2019年12月22日上午,2020考研数学考试已落下帷幕,刚出考场的考生是否对于2020考研数学一真题答案期盼已久呢?文都考研第一 时间带来了2020考研数学一真题及答案解析。以下是2020考研数学一真题完整版的内容,下面就跟随文都考研小编一起来看一看吧,了解一下自己的考试情况吧?数学一以上,就是文都考研给大家带来的2020考研数学一真题完整版内容,希望各位同学可以及时了解自己的考后情况。更多2020考研真题内容,请及时关注文都考研网。另外,2020考研考试期间,文都考研名师会同步带来2020考研真题解析视频直播,敬请关注。
初试定资格,复试定结果,虽然初试考试已经结束了,但是复试是第二关卡,不要掉以轻心哦,好好准备复试,等一切尘埃落定后,再去欢呼,再去放肆也不迟,现在还是要以大局为重,即便不知道成绩的情况下,积极准备复试也是一种经验的积累,万一过了复试线就用到了,加油吧。下面是2020考研数学一真题及答案解析,一起来看看吧。来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)
文| 陈小兵欢迎关注:说教育考研党艾特宇哥果然如当时“泄题风波”刚出来有人说的一样,如果泄题不成立,这肯定成为该团队宣传的最大的噱头。区区180分钟能搞到88分以上到手,厉害啊。不知道今年又有多少学子拿钱去上一个所谓的面授课、押题课,又不知道今年到底能不能押中?个人认为数学不存在押题这个说法,你要说政治押中材料,英语押中阅读材料,我觉得是可以理解的,但是数学就呵呵哒。把利益建立在千万学子的前途与国家的建设上,押题其实本身就存在问题。成了考研数学大神?当事情没有发生在自己身上的时候,我们永远可以以一个局外人的身份或许还会带着看热闹不嫌事大的态度去围观,但是如果我们所有人都这样,用不了多久别人也会以局外人的身份来看你这个当事人。没有别的意思,只是看到这个宣传真的被恶心到了。短短半年之内,考研数学泄题,大学生英语竞赛泄题,专四泄题。如果以后长期出现这样的状况,国内上大学的孩子不知道三观会变成什么样子!揭秘考研数学?听说经历了2018考研数学的人,愤怒完的反应是明年去听某某老师的课。教育系统烂掉了,真是摧毁年轻人的心性,庆幸自己不用经历这种考验人性的事情,因为“渣编”考不上研究生,也不配考研究生。什么是公平?没有人知道,但我们仍为此奋斗。因为一直努力的人付出的时间与精力不允许被践踏!正义之剑永远悬挂在奸诈之人的头上!考研党的无奈有一句话说的好,当你没有足够的权力去改变一件事情的时候,你再怎么抱怨也不会有人去理睬你,有时候道理是行不通的,权力强制手段才是解决问题的关键。“数学泄题”,“三色幼儿园”,“大学性侵”对于爱蹭热度的小编来说,不过是白驹过隙,这就是教育的悲哀。我不想再和这群丑恶的嘴脸争了,等我有一天真正拥有权力的时候,会让他们知道道理不如权力时的痛苦滋味。
大家好,我是老梁!今天继续推出《考研数学真题一题多解系列》第二期!本期为大家精选了一道2019年考研数学一、二、三试卷共同的一道题,是一道无穷小量比较的问题。无穷小量比较问题是考研数学高频考点之一,每一年都会考(尤其是数学二)。通常以客观题(多数选择题,少量填空题)的形式出现,也会以主观题的形式出现。经常出现的有两种题型:一是无穷小量关系的比较,即将若干个无穷小量(通常是三个)放在一起,比较谁是谁的高阶、低阶、同阶、等价无穷小量等,二是已知两个无穷小量的关系(例如高阶、低阶、同阶、等价等等),然后把无穷小量中所含的参数反求出来。不管是哪种考法,其解决方法都是类似的,即洛必达法则法,泰勒公式法及无穷小等价公式法等。对于客观题,有时还可以根据函数、极限相关的知识点或技巧解决。先看真题,这是第二种考法。已知两个无穷小量的同阶关系,反求无穷小量中所含的参数的问题,难度并不大,利用常规方法就可以解决。【例002】(2019数一、二、三)【分析一】常用的方法就是定义法和无穷小等价公式法。(1)定义法根据无穷小同阶的定义写出下面的极限式然后利用求极限的方法:洛必达法则、泰勒公式等计算其极限。(2)无穷小等价公式法利用已知的无穷小等价关系,将两个无穷小都等价于同一个幂函数无穷小,然后再求参数。【分析二】上述两种方法都是常规方法,然而有时客观题常常需要根据本题条件及选项的特点采取非常规方法,如排除法。