作为一名研究生导师,我来探讨一下这个问题。首先,在当前的大数据时代背景下,对于应用统计学专业的学生来说,可以重点考虑一下大数据方向,原因有以下三点:第一:统计学是大数据的重要技术组成部分。大数据的技术基础包括三大方面,分别是数学、统计学和计算机,所以统计学专业考研大数据方向是比较适合的选择之一。应用统计学本身与大数据的联系也比较紧密,目前大数据场景分析就会采用大量的应用统计学知识。第二:大数据发展前景广阔。当前正处在大数据时代背景下,在大数据技术的带动下,物联网、云计算和人工智能等技术也取得了一定的发展,所以大数据技术不仅自身开辟了新的价值领域,同时也是推动科技发展的重要动力之一,所以未来大数据领域具有广阔的发展前景。第三:人才缺口大。虽然大数据技术经过了多年的发展,目前在技术体系上已经趋于成熟,但是大数据行业目前的人才缺口依然比较大,而且主要集中在研发领域。在产业互联网即将落地到广大传统行业的当前,大数据研发型人才将会有更多的行业需求。由于目前人才缺口比较大,所以薪资待遇也比较高,从近些年来大数据专业研究生的就业情况来看,整体薪资待遇还是比较可观的。大数据专业虽然需要学习的知识量比较大,但是由于大数据技术体系已经比较成熟了,所以研发过程也会相对比较系统,未来可以从事的岗位也有更多的选择,比如既可以从事数据分析、挖掘等岗位,也可以从事大数据平台研发等岗位。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!
首先,从当前大数据的发展趋势来看,未来读研选择大数据方向是不错的选择,近几年大数据方向研究生的就业也确实有不错的表现,不少毕业生都有较大的选择空间,相对于传统软件开发岗位来说,大数据相关岗位的岗位附加值还是比较高的。大数据方向研究生毕业答辩大数据是一门典型的交叉学科,涉及到三个重要的学科基础,分别是数学、统计学和计算机,所以如果未来要从事大数据方向的研发,学习一定的统计学知识还是很有必要的。对于大一的学生来说,学习一些统计学知识也是完全可以的,否则在研一的时候也需要补学统计学知识。从当前大数据领域的人才需求情况来看,算法岗位的人才需求量相对比较少,大数据开发岗位的人才需求量相对比较大,而且研究生往往会选择大型科技公司来从事大数据平台的研发。从大数据平台开发的岗位任务出发,在本科阶段应该做好以下三方面的技术储备:第一:操作系统知识。操作系统知识对于后续的大数据开发具有重要的影响,所以一定要重视操作系统相关知识的学习。对于本科生来说,可以从Linux操作系统的使用开始学起,在学习完C语言之后,最好能够阅读一下Linux操作系统的核心源代码,以便于提升对于操作系统的认知能力。第二:编程知识。大数据开发一定需要具有扎实的编程基础,目前在大数据开发领域应用比较多的编程语言有Java、Python、Scala等,本科生可以重点关注一下Python语言。第三:算法知识。大数据开发涉及到算法的设计和实现过程,所以一定要重视算法知识的学习,本科生学习算法知识除了要学习基本的算法设计基础之外,还可以结合大数据平台(Hadoop、Spark)来完成一些算法实践过程。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
