑟福的话:“物理是唯一一门真正的科学,其他所有东西都只是在集邮”。在以往的时代,涌现了一批极具创造力的物理学家,例如艾萨克·牛顿、麦克斯韦、阿尔伯特·爱因斯坦、马克斯·普朗克、波尔、海森堡、狄拉克、朗道、迈克尔·法拉第、乔治·西蒙·欧姆、亨利·卡文迪许、恩里克·费米等。它们都是理论物理和实验物理的代表性人物。而在这些理论诞生的60多年来,基础物理学一直没有致力于更广阔的应用。也就是说,所有的激光器,计算机以及能量产生和存储都使用了60年前的物理学。物理学是从观测到物理现象再到提出理论猜想,然后再到实验验证的一门学科。可见一门理论,并非是从天而降的,其中需要理论物理学家有着缜密的思维才能把所有的物理线索链接在一起,形成一门理论框架。你也可以认为,所有的理论前期都是基于猜测而形成的,这或许的人类大脑最奇妙的地方。21世纪的人们都认为爱因斯坦是20世纪最伟大的理论物理学家,其实这毫无疑问。爱因斯坦的天才就表现在于他几乎是一个人就完成了广义相对论的整体理论框架,而量子力学却是一大批才高八斗的科学家们共同的结晶。知识爆炸,人类学习的知识呈指数暴增在如今看来,现在的科学分支非常庞大,几乎一个人的一生都学不完所有的知识。这其中还包含了非常非常多的抽象概念,不是从事研究的人员很难接触到整体的知识框架脉络。如果你对每个领域都有着关注,那么你会发现,许多研究领域(纳米技术,遗传学,物理学,化学,材料科学,地质学,生物学,数学,计算机技术)都在日新月异。看看如今各式各样的科学文章,您可能会读到最新的发明的抗癌药,登月探测器、土星、火星或太阳的最新卫星消息,被发现埋在海底的失落大陆、还有各种文明遗址的发现,或者是被发现的新物种,甚至在今天气候变化,纳米技术,人工智能,强子对撞机,发现新的粒子、 Space X成功回收火箭,干细胞研究,衰老研究,控制食欲的脑细胞等等。发现每天都在各个领域发生。毫不夸张地说我们每年所需要学的知识比20世纪初还多。而且许多知识还只是停留在表面。如果你上过大学,那么其实应该明白,大学中多数的课程其实只是一些只能带你领域到一些皮毛,甚至没有好的老师,你连真正的大门都摸不到,现代人都喜欢去弄明白自己感兴趣的事物,但是一旦发现许多东西超出了自己的认知,那么就会大概率的退却。毕竟全世界科学家们积攒了300多年的知识,凭什么就被你三五年就学会了。随着霍金的逝世,理论物理学家又失去了一位引领者。但其实从牛顿逝世到爱因斯坦出生,大约有150年的时间,而爱因斯坦的逝世也不过才65年。其实天才并不经常出现,也许未来的天才还未登场。现代物理学的困境早在几十年前,欧洲核子研究中心和其他地方的物理研究结果集中在大型强子对撞机上。物理学家真正希望的是发现一些新的不可预见的相互作用,这将催生新的研究途径,然而只是没有太多发现,虽然发现希格斯粒子并证明了希格斯机制,但是却无法进一步的研究。人类尚不知道的许多尚待发现的现象极其复杂,很可能永远无法解决,只能通过合理的理论加以解释。人类其实已经发现了足够多的知识,现在可以对某些现象的原因进行理论分析。但是这远远不够,许多理论只能从宏观的层面进行部分分析,而许多时候虽然预测的精度也足够我们去利用,但是埋在黑暗深处的真相却从未被人发掘,也许我们永远也无法获知。其实有成千上万的科学家每天都在发现新的知识,发现新的现象。但是处于互联网时代的我们,看尽了人生百态,千奇百怪,自然觉得这些新的东西就没那么惊人了。而且很多知识我们并不懂,也无从去了解。可以想象在20世纪,爱因斯坦撬动了几百年的牛顿力学体系和量子力学诞生的时候,对全世界的震撼程度是多么的大,那都是革命性的成果。这就是为什么你不认为科学家仍在做出惊人的发现的原因。这就像你学习数学一样,刚开始从小学开始很容易,到了初中还是游刃有余,到了高中感觉有点力不从心了,到了大学之后你才发现原来数学是长这个样子的。这和我们创业做生意非常不同,创业都是万事开头难,而科学研究是越往深处越难,因为科学研究到最后没有更多的手段去汲取新的现象和数据,以至于陷入了停滞不前的困境,而做生意是一个循环的过程,一个滚雪球的过程。最后韩愈的《师说》很早就说:“闻道有先后,术业有专攻”,意思是指所知道的道理有先有后,技能学术各有研究方向。这也就是说一个人是学不尽先辈们所有的知识的,但是可以在某个领域内做出惊人的成就。(:关注我了解更多精彩科技资讯!)
新高考改革的问题集中在物理选不选上,这是个不争的事实。选不选要因人而异,并没有绝对的对错。但是如果我们连大学物理要学什么?学到什么程度?哪些大学的物理研究什么都不知道,我们的选择就是盲目的。为了避免这类盲目的问题带来的后果,我把国内目前物理学的发展现状和各顶尖高校的物理学相关情况做个粗略的介绍,希望给新高一的家长和学生带来帮助。如果您的孩子高考后进行志愿填报的时候想考虑物理学,也请认真阅读这篇文章。想中国物理学的现状,首先要知道世界物理学的现状,因为中国物理学一直落后于西方,它的现状和发展很基本上是由世界物理学现状及发展所决定的。近300年物理学经历了三次重大突破:1、是牛顿力学的建立和热力学的发展;牛顿力学的建立和热力学的发展,导致了蒸汽机的发明,使人类进入蒸汽动力时代,进入了第一次工业革命;19世纪,从法拉第发现电磁感应,导致了发电机的发明,使人类进入了电气时代。第一次工业革命,主要标志是蒸汽机的广泛应用,这是牛顿力学和热力学发展的结果。2、麦克斯韦创立了电磁理论;麦克斯韦电磁理论基础的电学和磁学的经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程预言:变化的电磁场以波的形式向空间传播。第二次工业革命,主要标志是电力的广泛应用和无线电通讯的实现,这是电磁现象的研究和经典电磁场理论的重大突破的结果。3、相对论、量子力学的创立。相对论和量子力学,前者补充了经典力学在高速,强引力场下的缺失,而后者填补经典力学在次原子世界的理论空白。第三次科技革命以原子能、电子计算机、空间技术和生物工程的发明和应用为主要标志,涉及信息技术、新能源技术、新材料技术、生物技术、空间技术和海洋技术等诸多领域的一场信息控制技术革命。这都离不开20世纪以相对论和量子力学为主要内容的近代物理的发展。接下来我们说说国内物理学的状况。首先给大家提供一个最新的好消息:2月28日凌晨,来自中国科学院物理研究所、南京大学和普林斯顿大学的3个研究组分别在Nature杂志发布了最新研究成果。他们的研究结果表明,数千种已知材料都可能具有拓扑性质,即自然界中大约24%的材料可能都具有拓扑结构。这个数字让人震惊。因为在这之前,科学家知道的拓扑材料只有几百种,其中被详细研究过的只有十几种。这个消息对大部分普通人而言不太好理解,毕竟涉及到了拓扑这类的专业词汇。不过,大家只要知道我国物理研究现在有很多方向的成功居于世界前列就可以了。下面是重点。国内将物理学列为一级学科,其下有理论物理,粒子物理及原子核物理,原子分子物理,凝聚态物理,光学,声学,等离子体物理,无线电物理八个二级学科。上次我在科普文章里给大家介绍过凝聚态物理。凝聚态物理是现在物理学最大的分支领域。大家比较熟悉的凝聚态物理的重大成就是半导体的发现及应用。这个发现的社会价值只需看一眼身边的电脑和手机我想所有人都会明白。凝聚态物理最近最热的方向,一个是“超导”,另一个是“纳米”。