本题即可根据函数(无穷小)的奇偶性以及两个等价无穷小的性质排除掉错误选项,从而得到正确选项。【评注】本题难度不大,对于无穷小比较问题,解法一和解法二,洛必达法则,泰勒公式法及等价无穷小这三种方法最为常用,其中解法二简单,但要记住此等价公式。解法三,利用函数奇偶性质和两个等价无穷小之差一定高阶无穷小性质求解这类问题,则比较新颖。实际上,无穷小比较的本质上还是函数极限的问题,因此函数的性质(四大特性)及极限的性质(保号性,有界性等)都可以用来解决这类问题。同学们这些方法,都get到了吗? 如果是你,会用哪些方法解题呢?欢迎留言分享。相关链接考研数学|真题一题多解系列,精选001考研数学|上岸985,等价无穷小要掌握到什么程度?考研数学,一文搞懂无穷小可以等价替换的5个情形考研数学|变限积分函数无穷小的等价性
大家好,我是老梁考研数学!这两天学校期末事情多,使得《真题一题多解系列》断更时间较长,抱歉!今天老梁继续给大家推送《考研数学真题分类解析系列》第008期,选择一道幂指函数极限计算的客观题,对于客观题,除了通用解法之外,特殊值法也上常常采用的方法,除了对函数采用特殊值,也可对参数采用特殊值。真题及解析【例008】(2010数1)【分析一】这是一个1的无穷幂指型未定式极限的计算,常用下列简便公式:【解法一】【分析二】将极限式中分式项倒数变形、再利用乘积的四则运算,简化计算。【解法二】【分析三】由于是客观题,且极限式含有参数,因此可对两个参数取特殊值排除错误选项。【解法三】【评注】特殊值法,选取特殊值的原则是能区别选项,如本题也可选b=-a=1。总结(1)解法一是解决幂指函数未定式极限的通用方法,在本题的三个解法中是最费时的方法;(2)如果一个极限式所含分式“头重脚轻”,即分子为单项式而分母为几个单项的和,这时一般可采取倒数的方法简化计算;(3)若客观题含有抽象函数或参数,则可使用特殊指法,对函数或参数取不同的值来排除错误选项(选择题)或直接得到结果。方法总结 归纳题型奇思妙解 就找老梁往期回顾考研数学|两类含有限加和幂指型未定式极限计算|无穷大(小)替换考研数学|真题一题多解系列,精选007|已知极限反求未知参数考研数学|真题一题多解系列,精选006|中值问题考研数学|真题一题多解系列,精选005|5种方法30年考研数学真题分类解析|专题三:极限基本理论
大家好,我是老梁考研数学!今天老梁继续给大家推送《考研数学真题分类解析系列》第六期,精选了一道拉格朗日中值定理的中值极限问题。真题及解析【例006】(2001数1)【证明】(I)由拉格朗日中值定理,下面证明θ的唯一性。导数方程根的唯一性的证明一般有两种方法:函数单调法和罗尔定理法。【评注1】(I)问的证法二并没有利用到二阶导数“连续”的条件。(II)证法一:由(I)问,有【评注2】本法证明也没有用到二阶导数连续条件。证法二:由拉格朗日中值定理,由(I)问,又由泰勒中值定理,结合(*)和(**)两个式子,有【评注3】本法证明中用到了二阶导数连续这个条件。证法三:根据麦克劳林公式,故由(I)问,【评注4】本法证明也没有用到二阶导数连续条件。总结从本题第(I)问的证法二中和第(II)问的证法一、三中都可以看出,本题的条件“二阶导数连续”可减弱为“二阶可导”;一般来说,皮亚诺型余项的泰勒公式条件弱于拉格朗日型余项的泰勒中值定理的条件;在对函数在某个区间上(整体)考虑问题时,一般使用拉格朗日型余项的泰勒中值定理,而在求极限、极值点与拐点判定等局部问题中,用皮亚诺型余项的泰勒公式(麦克劳林)可能更简单,方便一些。方法总结 归纳题型奇思妙解 就找老梁往期回顾考研数学|真题一题多解系列,精选005|5种方法考研数学|真题一题多解系列,精选004|反用等价无穷小考研数学|难点突破!递推数列单调有界原理方法之有界性证明考研数学|真题一题多解,精选003|∞-∞型未定式移位变形小技巧考研数学|极限可用夹逼准则计算的n项和数列,就这3种类型!
众多考生都知道,考研是离不开复习资料的,课本除外,没有资料就相当于士兵没有刀枪,徒手上阵。所以,找资料成了每一届考研学生的必须要做的事情,那么,在诸多复习备考资料当中,首推的就是一手的真题资料,这是一手考试资源,利用的好,能多加十几分。下面是2020考研数学二的真题及答案解析:来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)