声明即日起,博林考研正式并入文都教育,加入文都考研大家庭!燕郊文都考研来到你身边啦!优秀的人总是互相吸引,博林考研全心全意为学生服务,不断提高服务质量。期待以全新的身份服务每一位新同学。文都考研,大家早已耳熟能详。但小编有必要隆重介绍一下:文都集团在考研、四六级、教资、中小学、留学、医考、建考、公考等领域多元化发展。文都考研积累了丰富的教学管理经验,并建立了优秀的管理团队。以数学汤家凤老师、英语何凯文老师、谭剑波老师、政治蒋中挺、万磊老师,为核心的教师团队,深受全国各地学生喜爱。并出版了大量优质考研用书。(比如今年考研数学多数证明题是汤老师的《接力题典1800》书中原题)回归到今天的主题,给大家分享下考研真题及答案解析。回忆版真题,仅供参考,如有错误欢迎各位考生留言:2020数学一真题答案解析
下面为数学一真题及答案解析下面为数学二真题及答案解析以下为数学三真题及答案解析考研过后,立即估分,准备复试。21考研难度如何?国家线会不会涨?扩不扩招?复试怎么开始准备?尽在28日晚8点的直播中04:28
初试定资格,复试定结果,虽然初试考试已经结束了,但是复试是第二关卡,不要掉以轻心哦,好好准备复试,等一切尘埃落定后,再去欢呼,再去放肆也不迟,现在还是要以大局为重,即便不知道成绩的情况下,积极准备复试也是一种经验的积累,万一过了复试线就用到了,加油吧。下面是2020考研数学一真题及答案解析,一起来看看吧。来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)
2019年12月22日上午,2020考研数学考试已落下帷幕,刚出考场的考生是否对于2020考研数学一真题答案期盼已久呢?文都考研第一 时间带来了2020考研数学一真题及答案解析。以下是2020考研数学一真题完整版的内容,下面就跟随文都考研小编一起来看一看吧,了解一下自己的考试情况吧?数学一以上,就是文都考研给大家带来的2020考研数学一真题完整版内容,希望各位同学可以及时了解自己的考后情况。更多2020考研真题内容,请及时关注文都考研网。另外,2020考研考试期间,文都考研名师会同步带来2020考研真题解析视频直播,敬请关注。
考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!
大家好,我是老梁考研数学!今天老梁继续给大家推送《考研数学真题分类解析系列》第五期,精选了一道极限计算方面的真题。通过这一道真题就几乎能把最常用的极限计算方法进行复习,是一道质量非常高的真题。真题解析【例005】(2008数1&2)【分析一】0/0未定式极限,可使用洛必达法则计算,计算前先利用无穷小等价化简先。【分析二】使用在x=0处的泰勒公式。【分析三】利用无穷小等价替换。【分析四】极限式中含有函数差,所以可以尝试利用拉格朗日中值定理。【分析五】极限式中的sinx比较多,故可采用变量替换。总结本题从不同角度出发进行分析,使用了5种方法进行计算。这五种方法:洛必达法则、泰勒公式、等价无穷小替换、变量替换以及拉格朗日中值定理都是常用方法。方法总结 归纳题型奇思妙解 就找老梁想了解更多精彩内容,快来关注老梁考研数学往期回顾考研数学|真题一题多解系列,精选001考研数学|真题一题多解系列,精选002|最后那种方法你肯定想不到考研数学|真题一题多解,精选003|∞-∞型未定式移位变形小技巧考研数学|真题分类解析系列,精选004|反用等价无穷小考研数学|方法总结,递推数列单调有界原理方法之单调性证明
文| 陈小兵欢迎关注:说教育考研党艾特宇哥果然如当时“泄题风波”刚出来有人说的一样,如果泄题不成立,这肯定成为该团队宣传的最大的噱头。区区180分钟能搞到88分以上到手,厉害啊。不知道今年又有多少学子拿钱去上一个所谓的面授课、押题课,又不知道今年到底能不能押中?个人认为数学不存在押题这个说法,你要说政治押中材料,英语押中阅读材料,我觉得是可以理解的,但是数学就呵呵哒。把利益建立在千万学子的前途与国家的建设上,押题其实本身就存在问题。成了考研数学大神?当事情没有发生在自己身上的时候,我们永远可以以一个局外人的身份或许还会带着看热闹不嫌事大的态度去围观,但是如果我们所有人都这样,用不了多久别人也会以局外人的身份来看你这个当事人。没有别的意思,只是看到这个宣传真的被恶心到了。短短半年之内,考研数学泄题,大学生英语竞赛泄题,专四泄题。如果以后长期出现这样的状况,国内上大学的孩子不知道三观会变成什么样子!揭秘考研数学?听说经历了2018考研数学的人,愤怒完的反应是明年去听某某老师的课。教育系统烂掉了,真是摧毁年轻人的心性,庆幸自己不用经历这种考验人性的事情,因为“渣编”考不上研究生,也不配考研究生。什么是公平?没有人知道,但我们仍为此奋斗。因为一直努力的人付出的时间与精力不允许被践踏!正义之剑永远悬挂在奸诈之人的头上!考研党的无奈有一句话说的好,当你没有足够的权力去改变一件事情的时候,你再怎么抱怨也不会有人去理睬你,有时候道理是行不通的,权力强制手段才是解决问题的关键。“数学泄题”,“三色幼儿园”,“大学性侵”对于爱蹭热度的小编来说,不过是白驹过隙,这就是教育的悲哀。我不想再和这群丑恶的嘴脸争了,等我有一天真正拥有权力的时候,会让他们知道道理不如权力时的痛苦滋味。