可以肯定的说,作为物理学最大的分支方向,它已经逐渐发展为整个物理学的主干和中心,无论是新高一的同学还是高考选报物理学相关专业的同学,你们中超过半数的人在将这个领域辛勤地工作着为人类造福。光学目前是物理学最接近应用领域的一个分支,因为它的应用性太强了,在实际应用中即可成为能量的载体也可成为信息的载体。激光的发现重要性丝毫不亚于半导体,它使得光学发展为仅次于凝聚态物理的物理学第二大分支,并且目前比凝聚态物理更接近实际应用。物理所,中科院里神一样的存在。物理所是以物理学基础研究与应用基础研究为主的多学科、综合性研究机构,研究方向以凝聚态物理为主,包括凝聚态物理、光学物理、原子分子物理、等离子体物理、软物质物理、凝聚态理论和计算物理等。战略定位是“面向国家战略需求,面向世界科技前沿”,发展目标是“建成国际一流物质科学研究基地”。在中科院基础科学园区里,规模最大的研究所就是中国科学院物理研究所,以其为载体的凝聚态物理国家实验室,是国家最重要的凝聚态物理研究基地,具有国际一流的研究水平。物理所第一个国家级实验室就是大名鼎鼎的超导国家重点实验室,是中国基础科学研究的一支王牌之师。有志于此的孩子在高考不能选择这里,但是可以考虑好专业方向,本科学习超导相关专业或理论物理,将来读博或博士后到这里继续深造。北京大学物理学,全国最好的物理系(学院)北京大学理科专业从建国以来一直是全国高校中最好的,北大物理最大的特点是各个二级学科方向都很强,尤其理论物理领域远远领先于其他高校,其它的几个二级学科方向也在全国位列三甲,北大物理一共有理论物理,粒子物理和核物理,凝聚态物理,光学四个国家重点学科。南京大学物理系,凝聚态物理和声学物理全国高校最强。凝聚态物理专业在国内高校中首屈一指,凭借这个优势奠定了南京大学在国内物理系(学院)的地位。南大物理共有理论物理,凝聚态物理,声学,无线电物理四个国家重点学科,其中除凝聚态物理外和它的声学专业也是全国高校中最强的。如果把天文学纳入物理学领域的话,由于比邻紫金山天文台,它的天体物理专业在国内更是一枝独秀。南大物理系冯端院士与中科院半导体所的黄昆院士可以并称为中国固体物理学(凝聚态物理学的核心部分)的泰山北斗。中国科学技术大学,全国唯一有两个物理系的高校,中国科学院博士生培养基地。。物理系以研究凝聚态物理和光学两个大的应用方向为主。它的近代物理系以研究理论物理,粒子物理及核物理,原子分子物理,等离子物理等理论及实验方向为主,对应过去中科院的近代物理所(现分裂为北京高能所,兰州近物所和原子能研究院)。科大物理有五个国家重点学科,分别是理论物理,粒子物理及核物理,凝聚态物理,光学,等离子物理,比北大和南大还要多出一个,它的近代物理领域一直是全国高校中最强的。复旦大学物理系,光学领域全国高校最强。和南大抓住凝聚态物理一样,复旦大学物理系抓住了物理学的第二大应用领域光学,从而也奠定了其国内一流物理系的地位。复旦物理有理论物理,凝聚态物理,光学三个国家重点学科,其中光学领域是全国高校中最强的。复旦大学物理系办学理念“办大学就是大师办学,无大师就无大学”武汉大学物理科学与技术学院,来最美之大学,成就最美之人生。钱学森曾说:“物理学是自然科学的基础之基础”。从自强学堂的格致门,到21世纪的武汉大学物理科学与技术学院,在这里,有师德厚重、学术顶尖的教学师资,有门类齐全、紧跟前沿的科研平台,有各具特色、国际范儿十足的联合培养班。在这里,你可以与大师为友,以同窗为伴,沿着美丽的武大梦追逐科学之梦、真理之梦、强国之梦,“判天地之美,析万物之理”,开启新的人生征程!“黄鹤楼中吹玉笛,江城五月落梅花”此外国内还有很多高校的物理系都非常优秀,篇幅关系就不一一列举了。百家号“疯了老陈”,用内容影响世界!
研究生复试 资料图考研的同学们,首先,恭喜你们在激烈的初试竞争中脱颖而出,获得进入复试的资格,初试成绩固然重要,但已成为过去,接下来的复试环节也同样重要,因为它是决定你是否能拿到硕士研究生录取通知书的最后一道关卡。华中科技大学物理学院复试经验贴2019年物理学院复试安排:3月15日下午报到;3月16日上午笔试,下午体检;3月17日面试。一般面试结束的第二天就公示拟录取结果,学院各个研究方向的导师会在当天上午针对自己的研究方向进行宣讲,和复试的学生进行面对面的交流。2020年的复试时间以华中科技大学研究生院招生信息网通知为准,目前通知到的是原定于3月21-22日的复试将推迟进行,具体时间另行通知。复试分为专业课笔试,英语面试和专业课面试三大部分,其中,英语面试又包含自我介绍,听力理解,文献翻译,英语对话交流。一、专业课笔试(占比40%)考试科目:大学物理(上、下册)参考教材:范淑华等编,华中科技大学出版社。我买了华中科技大学出版的大学物理上下册及练习册,和一本同步辅导。初试结束后,就可以开始准备面试。笔试的考核基本不会脱离大学物理这两本书的内容,建议将其全部过一遍,中国慕课APP上也可以找到华中科技大学的慕课,有关于大学物理全册内容的讲解课程。对应着练习册,学一节做一节。同步辅导书上后面的八套练习题,在笔试中会出现极个别的原题,时间充裕的童鞋可以把这八套题也做一下。2019年的笔试是120个选择题,虽然题量较大,但总归可以全部做完了。不用太过紧张,但也不能太放松。大学物理是重中之重,除了笔试要考之外,面试也会问许多书里的知识点。复试对于初试成绩不太理想的同学来说十分重要,这是你们逆袭的唯一机会。每年都会有初试低分但最后被录取的学生,也有初试高分但最后被刷掉的学生。低分的童鞋不要沮丧,高分的同学也不能掉以轻心。二、面试面试是在一天之内完成,分为英语面试和专业课面试。根据考生人数随机平均分成若干组,每组人数相差不超过1人。专业课面试按序号从小到大开始,英语面试按序号从大到小开始,相当于一个组里英语和专业课同时进行,只是顺序相反而已。(一)专业课面试(占比40%)首先进行自我介绍,一定要突出优势,不要给自己挖坑。可以说自己本科的成绩,感兴趣的专业课程,参加过的比赛,科研经历等。如果这些都没有也没关系,可以一笔带过,说一说毕业设计等等,总之要突出自己学习态度端正,学习能力强。一定要把老师向你擅长的方向引导。很多时候老师都是根据你的自我介绍进行提问的。PS:专业课面试的自我介绍一定要注意,很多人因为忙着准备英语面试的自我介绍,而忽略了这一点,如果没有任何准备,突然被要求自我介绍,会很蒙圈的,一开始就不太好的状态,也会影响你后面的发挥。专业面试是有技巧的,你可以引导老师去问你的优势。比如,你可以说自己毕业设计的项目,自己了解的仪器,如果老师接触过,他就会提问;当然专业课也一样,说一说自己喜欢的科目,老师会问该科目里面的知识,回答正确的话就是加分项。一般来说老师提问都会越问越深,答不上来不要狡辩,坦诚说自己确实不会,保持微笑。老师只是想知道你了解到了什么程度,不要讲一知半解的东西,切记,千万不要不懂装懂!记得我复试的时候,自我介绍说的是本科做的一个关于光谱方面的项目,刚好有老师做这方面的研究,很感兴趣,问了我很多项目的内容,知道的我就回答出来,不知道的我就说我不知道,老师还帮我解答了许多问题。跨专业的同学知道重要定理就可以了,老师也不要求跨专业的同学能答出来很难的问题,反而是面试老师的研究和你的学科有交叉,老师会问本科的一些知识,这个时候跨专业的同学就要做好准备了。