欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
数学篇|历年考研数学真题及答案解析仇恨罪

数学篇|历年考研数学真题及答案解析

无论是第几遍做真题,做错的题目,都要做记号,并找出错因。如果下一次还犯类似错误(尤其是计算失误),一定要好好反思反思。

忘其所受

北京大学1999年数学分析试题及解答

昨天不少新关注我微信公三人号的朋友留言询问高等代数的试题,其实北京大学2010年至2019年的高等代数与解析几何试题及解答很久以前就发了,查看历史记录就能找到。2010年之前的高等代数与解析几何试题一位同学已经基本帮我完成了,那些题目的解答我以前写在一个本子上的,转成电子版还要一段时间,我的打算是把剩下的北京大学数学分析试题先弄完,然后如果有时间再弄剩下的高等代数与解析几何试题。1996年至2001年的数学分析题目网上有扫描版本的,那应该就是试题原来的样子。我这里发的这些题目基本就是按照原来的样子编排的,如果大家对中间某些题有疑问的话可以参考原来的试题,我在文末给了一个下载链接。比如说我们今天要看的1999年数学分析试题就是下面这样的试题还是很清楚的,只是试题旁边的大黑边不好看。下面给大家看我写的解答刚刚碰巧在百度文库发现:计算题的第二题其实也是2015第七届全国大学生数学竞赛(非数学类)预赛试卷中的题目,就把那个证明贴在这里

检阅式

历年考研数学真题解析(1987-2019年)按年份讲解:2011年真题

考研数学真题讲解:每日一练192天一、题目2011年考研数学真题二、解析考查:方程的根考查:含抽象函数记号的多元函数求偏导考研路上,你我同行。加油!

搏击手

历年(1987-2019年)考研数学真题解析:2011年真题解析

考研数学真题讲解:每日一练191天一、题目2011年考研数学真题二、解析考查知识点:含变限积分极限的计算考查知识点:不等式的证明、数列收敛证考研路上,你我同行。加油!

秦安

考研数学|真题一题多解系列,精选001

考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!

骆驼圈

历年(1987-2019)考研数学真题解析:2013年二重积分真题讲解

考研数学真题讲解:每日一练204天一、题目2013年考研数学真题:二重积分二、解析题目1解析题目2解析考研路上,你我同行。加油!泰笛牛考研数学

还乡而立

2020考研:数学一真题及答案解析,高清完整版

初试定资格,复试定结果,虽然初试考试已经结束了,但是复试是第二关卡,不要掉以轻心哦,好好准备复试,等一切尘埃落定后,再去欢呼,再去放肆也不迟,现在还是要以大局为重,即便不知道成绩的情况下,积极准备复试也是一种经验的积累,万一过了复试线就用到了,加油吧。下面是2020考研数学一真题及答案解析,一起来看看吧。来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)

四月

1987-2019年 历年考研数学真题解析:2015年考研数学真题解析

2010-2019年 考研数学一二三真题 逐题精讲视频已出!!!考研数学真题讲解:每日一练216天一、题目二、解析考研路上,你我同行。加油!

2021考研全国硕士研究生招生考试数学一真题+答案

2021考研数学一真题解析文档 可私信小编免费领取,请联系:

势用

30年考研数学真题分类解析|专题一:反函数与复合函数

真题及解析【分析】分段函数的复合函数。主要注意函数复合过程中,内层函数的值域与外层函数的定义域的交集非空。【分析】本题主要是要弄清楚反函数和原函数的定义域、值域之间的关系.【评注】从2002年至今差不多20年,考研数学在反函数与复合函数部分并没有单独出题。但近些年考研数学都出现了多年未见的题型,如2018年数学一的假设检验,2020年数学一求函数解析式。2021年考研数学会不会在分段函数的复合函数及反函数方面习题呢?知识点链接一、反函数1、定义设 y=f(x) 的定义域为 X ,值域为 Y 。若对任意 y∈Y,都只有唯一的 x∈X,使得 y=f(x) 成立,则按这个对应关系定义的函数称为 y=f(x) 的反函数。2、反函数存在的条件(1) 设 y=f(x) 的定义域为 X,值域为 Y,则 f(x) 存在反函数的充分必要条件是对X 中任意的不同元素 a,b, 都有 f(a)≠f(b);(2) 设 y=f(x) 的定义域为 X,值域为 Y。若 f(x) 是 X 上的单调函数,则 f(x) 在 X 上存在反函数,且反函数的具有相同的单调性。二、复合函数设 y=f(u) 的定义域和值域分别为 U 和 V,函数 u=g(x) 的定义域与值域分别为 X 和 Y,且 Y∩U 非空。由 y=f[g(x)] 确定的函数称为由函数 u=g(x) 与函数 y=f(u) 构成的复合函数,变量 u 称为中间变量。下期预告:30年考研数学真题分类解析专题二:函数的特性期待您的关注!