首先,对于统计学相关专业的本科生来说,如果未来想进入人工智能领域发展,考研时可以选择计算机相关专业,在大的方向上可以选择大数据、计算机视觉、自然语言处理、知识表示等。长期以来,人工智能领域的专业人才培养都是以研究生教育为主,虽然当前不少高校在本科阶段也设立了人工智能专业,但是目前要想获得更强的岗位竞争力,读研是比较现实的选择。统计学是大数据的三大基础学科之一,在当前的大数据时代,统计学的本科生也会接触到越来越多的大数据知识,所以统计学专业本科生读研选择大数据方向是比较不错的选择,而且大数据与人工智能之间也有非常紧密的联系,不少大数据方向的研究生,毕业后也会选择进入人工智能领域发展。统计学专业学生进入计算机专业读研之后,一定要重视自身实践能力的提升,尤其是程序设计能力,当前人工智能领域的岗位对于程序设计的要求还是比较高的。虽然早期人工智能领域对于算法工程师的程序设计要求并不高,但是当前算法工程师的岗位竞争还是比较激烈的,一方面岗位比较少,另一方面能力要求也在不断提升,这一点对于数学和统计学专业出身的学生来说,一定要引起重视。最后,如果明确了读研时要选择计算机专业,在本科阶段除了要重视考研所涉及到的专业课之外,还应该适当拓展一下自身的专业知识面,这对于考研复试也有比较重要的影响。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
大数据是近些年来的热点方向,大数据方向的研究生不仅有更多的发展机会,在薪资待遇方面也相对比较可观,所以不少研究生希望把自己的研究方向定在大数据相关领域。从发展趋势来看,选择大数据相关方向是不错的选择,未来的发展空间还是比较广阔的。目前不少大学的研究生教育都有大数据相关方向的设置,不同的高校在大数据教育方向上也会结合自身的教育资源进行相应的调整,所以要想选择适合自己的学校,需要考虑以下几个方面:第一:自身的知识结构。大数据是典型的交叉学科,基础学科包括数学、统计学和计算机,所以这三个专业的学生在读研期间都可以选择大数据方向,但是不同的专业在选择时也要结合自身的专业特点。比如统计学选择大数据方向时也可以选择本专业的研究生,因为统计学的研究生课题与大数据也有紧密的联系,没有必要一定要考计算机专业的大数据方向。在统计学领域,教育资源整合能力比较强的大学有北京大学、人民大学、南开大学等,不少财经类大学也有较强的学科实力,比如东北财经大学、上海财经大学也是不错的选择。第二:大数据学科的教育资源。研究生的教育质量与高校自身的教育资源整合能力有直接的关系,涉及到导师资源、实验资源、课题资源、行业资源等等,从大数据学科的教育资源情况来看,国内北京大学、中南大学、上海交通大学、中山大学、西安交通大学、对外经贸大学等都是不错的选择。第三:学校的整体实力。在考研选择学校时,应该注重学校的整体实力,整体实力较强的高校往往在专业发展上也会有较强的“后劲”,所以在选择高校时可以重点考虑一下双一流高校和一流学科高校(原985、211)。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!
对于一部分准备考研的学生来说,无法确定具体的考研专业也具有一定的普遍性,要想选择一个适合自己的考研专业应该从三个方面入手,其一是首先考虑自己的本科专业;其二是根据自身的知识结构和兴趣爱好来选择考研方向;其三是根据当前社会对于人才需求的趋势来选择考研方向。当前的考研竞争还是比较激烈的,所以考生在决定考研的时候,应该首先考虑自己的本专业,这样会有一个相对轻松的复习过程。在研究生教育阶段,很多专业之间都会存在交叉合作的现象,比如经济学、统计学专业的研究生也可以选择大数据相关方向,所以可以在立足本专业的基础上选择自己比较感兴趣的方向。以计算机专业为例,有不少计算机专业的研究生在选择研究方向的时候会选择与金融领域相结合的方向,未来也会从事金融领域的相关岗位。如果对于本科期间的专业不感兴趣,同时也没有更多的研究方向可以选择,那么也可以考虑跨考,但是跨考的范围不应该有太大的跨度,应该结合自己的知识结构来确定具体方向,比如数学、统计学专业的本科生,可以考虑跨考计算机专业的研究生。在选择具体方向的时候,也可以重点考虑一下自身的能力特点和兴趣爱好。最后,在决定考研方向的时候,也应该考虑一下当前社会对于人才的需求趋势,虽然专业本身并没有好坏之分,但是不同专业的热度是不同的,有的专业就业情况会好一些,而有的则会相对差一些,比如目前大数据、人工智能等方向的研究生往往更容易实现就业,而且薪资待遇往往也比较高。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