(二)英语面试(占比20%)英语面试包含自我介绍,听力理解,文献翻译,英语对话交流,对话交流其实是老师提问你回答。首先是英语自我介绍,内容可参照专业课的自我介绍,时间控制在两到三分钟。内容可以简单一些,练好发音,在去复试之前一定要背熟,滚瓜烂熟,能背多熟背多熟,背多熟都不为过,以免面试时紧张忘词忘句。也可以找同学模拟面试,互相背诵。说英语的时候最好声音大一些,自信很重要。然后是文献翻译,这一点是想考察你的英文文献阅读能力,毕竟物理研究生要大量阅读文献。自我介绍结束之后会让你抽签,每个签都有对应的英文文献段落,通常是文献摘要,老师会给你几分钟时间阅读,之后你可以直接翻译,也可以按你的理解说一下大概意思。老师也会随机提几个问题,比如某个单词是什么意思。关于听力,抽签决定你的听力材料是哪个,会预留一分钟左右时间让你阅读问题,然后开始放听力。总的来说听力有三道题,第一道题是两到三个填空,第二道题是一个单项选择题,第三道题是大概复述听力的内容,没全听懂也没关系,听到多少说多少。听力难度和六级相似,可以找几篇六级的听力来练习一下。英语面试占比不是很大,所以英语面试表现不好的同学也不要气馁,将自己最好的一面展现出来就行。三、联系老师可以试着和自己感兴趣的方向的老师进行联系,以发邮件为宜(不建议同时给多个老师发邮件,老师们都会互通有无的),不推荐打电话。邮件的内容尽可能展现自己的长处,如果本科成绩相对较好,可以附上自己的本科成绩单。一般来说,老师很少能给准确的答复,但如果老师学生已经招够,他会明确告诉你。关于老师的选择,你可以找在华科物理学院读研的师兄师姐了解,也可以去华中科技大学物理学院官网上查找老师的信息。没有提前联系老师也没关系,只要复试过了就一定会有老师带。Tip:如果是成绩比较理想的同学,复试结束第二天别急着走,第二天上午,院里会安排各研究方向的老师进行宣讲,老师们宣讲结束后都会说让有兴趣的同学稍后去找他们聊一聊;下午,院里会安排去引力中心参观实验室,当然也会有引力中心的宣讲专场。希望大家复试加油,成功上岸,加入华中科技大学物理学院这个大家庭!来源:华中科技大学 华中科技大学研究生招生 作者:研小招文案 | 田金凤 钟玉洁 编辑 | 王玉珠 图片 | 网络 审核 | 裴鉴 方晨 梁丽欣
的确最近几年在网上流行着这样的说法,其有道理但不正确。这样矛盾的答案,小伙伴们肯定是不满意的,就请大家跟着我的思路一起来回顾一下物理学的发展历史和近况,一起来感受一下这个问题。一、物理学历史上的重大突破“长”什么样?我们就把牛顿发表《自然哲学的数学原理》作为第一次突破吧。因为这次突破,总结了开普勒的天文学和伽利略的惯性理论及相对运动理论,第一次,用牛顿三个定律,把地面物体和天体运行联系起来。并建立了物理学的基本框架结构,实验观察——逻辑推理——数学描述——客观验证。为今后的科学走向正确的方向,奠定了基础。第二次突破,我把它送给麦克斯韦。这是因为,麦克斯韦统一了电磁学,让人类对物质的认识上升到了一个崭新的高度。我们在原来对机械运动的基础上,重新认识了时刻都见到的光,它是一种电磁波。第三次突破我要送给爱因斯坦,是爱因斯坦带给了我们对于光速的正确理解,对物质和能量之间关系的正确认识。凭借着他一己之力建立起来的广义相对论,它不但打破了以牛顿理论为基础的绝对时空观,更让我们对宇宙有了全新的认识。我们今天对于宇宙的理解,几乎全部来自广义相对论宇宙学的预言。第四次突破我想送给普朗克,是他用内插法的计算,求出了两条曲线的平均值,送给了我们量子的概念。爱因斯坦也在这个事情上功不可没。如今量子力学在我们的生活中随处可见地发挥着巨大的作用,互联网甚至改变了我们的生活方式。有科学家甚至说,全世界三分之二的GDP与量子力学有关。二、物理学上的重大突破有哪些特点?从前面的四次重大突破中总结,其一是打破了人类从前对自然界的传统观念;其二是认识到全新的物质;其三是观测到人类从未观测到的现象。一言以蔽之就是,把人类对物质的认识带上一个新的台阶。不是中间过程的完善,而是完全崭新的认识,是新的领域的拓展。三、70年前物理学的重大突破如果我们按照那些重大突破的特点来判断的话,近100年来,我们还是真的有的。那就是杨振宁的杨-米尔斯理论,该理论统一了强力、弱力和电磁力,为物理学建立了基本粒子模型。并未后来的高能粒子对撞实验所证实。一举,让物理学家对基本粒子的理解,前进了一大步。可以说是打开了物理学的另外一扇大门。这也是为什么可以说杨振宁是继牛顿和爱因斯坦之后最伟大的物理学家的原因。这个理论之所以不为人知,是因为其内容的艰深晦涩,无法为我等普通小民所理解。四、最近几十年还真的没啥突破距离杨振宁提出规范场论已经快70年了,这70年里,还真没有比这个理论更高的成就出现。所以,如果说最近100年,物理学没啥进展,也是多少有点道理的。结束语通过前面的描述,我想小伙伴们,应该对近100年物理学停滞的话题有了一定的了解了吧。跟您一样,我也期待着在有生之年能看到科学家们的突破。关于这个话题,大家还有什么想说的么?欢迎在评论区留言参与。
2018年3月14日,著名理论物理学家霍金去世,他在伽利略去世的日子出生,在爱因斯坦出生的日子去世,历史是如此的巧合与神奇。世上又少了一位科学大家,目前在世的大师级科学家已经所剩无几了,排名第一的当属杨振宁。霍金、杨振宁他们都是研究理论物理的,就是研究自然界的规律和本质,大到宇宙行星,小到物质微粒,属于最高端,最前沿,最艰深的那部分科学,有了理论指导,才有各种科技发明,才有衣食住行的各种用品,才有我们今天方便快捷的生活。所以科学家是伟大的,同时科学家也是不为大众理解的一群人。霍金之所以出名,很大程度上源于他的励志故事,身残志坚,被写进了教科书,很多人知道这个人,并不了解他到底做了些什么。霍金最大的科学成就集中在黑洞的研究上,证明了相关的一些定理,清晰的描述了黑洞的中心和边缘的状态,另外一大贡献是写了科普著作《时间简史》,让大量普通人得以接触和理解高深的物理理论。随着霍金这一代物理学家的老去和离去,当今世界,恐怕很难再出现科学大师了。这是什么原因呢?20世纪前叶和19世纪,是大物理学家集中诞生的时期,如爱因斯坦,麦克斯韦,法拉第,普朗克,薛定谔,波尔等,那是个科学繁荣的时代,短短百年就让世界发生天翻地覆的变化。在此期间,产生了两大核心理论,深刻改变了世人的宇宙观,一个是关于宏观时空的相对论,一个关于是微观世界的量子力学,直到现在,科学研究都还是在这两大框架下进行的。而出现这个黄金时代,根本上是因为随着一些自然现象的发现,以牛顿为代表的经典物理体系受到了挑战,比如光速不变原理,黑体辐射问题,旧有的理论已经不能合理解释,激发了大批科学家去研究解决困难,加上爱因斯坦这样的天才科学家,提出的理论奠定了科学革命的基础,极大的加快了历史进程,导致了科学理论和科学大师井喷式的涌现。后世的诺贝尔奖获得者,大多是在消化与发展这些科研成果,取得了巨大成就,他们是站在巨人的肩膀上的。也就是说,要大量出现物理学大师,需要具备两个条件,一是科学研究遇到本质上的难题,老的方法不再适用;二是伟大的革命性的物理理论被提出来,物理学是一切科学的核心。在这种情况下,必然迎来科学的繁荣。无论怎样,我们都应该感恩科学,感激科学家。向科学家致敬,科学发展永无止境,同时缅怀霍金同志。
