考研数学真题讲解:每日一练198天一、题目2012年考研数学真题二、解析微分方程真题解析综合题真题解析考研路上,你我同行。加油!泰笛牛考研数学
初试定资格,复试定结果,虽然初试考试已经结束了,但是复试是第二关卡,不要掉以轻心哦,好好准备复试,等一切尘埃落定后,再去欢呼,再去放肆也不迟,现在还是要以大局为重,即便不知道成绩的情况下,积极准备复试也是一种经验的积累,万一过了复试线就用到了,加油吧。下面是2020考研数学一真题及答案解析,一起来看看吧。来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)
声明即日起,博林考研正式并入文都教育,加入文都考研大家庭!燕郊文都考研来到你身边啦!优秀的人总是互相吸引,博林考研全心全意为学生服务,不断提高服务质量。期待以全新的身份服务每一位新同学。文都考研,大家早已耳熟能详。但小编有必要隆重介绍一下:文都集团在考研、四六级、教资、中小学、留学、医考、建考、公考等领域多元化发展。文都考研积累了丰富的教学管理经验,并建立了优秀的管理团队。以数学汤家凤老师、英语何凯文老师、谭剑波老师、政治蒋中挺、万磊老师,为核心的教师团队,深受全国各地学生喜爱。并出版了大量优质考研用书。(比如今年考研数学多数证明题是汤老师的《接力题典1800》书中原题)回归到今天的主题,给大家分享下考研真题及答案解析。回忆版真题,仅供参考,如有错误欢迎各位考生留言:2020数学一真题答案解析
考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!
2021研究生入学考试考研数学试卷(数学一)一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.1. 在处(A)连续且取得极大值 (B)连续且取得极小值 (C)可导且导数为零 (D)可导且导数不为零2. 设函数可微,且,,则(A) (B) (C) (D)3. 设函数在处的3次泰勒多项式为,则(A) (B) (C) (D)4. 设函数在区间上连续,则(A) (B)(C) (D)5. 二次型的正惯性指数和负惯性指数依次为(A) 2,0 (B)1,1 (C)2,1 (D)1,26. 已知记若两两正交,则依次为(A) (B) (C) (D)7. 设为阶实矩阵,下列不成立的是(A) (B)(C) (D)8. 设为随机事件,且,下列为假命题的是(A)若,则(B)若,则(C)若,则(D)若,则9. 设为来自总体的简单随机样本,令,则(A)是的无偏差估计,(B)不是的无偏差估计,(C)是的无偏差估计,(D)不是的无偏差估计,10. 设是来自总体简单随机样本,考虑假设检验问题:表示标准正太分布函数,若该检验问题的拒绝域为,其中,则,该检验犯第二类错误的概率为(A) (B) (C) (D)二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11. 12. 设函数由参数方程确定,则 13. 欧拉方程满足条件的解为 14. 设为空间区域表面的外侧,则曲面积分 15. 设为3阶矩阵,为代数余子式,若的每行元素之和均为2,且,则 16. 甲、乙两个盒子中有2个红球和2个白球,选取甲盒中任意一球,观察颜色后放入乙盒,再从乙盒中任取一球,令分别表示从甲盒和乙盒中取到的红球的个数,则与的相关系数为 三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸指定位置上.17. (本题满分10分)求极限18. (本题满分12分)设,求级数的收敛域及和函数.19. (本题满分12分)已知曲线求上的点到坐标面距离的最大值.20. (本题满分12分)设是有界单连通区域,取得最大值的积分区域记为(1) 求的值.(2) 计算,其中是的正向边界21. 设矩阵(1) 求正交矩阵,使为对角矩阵(2) 求正定矩阵,使,为3阶单位矩阵.22. 在区间上随机取一点,将该区间分成两段,较短一段的长度记为,较长一段的长度记为.令.(1) 求的概率密度;(2)求的概率密度;(3)求.2021考研数学试卷答案速查(数学一)一、选择题(1)(D) (2)(C) (3)(A) (4)(B) (5)(B) (6)(A) (7)(C) (8)(D) (9)(C) (10)(B)二、填空题(11) (12) (13) (14) (15) (16)三、解答题(17)原式(2分)(4分) (7分) (9分)(10分) (18)(1) 设,,则收敛区间为,收敛区间为(3分)时,,级数发散时,,级数收敛所以级数的收敛域为.(4分)(2)(6分)则,因为,所以,因为,所以(9分)因此时,当时,和函数连续,所以所以,(12分)(19) 根据题意,目标函数为,约束条件是以及(2分)设(6分)解得或者(10分),因此距离的最大值为(12分)(20)(1)根据题意,易知(4分)(2)补充曲线(顺时针方向)由高斯公式可知,其中为和围成的封闭区域.(8分)根据高斯公式其中是围成的封闭区域.所以(12分)(21)(1)令,解得(2分),解得,解得(4分)将进行施密特正交化可得(6分)将单位化,可得可得正交矩阵,使(8分)(2)因为可知,因为为正定矩阵,所以(12分)(22)易知,且在上服从均匀分布;(Ⅰ)的概率密度. (4分)(Ⅱ)的分布函数:时,;时, ;的概率密度为. (8分)(Ⅲ)
2021年考研数学一真题、解析2021 年全国硕士研究生入学招生考试数一试题一、选择题 :1-10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号里.
2010-2019年 考研数学一二三真题 逐题精讲视频已出!!!考研数学真题讲解:每日一练220-221天一、每日一练220天:2015年考研数学一二三公共考点题目讲解2015年考研数学真题讲解2015年考研数学真题讲解二、每日一练221天:2016年考研数学一二三公共考点题目讲解2016年考研数学真题讲解2016年考研数学真题讲解2016年考研数学真题讲解考研路上,你我同行。加油!
考研数学真题讲解:每日一练170天一、题目题目二、解析题目1解析题目2解析 题目3解析 考研路上,你我同行。加油!关注“泰笛牛考研数学”,一次性获得完整历年考研数学真题资料!还可以免费享受在线答疑!关注能考140+分哦~
大家好,我是老梁考研数学!这两天学校期末事情多,使得《真题一题多解系列》断更时间较长,抱歉!今天老梁继续给大家推送《考研数学真题分类解析系列》第008期,选择一道幂指函数极限计算的客观题,对于客观题,除了通用解法之外,特殊值法也上常常采用的方法,除了对函数采用特殊值,也可对参数采用特殊值。真题及解析【例008】(2010数1)【分析一】这是一个1的无穷幂指型未定式极限的计算,常用下列简便公式:【解法一】【分析二】将极限式中分式项倒数变形、再利用乘积的四则运算,简化计算。【解法二】【分析三】由于是客观题,且极限式含有参数,因此可对两个参数取特殊值排除错误选项。【解法三】【评注】特殊值法,选取特殊值的原则是能区别选项,如本题也可选b=-a=1。总结(1)解法一是解决幂指函数未定式极限的通用方法,在本题的三个解法中是最费时的方法;(2)如果一个极限式所含分式“头重脚轻”,即分子为单项式而分母为几个单项的和,这时一般可采取倒数的方法简化计算;(3)若客观题含有抽象函数或参数,则可使用特殊指法,对函数或参数取不同的值来排除错误选项(选择题)或直接得到结果。方法总结 归纳题型奇思妙解 就找老梁往期回顾考研数学|两类含有限加和幂指型未定式极限计算|无穷大(小)替换考研数学|真题一题多解系列,精选007|已知极限反求未知参数考研数学|真题一题多解系列,精选006|中值问题考研数学|真题一题多解系列,精选005|5种方法30年考研数学真题分类解析|专题三:极限基本理论