当前正处在大数据时代,而数据分析是大数据技术体系中的重要组成部分,也是数据价值化的主要方式之一,所以未来从事数据分析工作是不错的选择。数据分析可以选择两个大的专业方向,一个是统计学专业,另一个是大数据专业,另外不少计算机相关专业、金融领域相关专业和数学领域的相关专业也都有数据分析的细分方向。随着数据分析的重要性日益体现,现在不少专业也都增加了数据分析的细分方向,比如经济学、社会学、医学等专业都陆续开设了与本专业相关的数据分析方向。具体选择哪个专业需要根据自身的知识结构来决定,最好能够结合本科专业进行选择,这样在备考的时候会轻松一些。如果本科是计算机相关专业,那么可以选择的余地是比较大的,计算机应用、计算机科学与技术、软件工程等专业都有数据分析的细分方向,当然统计学和数学专业也是如此。在大数据领域,数据分析通常有两种方式,一种是统计学方式,另一种是机器学习方式,两种数据分析方式同样重要。学习数据分析通常需要具备一定的数学基础、统计学基础和计算机基础,其中数学基础是相对比较重要的,要想在数据分析领域走得更远,一定要重视数学相关课程,包括高数、线性代数、概率论等内容。以机器学习的数据分析方式为例,需要具备算法基础和编程语言基础,机器学习的步骤包括数据收集、数据整理、算法设计、算法实现、算法训练、算法验证和算法应用,目的就是从一堆杂乱无章的数据中找到其背后的规律。当前机器学习的数据分析方式是比较流行的,相关领域的研究也在逐步推进。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网方面的问题,或者考研方面的问题,都可以咨询我,谢谢!
大数据专业是一个典型的交叉学科,基础学科包括数学、统计学和计算机学,另外辅助经济学、社会学、医学等学科,所以统计学是大数据专业最为直接的相关学科之一,因此统计学专业的本科生在读研的时候是完全可以选择大数据专业的。统计学专业的相关知识在大数据时代依然起着非常重要的作用,以大数据分析为例,目前大数据的分析方式主要以统计学方式和机器学习方式为主,而且统计学方式与机器学习方式相比在某些领域更加成熟,理论体系也相对完备,所以大数据专业的学生通常都要系统的学习统计学相关知识,从这个角度来看,统计学专业读大数据方向还是具备一定优势的。在大数据时代,统计学有了进一步的发展和变化,这个变化就来自于数据本身的变化。统计学的分析方式通常以“抽样”为主,通过对样本的分析来寻找整体的规律,从而得出分析结论。通过大量的历史经验来看,如果样本的选择没有问题的话,统计学的分析方式具有非常高的准确度。但是在大数据时代,数据从抽样变成了“全样”,数据分析的方式和方法都产生了较大的变化,这对于统计学来说就需要积极的适应这种变化,并积极顺应大势时代的发展,投入到大数据领域的研发中。从目前大数据行业的发展来看,统计学确实对于大数据的发展做出了重要的贡献,大量的统计学专业人才陆续投入到大数据领域,也进一步完善并丰富了大数据的知识结构。近些年来,我多次作为评委,参与了不同类型的研究生大数据专业大赛,其中有大量的选手来自财经类大学的统计学专业,这给我留下了较为深刻的印象,其中也有不少学生取得了不错的成绩。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网方面的问题,也可以咨询我,谢谢!