近日,#95后海归硕士当汽修工#成为微博热门话题杭州城西的一家汽车修理厂收到了一份特殊的简历。一名95后海归小伙孙正阳,决定以汽车修理工的身份来开启自己的职业生涯。孙正阳大学毕业于同济大学的工业工程,毕业之后去了美国的佐治亚理工学院,进修的供应链工程的硕士。孙正阳说自己从小就喜欢汽车,并且觉得这份工作的待遇一点也不低,做好了年薪能有30万。同时从门店入手,学习知识积累经验,很符合自己的职业规划。虽然在刚开始选择就业的时候,家人和朋友都不太理解,但解释了原因和发展前景,就都慢慢接受了。但不少网友却为此“吵”了起来,有网友认为,海归硕士当汽修工,浪费教育资源,书白读了?但也有网友觉得读书是为了更有底气选择自己喜欢的事情!其实牛叔认为,不论是95后海归硕士孙正阳,北大毕业卖猪肉的陆步轩,还是清华毕业做保安的赵晓勇,人生最不能在意的,就是他人的眼光,最不能放弃的就是自我成长。在热门话题中,牛叔看到有不少网友看到孙正阳的本科专业--工业工程陷入了迷茫之中,下面牛叔就带大家好好了解一下这个专业。01.工业工程工业工程专业是为满足国家经济发展和加入WTO对人才的迫切需要而建立的。该学科主要是以生产过程为研究对象,以提高劳动生产率、保证质量和降低成本为目标,特别注重研究人的因素,充分发挥投入资源的作用。近年来,物流工程、虚拟制造、企业资源计划(ERP)、人力资源管理等成为该领域的热点。该专业培养具备现代工业工程和系统管理等方面的知识、素质和能力,能在商企业从事生产、经营、服务等管理系统的规划、设计、评价和创新工作的高级专门人才。02.主干课程该专业的学生主要学习《自动化制造系统》、《基础工业工程设计》、《产品设计原理与方法》、《Auto CAD工程制图》等其中,对数学和物理的要求比较高。数学方面,作为大类,需要学习高等数学(或微积分)、线性代数、概率论与数理统计;作为管理类核心课程,需要学习运筹学。高数的主要内容是极限、微分、积分、级数等,线代的主要内容是行列式、矩阵等,这两门课程主要是为了以后的学习做准备,毕竟数学是一切自然学科的基础。概率论的主要内容是概率分布、随机变量等,而运筹学研究的是利用数学工具进行组织管理、筹划调度的分析,以期达到最大收益。物理方面,需要学习大学物理(或普通物理)。主要利用微积分知识学习经典力学、相对论、电磁学、量子力学等。此外,作为大类可能还要学习电工学、工程力学。想报考工业工程的同学要保护好自己的头发,这门专业并不比学医简单呢。03.发展前景工业工程专业学生毕业后可在工程、管理、科研和咨询等领域获得广阔的就业机会能在制作业、服务业、公共事业、科研院所、政府部门和事业单位从事教学、科研、管理及设计开发工作。工业工程的应用范围也十分广阔,首先在整个制造业中可以广泛应用同时在物流业、商业、服务业、交通运输业、银行、医院、建筑业、农业管理、军事后勤及政府部门都可广泛应用。因此工业工程将会成为一种主导职业。该专业毕业生可到各类公司或生产企业,多分布在广东、江浙沿海一带城市的三资企业和港澳台企业从事生产组织、协调管理工作。以及对生产系统及服务系统进行规划、设计、评价、运行、控制、改良和创新等综合性技术工作,或在高校、科研机构从事相应的教学与科研工作。但值得注意的是,在中国从就业市场的情况调查来看,真正能够找到与专业对口的工作的大学生不是很多,这就意味着的大多数的在校大学生以后的工作是偏离工业工程这个专业的,而去从事生产管理、质量管理、计划或工程类的工作。工业工程专业的就业前景和制造业联系在一起,随着制造业的发展,未来的就业前景应该看好。04.开设院校很多学校包括清华大学、北京航空航天大学,山东科技大学都有开设工业工程这个专业,以下是全国工业工程专业前十排名05.薪资水平薪资水平是根据个人的职业发展而确定的,工业工程的学生未来可能从事的职业有工业工程设计师——在跨国公司、外资企业、国有、民营企业等从事管理工作,以提高生产率、降低成本。质量管理——从事工业生产企业质量管理工作,由于工业工程专业学生掌握机械设计、生产管理、人机工程、质量管理等 专业知识,可以非常快速的融入到质量管理工作中。同时很多企业没有工业工程部门,因此和精益生产、系统改善等相关工作都是由质量部门来完成,因此,工业工程专业学生在质量管理方面有很大的发展空间。而孙正阳自己的职业目标就是“管理岗位”了。咨询公司——从事市场研究、行业咨询等工作。政府机关公务员——从事经济管理工作。高校教师——从事教学与科研工作。关于工业工程的内容就到此结束了在当今社会,很多人未来从事的职业跟自己的专业完全不符合行业无贵贱之分,只要找好自己的位置,未来都是社会的贡献值。今天内容就到此结束,想要了解更多,关注牛叔,职场不迷路,下期再见~END
2018年的考研历经将近5个月的时间,随着各大学研究生录取的结束,也逐渐画上了尾声。一年一度的高考又将要到来,人才的流动在当下社会显得越来越频繁和密集。小时候,我们都会被问起长大想要干什么,想要去哪里读书,很多人会说要当医生、当科学家,都会说要考北大、清华,伴随着年龄的增长,也逐渐认清了现实与差距。90到95年出生的这批学生,当时每年的出生人口稳定在2100万人,18年后,最终每年50万人考上了211大学(2%),16万人考上了985“一流大学”(0.8%),时间总能证明一切,您看,不到20年的时间,人与人之间的差距已经多么大了。今天,我们和大家聊一个很有趣的话题,清华大学的本科毕业生毕业都干嘛去了,接下来的分析您可能会想不到。一起来看看吧!这是2017年清华大学的毕业生去向表,很清晰的说明了问题。清华大学去年的本科毕业生一共有3119人,其中超过81%的人竟然作出同一个选择,都选择了继续深造,也就是在国内或者在国外继续攻读研究生。我们可以看到,3119人中,2365人读硕士,其中国内升学1552人,出国留学813人,就业的人数仅仅不到500人!也就是说清华大学的本科生在接受了4年的本科教育后,绝大多数并没有投入于社会中,而是选择在象牙塔尖继续求索真理。不知大家了不了解,清华大学的本科生保研率是格外高的,很多人都被保送本校或中国科学院等一流顶尖大学继续攻读,而没有获得保研资格的人同样凭着卓越的本科学历北京很容易就能拿到世界顶尖名校的Offer。在流出(包括出境)的学生中,大多数人选择了在美国求学,其次是英国。美国凭借其卓越的高等教育资源吸引了很多的清华学子。他们最终都前往了牛津、加州理工、斯坦福、麻省理工、普林斯顿等世界顶尖名校,为人类的科技文明、制度文明、精神文明等等呢个作出贡献。科学无国界,中国最优秀的学子们在海外求学,最终也有不少学成归来,并且近年来名校海龟的归国率不断上升,在直接为自己的祖国作出贡献,即使没有回国的海外学子,也在不同地方为全人类的文明演进与福祉所奉献自己的力量。数据来源:清华大学官网关注史育阁,获取更多精彩大学资讯、信息!严禁抄袭,违法必究。
学科概览什么是物理学?物理是一门研究世界本质的基础科学,万物是怎么组成的,微观粒子是如何隧穿势垒的,引力场内的时间是怎样变化的,光究竟怎样走?好奇心不停地驱使着人们探索,学习世界运行的规律也确实够吸引人,但并非所有的知识都只和有趣的自然现象有关。高速旋转陀螺不倒的现象固然很有趣,但分析受力和不同顺规的欧拉角与现实的关联则涉及复杂的数学原理;薛定谔的猫的故事固然神奇,但当生动的宏观例子具体到一个个用波函数描述的量子态上时,你还能不能静下心来分析它的本征值本征态?在学生阶段,要学习的内容很多元,周期很长(部分具体内容将在下文稍加介绍),除了复杂的四大力学和各种相关数学知识,在本科期间时间,学生还需要快速学习和掌握各种技能如编程,数学方法,使用各种仪器,甚至一些简单的第二外语等等。虽然需要学习的知识看起来繁杂,但他们隐隐连接在一起,所有的技能都支撑着你去理解更深更复杂的物理理论知识。 这些知识都是前人探索的成果,甚至有些到现在都还只是猜测,而主要学习阶段结束后,学生要根据自己的兴趣选择一个研究方向,参与科研。进入科研阶段之后,就完全是一种新的生活。此时你不再像本科阶段那样有大量自己的时间,生活中大多时间要在实验室或者办公室里,一切思考和事件都开始和物理有关;当你的算式解不出想要的结果,实验数据一直异常时,教科书上和前人的研究中也已经找不到你想要的答案 。虽然有老师和学长学姐的指导,但你的课题终究需要你自己的思考。这个时候,你最初的好奇和雄心是否保持不变? 一代一代的物理学家数学家想象了不同的理论和假设来诠释世界为什么是这样运行,它们不停地被后来新的物理学家所验证或修改,也有源源不断的 年轻人加入探索的行列,就像你们和我。 在漫长的岁月中,你一个人在办公室看着文献,身边一杯茶,在茶杯的另一边,一定有很多并不真实的影子,波色、薛定谔、欧拉……他们沉默着,和你一起看着屏幕里他们的晚辈、你的前辈或同事的实验成果。在无数个日夜中,这些人一直陪伴着你,你之前所有的学习过程凝聚成各种各样的人的幻影,你不是他们,但你带着他们的心血前行 。很多人对学物理的人有一种误解,觉得这个群体就是不通人情,不懂浪漫,每天只和公式打交道,生活极其枯燥。但难道对世界的好奇心,在未知中摸索没有被人发现过的秘密不是一种最高等级的浪漫吗?专业方向本科培养体系很多专业都可以以物理本科为开端,因为物理对数学,建模,编程等能力的高要求,本科学物理将来再转行一般不会太难。 理论物理 纯物理主要研究现代物理理论,除了物理基础以外,对数学基础和建模能力要求也极高,一般希望读纯物学位的学生将来会继续读PhD然后做四五轮博后之后在高校谋求教职。还有一种情况是纯物的本科生在进入研究生阶段直接转行金融专业,此时只要稍加补充一些法律和经济知识便可如鱼得水。 工程物理 工程方向一般是培养解决实际问题,和如何将物理理论应用于商业产品(或服务)。虽然工程方向学习周期没有纯物长,但一般来讲读Master还是有必要。一般在毕业以后就业范围极其广泛,业界众多企业都需要工程方向毕业生帮忙做设计。 生化物理 生化方向一般属于物理系的凝聚态分支。生物物理一般情况下都是研究soft matter的种种性质,从而将这些性质应用于对人或其它动物的治疗手段上。而化学物理同样是凝聚态方向,但研究的则是各种元素组合成的分子在不同状态下的性质,一般也成为材料科学。生化物理在业界就业同样广泛,企业实验室需求量很大。PhD研究细分方向PhD阶段物理系所有分支都属于纯物,工程学院和化院分管工程和生化分支。即便是纯物一个分支,其中也是方向众多。宇宙学 宇宙学主要研究对象是天体以及星系的运动,起源和变化,以及宇宙中各种辐射。有的与高能物理的交叉方向会涉及暗物质和黑洞吸积盘等,比如著名的大爆炸理论(Big Bang Theory)就属于这个范畴。 凝聚态 凝聚态(Condensed Matter Physics,又称CMP)是用已知或猜测的相关定律解释不同物质在不同凝聚相下的物理或化学性质。凝聚态可与化学, 纳米技术等学科进行交叉并将结果应用于商业行为,主要研究超导性质与分子表面结构的关系。由于物质种类数量众多,凝聚态研究人员需求量也很大,凝聚态应该说是所有纯物理学科中就业率最高的分支。 AMO AMO全称Atomic, molecular, and optical physics,顾名思义,是研究物质与物质或物质与光的相互作用,利用粒子吸收或放出光子的行为控制其能级。此方向现在最热门的应用是量子信息实验的分子制备,如用光路将激发态的分子降为基态等。 高能物理 高能物理旨在原子核中基本单位间的相互作用,这些基本单位之间的相互转化需要或放出极高的能量。著名的粒子加速器即为高能物理的研究手段之一,一个超大型量子对撞机的科研经费动辄数百亿美元,除了建造成本还创造了数以万字的科研岗位空缺。一个高能物理的课题一般需要相当多的人和机构之间的合作,一篇高能物理的文章甚至可以前两三页都是作者署名。 量子信息学量子信息学包括量子密码术、量子通信、量子计算机等几个方面,是量子力学与信息科学相结合的产物,是以量子力学的态叠加原理为基础,研究信息处理的一门新兴前沿科学。量子信息学将对计算速度产生革命性的提升,同时又将提供一种更为安全的通信手段,其商用价值无可估量。申请方向选择因为本科物理学的内容很基础,在申请研究生或者PhD的时候可选的方向很多很多。除了物理系的三大主流方 向(理论、AMO、CMP)以外,还有生物系的 biophysics,化学系的 Chemical Physics, 工程院的 Applied Physics、 EE、 MSE、 ME等等。因此申请者一定要认真把握自己真正的兴趣究竟在哪里,自己读完硕士/PhD之后究竟想干什么。很多人都是很盲目地做出出国这个决定,又很盲目地做出申物理系的决定,尽管自己并不喜欢做物理也不想当 faculty。很多人认为, 因为本科学的是物理,所以以后申物理肯定最好申,于是就只申物理,而不去看别的系,这就走了弯路了。因为物理并不一定比交叉学科或者工科容易申,尤其是 top school,他们的交叉学科和工程专业都很喜欢招物理出身的人。而且,很多大学的物理学院专业里面也只有物理学是纯物,其它的专业细分与工科交叉交大。比如光信就是 EE 中的 Optics,材料物理就等同于 MSE,应用物理翻译过来就是 Applied Physics。对于这三个系的同学,申物理系才算是“转专业”啊!所以,除了那些对于那些真正执着于理论物理的同学们,申请者需要放宽思路,从多个系的多个方向里选择最适合自己的。 当然,作为一个只学了三年基础课的本科生,从那么多方向里选择出自己最感兴趣的方向,的确很难很难。如果你看了某篇文献或听了某个讲座后对某个小领域(比如弦论、 STM、纳米光学、超导、 Topological Insulator,激光冷原子等等)一见钟情,非它不做,那恭喜你选方向的任务已经完成了。如果没有找到最适合自己的小方向,那就多看看各个系、各个方向的网页,多听讲座多读文献,选择一个大概的方向(比如说,光学、凝聚态、材料等等),来寻找自己感兴趣的方向。选校建议即便是学习同一学科,身处不同人生阶段的同学,甚至相同阶段但抱有不同理想和计划的同学所适合的学校也不同,可以说没有最好的学校,只有最适合你的学校。在此有一些针对不同人群的择校建议可供参考。本科学习在本科阶段选择基础学科如物理作为专业者,未来发展方向十分宽泛,有留在学界继续深造者,更多则是选择在毕业之后研究生阶段转行至业界,以金融或工程,甚至其他作为发展方向。对于有意转行的人群,在本科择校时不推荐盲目按照专业排名申请学校。 以转行金融为例,在本科时发展人脉比之积累学术沉淀更为重要,此时可适当观察选择数学或金工强校,以求在学期间拓宽视野,在结识良师益友的同时,得知在毕业后转行和发展过程中有用的信息。