统计学在生活中无处不在:从我们熟悉的居民消费指数、粮食产量、价格变动情况,还有每天呐喊的GDP,到全国人口普查、全国经济普查、企业利润情况,各行各业都需要统计学将数据进行归纳、分析、总结,为每一个决策提供基础性支持。统计学不仅与每一个人息息相关,在大数据、人工智能等新兴行业跃动的今天,统计学所培养的统计思维,仍然是这些新兴行业的底层逻辑之一。其前景不言而喻。下面,我们来具体了解一下统计学的专业信息和就业方向。专业介绍统计学学制:四年学位:理学或经济学学士(根据学校侧重点不同,或着重于数学,或着重于经济)统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。应用统计学与统计学专业相比,应用统计学专业以学习基础理论的实际应用为主,注重解决各类实际问题,基本上就是利用各种数学模型以及相关的统计检验方法来分析解决问题。推荐院校统计学专业院校排名及辽宁省2018年招生分数双一流:北京大学、中国人民大学、清华大学、南开大学、东北师范大学、华东师范大学、上海财经大学、厦门大学就业情况区分:统计学与大数据数据 ≠ 大数据!数据挖掘 ≠ 大数据!统计学能够为大数据、人工智能提供建模方式,而并不是学了统计学就能够直接担任大数据或是人工智能相关岗位。这个方向门槛很高,竞争激烈,必须额外自学很多东西。如果以进入相关互联网公司为目标,必须要学习SPSS、SAS等这些基于计算机的软件,SQL、python等这些基于计算机的高级语言,以及Hadoop环境等。可以时刻关注招聘信息需求,为自己合理规划自学课程。具体岗位:政府统计局等公务员金融起薪:5000-6000银行、保险公司、证券公司等的统计员、股票分析师、市场研究员。银行是统计学学生的一个重要就业方向,除非能力特别强,否则刚毕业一般都在银行分行。财务起薪:3000-4000企业的会计、出纳。考初级会计职称,然后慢慢往这方面努力就可以,在一般的企业都可以找到工作。互联网起薪:7000-8000互联网公司的数据分析师、数值策划。起薪高,一般都是大型公司,工作环境也很好。但是本科的学习内容是远远达不到互联网公司的要求的,需要学生在专业课以外的时间多多学习。如果想往这方面发展,最好能以研究生为起点,再多学习专业课以外的知识,不学编程是不行的。市场研究相关企业起薪:3000-6000市场调查公司、咨询公司或其他企业的统计员、数据分析师,或是公司的市场研究部门。如果仅是做统计员的话,不需要太多的技能,本科毕业即可。深造:考研如果想学好统计学,还是相当建议考研的。本科学习侧重基础,该懂的都教,但都是皮毛。研究生阶段统计学方向分得更细,包括应用统计学、经济统计学、数理统计学、生物统计学等,与相应行业联系更加紧密。出国如果想出国,一定要在本科期间打好数学基础,本科是数学、精算、统计等专业的学生,出国申请统计学士比较有优势的。但是就算是出国,最后也为了就业,那么自学编程这项任务一定不要落下,这样,不论是学业还是就业都能够具备统计思维+编程技术优势。报考建议专业优势对数据分析建模有一定优势,培养逻辑思维。作为一个工具性学科,为任何行业都能够提供基础支持。与现阶段热门行业联系紧密。专业劣势不能直接凭借专业获得饭碗,本科时期仅学皮毛。如果学得好,必须大量自学。适合学生该专业对数学科目要求较高。适合对逻辑推理有兴趣,热爱数学应用的学生就读。需要有较强的自学能力。不适合学生不适合对数据不够敏感的学生地域选择对于统计学专业的学生来说,地域非常重要。一线城市里的企业能够接触最新的方法和最激烈的思维碰撞,不论是简历还是实力,都能够得到极大丰富和锻炼。诺贝尔经济学奖获得者Thomas J. Sargent曾在世界科技创新论坛上表示,人工智能其实就是统计学,只不过用了一个很华丽的辞藻,其实就是统计学。好多的公式都非常老,但是所有的人工智能利用的都是统计学来解决问题。所以,如果你决定报考统计学,那么可以告诉你,未来的前景必然不会差。但工资起薪却与你的自学能力密切相关。先考虑自己是否对数学有足够的兴趣,再看自己是喜欢安逸生活还是喜欢见缝插针的学习。如果选择安逸,可以往会计、财务,或者市场研究部门方向考虑;如果有很强的自学能力,那么不用多说,考研、出国、互联网公司的数据分析师大概就是你的目的地。
每一位考研新人在面对考研这项大工程时都会有数不尽的问题和困惑,而首当其冲的问题便是如何选择专业。选择专业是考研的第一步,它是起点也是指引,指引你向一条明确的方向一路前行。本期,鼬老师来对小伙伴们在选择专业上给予一些小建议,希望能有所帮助~1、考研目的要明确考研只是人生中的一个选择,在选择过程中,你会有各种各样的理由来坚定考研的信念,或是为了名校情结,或是为了一份更好的工作平台,但是不论是什么原因,都必须落实到行动上。研究生阶段与本科阶段最大的区别在于研究生学习讲究专而精,打个比方,本科阶段是一个面,近可能地让你接触到不同的学科;硕士阶段是一条线,在你选择了某个研究方向后,朝着这个方向去挖掘能够研究的课题;而博士阶段是一个点,你必须找到那一个你感兴趣且有研究价值的点,将这个点纵向深化,做出属于自己的理论。也就是说,学历越高,你的专业能力在变强,但与此同时你的就业面也在变窄,因此如果你是为了更好地找工作而选择读研,那么专业的选择就极为重要,否则“毕业即失业”的发生就不是偶然。2、考研选专业要看将来不论是选择本专业还是跨专业,都需要提前了解本专业的就业趋势或是发展前景,而这些信息的获取在如今的互联网时代都是易如反掌的事情,你可以从各类招聘软件或是单位官方网站中看到薪资、技能要求、专业要求等。当你对所学专业有了更深入、更长远的认识后,才能做出真正理性的选择。从职业反推专业,是在考研专业选择中常用的思考方式,大部分想要跨专业考研的同学,都会通过自己想从事的职业来考虑相关的专业进行报考。比如,如果你想从事金融工作,那么金融专业显然是最对口的专业,不过,你从现在的招聘网站中也能看到,越来越多的金融机构愿意选择有数学、物理和计算机背景的学生,因此你在选择专业时也能有更大的空间。3、考虑专业要看自身实力每个专业都有其特有的要求,这些要求很大程度都会通过初试和复试的科目来显现。比如说经管类专业、工科专业,多数是要求考数学的,那么自身的数学能不能学好学会,基础好坏,在一定程度上对于专业选择影响很大。你可能认为自己对经济学很感兴趣,然而一直以来你的数学成绩都不好,在大一甚至挂了高数课,那么对于这种选拔性考试而言,选择经济学专业无疑是飞蛾扑火,建议选择不考数学的专业或是选择专硕来降低数学考试的难度。还有一些壁垒比较高的专业,如理工农医艺、外国语言文学和法学等,都算是专业壁垒比较重的学科,如果没有在本科期间系统学习相关课程的经历,一般不建议跨考。当然,随着科技的进步,各大高校都涌现出了各式各样的交叉学科,而这类交叉学科往往是对传统学科和新兴学科的融合,特别像是计算机专业、统计学专业、数学专业等已经渗透到了各个领域的学科,就更加需要交叉专业人才,因此对于本科是这些专业的学生或是打算跨考到这些专业的学生,从未来发展来看,是很值得付出努力为之一战的。不过,就像上文所说,尽管一些专业鼓励跨专业报考,但是还是需要你有一定的基础,如果在本科阶段没有对报考专业有过系统的了解,那么在备考阶段就要比其他竞争对手多花两倍的时间来复习,对此必须做好有充足的心理准备。
首先,在当前考研竞争日趋激烈的背景下,最好选择与本科相关的专业,跨考一定要慎重。在具体专业的选择上,应该考虑三方面因素:第一:首先考虑自己的本科专业。对于考研专业的选择,首先应该重点考虑一下自身的本科专业,一方面在复习的时候会节省大量的时间,另一方在复试的时候也会相对比较容易。跨考往往需要面临更长的复习时间和更大的复习压力,而且需要大量的时间来收集相关的学习资料。第二:考虑流行趋势。考研是再一次选择高校和专业的重要机会,如果自身的学习能力比较强,那么可以在专业的选择上重点考虑一下比较热门的领域,当前计算机(大数据、人工智能、物联网)、金融、生物医药等领域都是不错的选择。第三:考虑行业发展空间。行业发展空间是进行专业选择时需要考虑的另一个重要方面,行业发展空间较大则未来的就业空间和上升空间就会比较大,而如果行业发展空间较小,则未来可以选择的空间也会比较小。在当前的大数据、人工智能时代背景下,计算机相关专业是一个考研的热门领域,除了计算机相关专业的学生之外,本科是数学专业、物理专业、统计学专业以及经济学专业的学生也可以重点考虑一下计算机相关专业,因为这几个专业本身与计算机专业就存在紧密的联系。比如数学专业可以重点考虑一下人工智能方向,统计学专业可以重点考虑一下大数据方向(数据分析),而物理专业则可以重点考虑一下物联网方向(硬件研发)等。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网方面的问题,或者考研方面的问题,都可以咨询我,谢谢!