再以欲转行工程者为例,则应看重学校与对口企业的合作与实习机会,而非一味追求学术排名,学界活跃的大学一般与业界名声良好的大学重合度很低(除藤校等顶尖大学外)。如新泽西的史蒂文斯理工学院,业界校友众多,甚至在跳槽和申请工作的时候颇有互相帮助的风格,然而在学界却学者寥寥,存在感极低。而对于将来的事业还没有太明确规划的同学,建议在择校之前尽量明确发展道路。若实在模棱两可也是很正常的,希望同学不要焦虑,此时在择校过程中,确保学术水平的同时可以多多考虑自身喜好。美国地界广阔,贫富差距十分悬殊,一些大城市如纽约湾区等地,有纽约大学,哥伦比亚大学,加州大学欧文分校,洛杉矶分校,都以娱乐生活风生水起著称,众多世界级博物馆画廊等等就在身边,其生活水平比之北京上海也不遑多让。而出了一二线城市的辐射范围,娱乐生活则十分匮乏,但也没有了满眼人群及交通混乱的烦恼。著名玉米地学校 普渡大学身处一片菜地之中,康州大学则占山为王拥有一片小山头,一进此类学校,则很难出门,但也可以享受宁静的生活状态。故而若自己对生活状态有偏好,择校时可多多考虑生活方面而非学术。院校排名对于物理学的专业排名,申请者一般可以参考的数据主要是US News的研究生项目排名,以及上海交大的物理学学术排名。而综合排名更大程度上反映的是学校的国际声誉,因为这个指标是基于本科生教育的排名,而研究生项目的排名更多的衡量了学校的学术水平。对于物理系,一般认为 Physics 的整体排名的重要性大于各个小方向的排名。一个物理系的整体排名很大程度上反映了这个系的 faculty 质量和学术氛围,而各个小方向(比如AMO或者CMP之类的)的排名更多是依据这些小方向的 faculty 规模排的。对于工科,工程院的整体排名和要申的系的排名都可以参考一下。专业排名的高低,大体上是能反映申请的难易程度的。所以,可以根据自己的硬件定位好申请学校的排名档次。特别是对于希望申请物理专业PhD项目的同学来说,绝大多数已经对自己的研究方向和学术道路有了明确的计划和想法,故而对于此类人群,在选择学校的时候最该看重的是项目组的好坏而非整体学科排名甚至研究方向排名。此外很多顶尖学校的项目组或实验组都在处于起步状态时广邀学生,甚至不顾学生硬件水平有没有满足本校一般的录取条件,有时会出现“破格录取”的假象,很多学生会因向往学校的名声而飞蛾扑火一般入组学习,但结果往往很差。以量子信息实验方向,冷分子实验室为例,这种是典型的物理实验室,从其起步时段算起,到实验台完成度足以进行一些基本实验,其中需要耗费大概三年的时间,若一个PhD学生在实验组起步时被征召入组,到实验台搭建完成,再到进行创新实验进行课题,保守估计五年已经过去了。一般学校为PhD提供funding的时间在五年到六年,而此时课题还未完成,论文还未发表,就会出现延毕,甚至自费读博的悲剧。就算是完成度极高又声名很大的项目组,也不一定是适合你的。如马里兰大学量子中心某组,挂着数学系的名号却实际上要求组员学习编程等知识,在研究过程中用到最高深的数学知识竟是微积分。但Boulder同方向项目组则侧重数学,多应用群论拓扑等理论。故就算是同种项目组,也需要深入了解,分析哪个更适合自己再做打算。地理位置地理位置是绝对不能忽视的一种选校依据,当你最后有几个学术声誉差不多的学校的 offer 时,常常会选择地理位置最适合自己的学校。毕竟, PhD 的生活至少需要五年,如果一个喜欢热闹的人去了大农村估计会闷死,如果一个喜欢安静的人去了大城市肯定又承受不了周围的烦躁。还有一个必须考虑的问题就是治安。如果一个学校靠近黑人区,那么最好不要申。如果一个学校接二连三的出枪杀砍头案,那么也要注意了。一般对于物理这类的基础学科来说,较为清静的环境是有利于培养坚实的学术基础的。当然,清净并不意味着去太偏僻的与世隔绝的小村庄,毕竟在做实验的过程中还是要从外界购买各种实验仪器和原材料的,而且地理位置的学校一般与国际学术圈的交流也更多一些。所以,像 Princeton, Berkeley, Northwestern 所在的环境优美的小镇,是最适合潜心研究物理的。至于纽约和洛杉矶这些大城市,或者 UIUC 这种偏僻的玉米地,可能不是每个人都能适应。 再有就是气候、人文环境等等,看看是否适合自己。中国人一般最喜欢加州, 其次是东海岸,最后是中部和南部。当然如果你随遇而安,对地理位置没有任何要求的话,尽量少申加州,多申几个地理位置差的但学术声誉好的学校。这样能有效地避开激烈的竞争,最后说不定会有意外的惊喜。PhD导师的选择如果你选定了一个特定的研究方向,那么你的选校就要以 potential advisor 为主了。在学术道路的起点,遇到一个好老板是三生有幸的事情。那么选老板的依据是什么呢? 首先,老板要 nice!这一点比老板牛不牛更重要。因为老板牛不代表他会带学生(有可能主要依靠博后来发文章),而且曾经牛不代表以后继续牛。 但是,如果老板 nice,稍 push 但不是那种变态的 push,当你有事情找他时他总能抽出时间,当你有问题时他总能认真解答,那么你肯定能学到很多东西。遗憾的是,如果我们不进一个组待一段时间,很难观察出老板是不是 nice。有一个方法是,多联系这个老板现在的学生和已经毕业的学生,看看他们对这个老板是怎么评价的。还可以抓住一些面套或者onsite面试的机会,当面跟老板聊聊。 其次,当然还得看老板牛不牛。一个“牛老板”,首先当然是发 Nature/Science/PRL 多的 老板,而且论文被引频次很高。不过更重要的是他的学生的毕业出路。想做 faculty 的话,要看他的学生毕业后去哪儿做了博后,之后又去哪儿当了 AssistantProfessor;想进 instry 的话,要看这个老板是否跟工业界有合作,学生毕业后是否进了知名的大公司。 再者,对于导师学术水平的评判,可以先看该教授发表文章期刊的档次。如果 pulication 里充满了 Nature、Science、 PRL,不用再细看也知道很牛。其次,绝大多数情况光从期刊上看不出来一 篇文章到底有多大价值。比如很多在 PRB上的文章要比 PRL的更详尽、更有价值, 很多 PRL 的文章要比 Nature、 Science 更物理、更重要。这个时候,看期刊就是肤浅的,我们要看该教授发表文章的引用次数。引用率对不同的领域有不同的标准。一般领域越大,比如纳米,其文章引用次数相对也越多;而领域越小,如量子霍尔物理和 STM 等等,文章引用数比起来就要少不少。一般来说,一篇文章 如果能单篇被引超过 50 次甚至到 100 次,就是很出色的了。此外,有一个很重要的指标叫 H-index,如果一个教授的 H-index 是 20,则说明该教授迄今为止有 20 篇文章单篇被引次数超过 20 次。一般来说, H-index 能达到 20-30,该教授就应该算是较成功的物理学家了,若达到 40-50,则此人必是大牛。此外,还有一个叫做 physics author rank 的网站,会对物理学家按百分比的形式排名,大家可以参考一下。当然除了 pulication, 选导师更重要的是导师的人品。这就需要大家从该组的师兄师姐或者其他途径打听了。此外, 不是跟大牛就一定好,这要根据个人的性格而定。有的人自主性强,心理素质好; 有的人自主性不强,心理素质不够好,于后者而言,也许跟一个年轻的 nice 的 导师,比跟大牛更合适。 院校概览除了耶鲁哈佛等这些老牌名校,美国还有很多适合物理学者深造的小众大学:I.学术在细分方向属于顶尖水平但综合排名不高: 例:Rochester University, Colorado University – Boulder, SUNY University of Stony brook…… 此类学校在本科申请时时常被忽略,因为很多同学认为本科学校最重要的是综合排名。但对于希望在学术上继续深造的同学来讲,在本科时期结识业内有名的教授是相当重要的,因为申请Graate School的时候如果得到他们的推荐信,对申请工作事半功倍。很多本科生在大三大四都会参与research 工作,本科选择此类学校将有很大希望在有名的大佬手下工作并很容易做出一些对本科生来讲很优异的成果。罗切斯特为本科生提供宇宙学,生物物理,凝聚态,高能,量子光学(cooling and trapping方向)等等research opportunity。研究方向几乎比一些学校的PhD研究方向还多。而科罗拉多大学量子中心世界顶尖,也为自己的本科生提供入组实习的机会,并且有奖励学分。石溪大学更不必说,著名核物理学家、诺贝尔物理奖获得者杨振宁在该校执教37年,几乎全世界学习理论物理的学生都对石溪的杨所都心怀向往。II.专业排名不高但项目发展前景很好:比如Brandeis University, Drew University… 布兰迪斯大学近年新推出的跨学科项目 (Independent Interdiciplinary Major) 在业界风评甚佳,物理,数学,计算机,工程等系学生皆可申请。虽然布兰迪斯在传统意义上属于文科院校,但出自其跨学科项目的学生却在工作市场上炙手可热,而且也属于STEM范畴内,在申请绿卡或工作签证的时候会受到一定优待。 德鲁大学则更是名不见经传的小学校,但其排名低不意味着实力差。申请Drew时有机会入选Baldwin Honorship,一旦入选,入学第一年便要选一门代号为HON的课程。此课程一般每年有十个左右的学生有机会上,但其教授达到12个之多。十二个教授皆为新泽西著名药厂实验室(Pfizer, Novartis,Merc等 )或医院实验室的退休研究员。将一对一辅导学生,手把手教他们进行人生中第一次research。而且此校与藤校哥伦比亚大学有合作项目,特定专业(包括物理)学生只要在前三年GPA达到3.5(十分简单),即可参加哥伦比亚大学的3+2项目,在本科第四年入学哥伦比亚大学工程学院,经过两年的学习即可拿到Master学位。III.美国之外的其他学校: 除了美国,其他国家也有很多学院项目各有特色令人向往。如加拿大的PI(Perimeter Institute for Theoretical Physics),此院校不同于美国传统Master项目,其学习时间只有一年,在一年时间里,学界大佬如年轻有为的Neil Turok,Kevin Costello教授四大力学,并有其他学校或组织的来自各个领域的博后或教授开seminar,带学生了解每个研究方向的真实生活。 欧洲有著名的剑桥,帝国理工,布里斯托,格拉斯哥等等,申请难度比美国低一个档次,但是费用昂贵。其他学校如University of Tokyo, Swiss Federal Institute of Technology Zurich, University of Munich等也是物理名校,虽不处在英语国家,也有英语项目可供选择。再就是大名鼎鼎的马克斯-普朗克研究所(Max Planck Institute, MPI),其研究领域的成绩享誉世界,虽然没有硕士项目,但是对于国内读完硕士的申请者来说,德国3年制的PhD项目是一个不错的选择。课程设置本科培养体系本科物理专业所要求的课程大同小异。在第一年要求上大物一和二,还有微积分的一系列课程,难度水平跟国内高中差不多。进入第二年之后,物理系的学生就要开始学习一些现代的物理概念,一般学校会设置有modern physics,包含简单的原子分子,量子数,和狭义相对论等等。而为了理解以后的高阶物理课,此时的物理系学生要上数学物理方法以提前接触一些简单的数学知识帮助理解抽象的物理概念(大概包括复数分析,线性代数,微分方程,傅里叶变换等等)。有的学校,如纽约州立大学系统,为了衔接大物中的简单概念与以后要学习的量子和电磁学概念会引入一门专门讲waves性质和特点的课,这门课也是物理系的必修课之一到了大二下学期,之后学生就要开始学习真正的物理基础课程:四大力学。包括经典力学(半年),研究宏观物体低速情况下的运动,略微介绍拉氏量,运动方程等概念;电动力学(分为上下,一共一年):研究静电场,磁场等影响粒子的方式(在本科中不涉及任何关于相对论的知识);量子力学(分为上下,一共一年):研究微观粒子,介绍不确定度与波函数等概念;最后是热/统计力学(半年):介绍热力学四个定律,以及热,功,熵等概念。 四大力学是物理系学生最重要的基础课,无论如何一定要学好。但是除此之外,根据学生将来的发展方向不同,要毕业还需要选修一些别的课程:i. 物理:如果倾向于毕业之后继续在物理系深造,则除了物理课还需要学一些进阶的编程技能,时下最流行的是c++和python。还有数学知识,包括实变,复变,常/偏微分方程,线性代数,群论等。而在本科的最后一年,最好选上本校的研究课程,即跟着一个实验组做research,参加组会,做一些力所能及的工作,并撰写毕业论文。ii. 工程:如果是毕业之后希望从事工程工作的学生,或者参加如哥伦比亚大学3+2项目,则最好再选修一些电子、电路设计方面的课程。并且需要掌握工程专业各种开发软件的应用。 硕士课程传统的物理学硕士课程体系其实非常flexible,因为物理学的内涵广泛,选课自由度也就非常的大了。比如普林斯顿大学的物理学硕士项目,第一年为学生上课(6-8门课),第二年进入研究阶段。授课的范围主要覆盖三个方向: 量子力学与量子场理论Quantum Mechanics 量子力学 Relativistic Quantum Theory 相对论量子理论Introction to High Energy Physics 高能物理导论 凝聚态物理与生物物理学 Introction to Condensed Matter Physics 凝聚态物理Atomic Physics 原子物理学 Biophysics 生物物理学(计算生物学)广义相对论和高能物理 Introction to General Relativity 广义相对论导论 Advanced Topics in General Relativity 高阶广义相对论 Introction to High Energy Physics 高能物理导论当然,除了这种理论物理的硕士之外,还有应用物理的硕士项目,或者其他交叉学科的物理学硕士。比如生物物理学,是物理学与生物学的交叉,有时也称为计算生物学,因此与计算机科学也有一定程度的交叉。物理学与经济学和金融学也存在一定程度的交叉,比如金融数学领域所应用的随机偏微分模型基本上都来自于物理学,所以物理学的同学去读金融数学的项目也不存在很大的跨度。 PhD课程体系在PhD的前两年中,大部分学生还是需要上课的,同时兼职TA的工作。在这两年中,PhD学生要继续学习进阶版的四大力学,时间设置跟本科的四大力学时间比例相同,并根据自己的研究方向选修其他的专业课程。如专攻宇宙学的学生要选广义相对论,专攻凝聚态的学生则要选固体物理,等等。物理系的TA工作基本包括给本科生带大物实验,判作业,判考试卷子,和带recitation等等,工作时长一般可达到一星期20小时。 在前两年的课程学习之后,学生要参加qualification考试,通过考试者正式成为PhD candidate,并加入学校的实验组进行research,此时就要开始立课题,为发论文毕业做准备了。申请规划本科申请申请本科并不是一件困难的事情,难点在学校的选择。总的来讲,申请本科的硬性要求只有SAT/ACT和托福或雅思成绩,还有高中的gpa。但是如果想稍微进好一点的学校,则还需要考物理AP和数学AP。对于国内的理科生来讲,物理和数学AP并不难,需要花时间准备和刷分的是SAT/ACT和语言考试。如果想申请好一点的学校,SAT要考到2100分(满分2400)以上,ACT则一般需要32分(满分35)以上,托福基本需要108分(满分120),雅思7.5左右。如果考AP的话最好是满分。 很多本科学校也需要申请者提供推荐信,这对于高中生是一件很头疼的事情,但如果不是特别突出的推荐信,对申请的帮助不大,可以不用过分纠结。而本科学校申请麻烦在除了统一要求的personal statement之外,很多学校要求申请人根据要求写一些小paragraph,每个学校的题目都不相同,所以申请时尽量早早建立账号,就算不立刻填写申请表也要早看看有没有要写的essay或者paragraph以提早准备。 申请季一般开始于申请者11年级结束的暑假,所以推荐申请者11年级时就开始准备各项考试如SAT或ACT,给自己留出足够的时间多刷几次分。AP物理和数学考试对中国高中生来讲并不需要花太多时间准备,选在自己时间宽裕的时候考就行,需要注意的是要在考前一个月背背相关单词,考试前一个星期做做模拟题就够了,主要把时间留给准备SAT以及语言考试。所有考试成绩在11年级结束前准备完毕,之后在申请网站填写资料和成绩并请学校寄出成绩单即可。MS/PhD申请申请Graate school的物理系,标准化考试方面需要GRE General,语言成绩,和GRE Physics Subject,其他还需要本科说得过去的gpa和质量高的推荐信。对申请物理系来讲,GRE General并不需要太高的分数,只需要达到verbal 150以上,Quantitative 170(满分),writing 3.5。语言成绩也不是很重要,跟本科标准差不多。需要认真准备的是GRE Physics Subject,在很多学校网站上都写着这一项不是必须的,但实际上如果想申请好一些的学校就必须考,而且一定达到90 percentile以上,如果连80 percentile都没达到则最好不要递交此成绩。GRE Physics Subject考试反映了申请人基础知识的掌握程度,是申请中很重要的一项。 和GRE sub重要性不相上下的是三封推荐信。推荐信一定要选能给自己强推的人写,弱推甚至不推的信基本都是起反作用。推荐同学们在自己实验室的老板,小老板,或者擅长的专业课教授中选择三个人给自己写推荐信。一个大佬或者和自己很熟悉的教授的强推对申请起的作用甚至超过subject考试。但要注意的是,很多大佬在学术界人缘并不好,这种推荐信可能反而会让你被拒。Graate School的申请有十分复杂的因素,并不如本科申请那样单纯,建议在申请前调查自己申请的教授所做的研究。 以上都做好了的话,套磁并不是必须的,可以随手给你看中的课题组老板发封邮件介绍一下自己的基本情况(但也逃不过成绩)和研究方向以及毕业论文,如果老板看中你自然会endorse自己的department给你发offer,如果老板没有回复则意味着委婉的拒绝,此时不要强行套磁惹人厌烦。与套磁同理,Statement of Purpose应实事求是,不要写的太过花哨,应主要强调申请者做过的research以及发表的文章,物理系最看重的是科研水平而非你的个人品质。 大一一年的时间必修课都十分简单,在此期间最好自己开始预习以后的专业课,看看教科书。大二要开始上专业课了,此时专业课并不难,而且教授一般会放慢脚步让学生慢慢适应,所以此时最适合开始准备GRE General 考试。 此项标准化考试对任何理科本科生来说都很难,其涉及的单词量巨大,所以准备周期也很长。个人建议在做任何习题之前,先花两个月的时间把核心单词(大约三千个)背熟,然后开始做真题及magoosh。大二结束前,力求将GRE general考得越高越好。虽然GRE General对物理系学生申请帮助不大,但它却是很多顶尖学校的门槛,如果申请人其它综合素质都很好,而仅仅是因为GRE分数不够高被藤校拒绝就太遗憾了。在大二下学期及大三整个一年,必修的四大力学应该已经学完了,此时应利用大三的暑假准备GRE Physics Subject考试。对于此项考试,尽量能考多高考多高,这是最重要的一项标准化考试。大四开始已经进入申请季了,此时最重要的是先挑选学校,明确自己的研究方向,进而开始申请。就业前景学术界:物理学属于比较复杂的基础科学,一般来讲希望以后留在学界的物理系的学生需要读完PhD之后再做几轮博后,边做research边找教职。一旦拿到AP的offer就进入高校任职,带自己的实验组,之后凭借研究和教学成果申请tenure。业界: 学术界并不是学物理的唯一出路。加州理工,北卡等名校也有针对物理系学生转金融工作的项目。而且由于在过去的学习过程中接触过大量建模练习,数学知识还掌握了一些编程技巧,物理系MS毕业生转行金融也很容易,很多咨询公司和银行非常喜欢招聘物理系学生并对其进行培训。quora上甚至有问题是“Why are there so many physics majors and PhD’s in finance?( 为什么金融界有那么多物理系学生)”。上图一目了然的展示了物理系PhD毕业之后的就业方向和工资水平。可以看到,毕业后只有不到五分之一的PhD还留在学界,而其他人都纷纷转行。虽然这个数据反映了毕业继续做研究是一件很艰难的事情,但也可以从侧面看出,物理系毕业生就业选择之广泛,再加上图二数据,不难看出各个群体的收入都十分可观(除教育工作之外,但实际上从事教育工作的人常常有如做tutor之类的外快可以赚,而此处只列出主业收入并未将副业包括其中)。 现在网络上很多信息喜欢以收入薄弱、科研清贫来劝退物理系学生,而且大部分都是物理系PhD甚至博后发表的言论。这其实都是他们的一种很不负责的自我吹嘘方式,为了体现他们自己能够忍受平淡枯燥的生活而突出学习物理这个学科的缺点。而实际上他们所列举出的所谓缺点并不应该成为热爱物理的学生不学物理的理由,毕竟业界各大公司也都知道,在学生期间学到的知识并不是最重要的,重要的是学习的能力。或者换句话来说,学物理的人再去学其他学科,都会发现很快就可以上手,故而物理系学生的就业方向并不如人们所想象的那么窄,事实上物理系是集中将来的科学家,程序员,工程师,医生,药师,交易员,咨询师等等各种广泛人才的专业。请同学们不要被网上的各种不负责任的单方面言论吓到,只要能够在学期间好好学习,再冷门的专业也有广阔的就业前景。