欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
数据科学与大数据技术专业的女生,读研时有哪些方向可以选择斑夏

数据科学与大数据技术专业的女生,读研时有哪些方向可以选择

首先,对于当前选择数据科学与大数据专业的同学来说,继续读研是不错的选择,一方面原因是当前大数据技术尚处在落地应用的初期,人才需求更注重以研究生为代表的高端人才,另一方面随着产业结构升级的持续推进,未来高端人才也会有更多的发展机会。大数据专业在读研时可以重点考虑两个大的主攻方向,其一是继续从事大数据方面的研究,虽然大数据的技术体系已经趋于成熟,但是大数据领域的创新空间依然非常大,尤其是大数据与产业领域的结合,会有大量的创新点,所有如果选择专硕,可以重点考虑如何利用大数据技术在产业领域创新,这也会为自己打开新的发展路线。其二是选择主攻人工智能领域的相关方向,由于大数据技术与人工智能技术的关系非常紧密,所以在读研期间主攻人工智能相关方向也比较方便。相对于大数据方向来说,人工智能技术体系远没有成熟,所以人工智能技术的创新点还是非常多的,当前计算机视觉、自然语言处理、机器学习等方向也是比较热门的方向。由于数据科学与大数据技术专业是比较新的专业,所以在读研时,如果想有更大的选择空间,可以考虑选择计算机专业,实际上计算机专业也是培养大数据方向研究生的主要专业之一。另外,当前统计、经济、金融等专业也有培养大数据方向研究生的能力,如果未来想在相关领域发展,也可以考虑考研这些专业。最后,虽然算法岗位的岗位附加值比较高,也相对比较适合女孩从事,但是算法岗位当前的竞争还是非常激烈的,所以在读研期间一定要重视开发能力的培养,这也会扩展自己的就业面。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

癞蛤蟆

本科大数据考研考什么专业?能选择专业的太多了!

大数据是目前互联网很火的一个词,在高考时,很多考生都选择了其对应的专业“大数据”,有些在本科所学知识涉及到大数据的很少,多和计算机相关的。那么本科大数据考研考什么专业?大数据专业属于计算机专业的一种,考研可以选择计算机科学技术一级学科门类下的专业。考研时可以选择考学硕或者专硕,专硕报考人数相对多。学硕偏向学术理论,专硕偏向实践应用。学硕的学科是计算机科学与技术,而专硕计算机所有相关的专业在报考时基本上不区分专业,统一为电子信息硕士,不同学校,电子信息研究方向不同,甚至同一个学校不同学院电子信息方向也不同。计算机科学技术下分专业有:保密科学与技术、大数据科学与工程、高可靠嵌入式系统、海洋技术、集成电路与系统、计算机科学与技术、计算机软件与理论、计算机网络与信息安全、计算机系统结构、计算机应用技术、健康大数据与智能医学、金融信息工程、人工智能、数据科学、数据科学和信息技术、数字媒体技术、网络安全技术与工程、网络信息安全、物联网工程、物联网工程与技术、物联网技术、新药物与新材料、信息安全、医疗信息技术、智能交通技术、智能科学与技术、智能医学诊疗。如:大数据科学与工程,开设的院校有:中国人民大学。如计算机科学与技术,开设院校最多,如:(以下仅展示部分)以北京大学软件与微电子学院的电子信息(专硕)为例,一共有9个方向,分别是(01)软件工程(02)网络安全(03)智能科技(04)软件 程实验班(05)集成电路(06)电子通信(07)集成电路实验班(08)金融科技(09)计算机技术。再以浙江大学为例,多个学院均招收电子信息专硕,而且每个学院的电子信息方向都不同,和本学院有一定的相关性,像生物医学工程与仪器科学学院的电子信息专硕研究方向有生物医学工程、仪器仪表工程。那么学大数据的同学了解后,可以选择考学硕也可以选择考电子信息专硕,具体再看高校的研究方向是否感兴趣,再进行选择。可以直接在中国研究生招生信息网的硕士目录进行查询。想了解更多精彩内容,快来关注51考研网

閟宮

解密“数据科学与大数据技术”专业

我们生活在一个充满“数据”的时代,打电话、刷微博、聊QQ、用微信,阅读、购物、看病、旅游,都在不断产生新的数据。不管你是否认同,大数据时代已经来临,并将深刻地改变着我们的工作和生活,世界已经进入由数据主导的“大时代”。近年来,高校新设置的“数据科学与大数据技术”专业变得炙手可热,那么该专业培养目标是什么?学些什么?专业前景如何?对学生又有哪些要求呢?热门专业 2018年3月21日,教育部公布了《2017年度普通高等学校本科专业备案和审批结果》,共有862所高校新增了2311个专业。其中最热门的专业当属当属“数据科学与大数据技术”,共有248所高校申请获批,占新增专业申请的高校数超过1/3。根据教育部在2012年发布了《普通高等学校本科专业目录》,“数据科学与大数据技术”并不在其中,属于目录外专业,需要审批设置。该专业最早在2016年获得批准设置,在教育部公布的《2015年度普通高等学校本科专业备案和审批结果》中,有北京大学、对外经济贸易大学、中南大学3所高校获批。而在2017年教育部公布的《2016年度普通高等学校本科专业备案和审批结果》中,获批新增“数据科学与大数据技术”专业的高校达到了32所。可见,三年来,开设“数据科学与大数据技术”专业的高校数量迅速膨胀,累计达到了284所。如此多的高校对它青睐有加,“数据科学与大数据技术”到底是一个什么专业?培养目标与学习内容 “数据科学与大数据技术”专业是培养以计算机科学、统计分析为基础,具备经济、金融、物流、商业、贸易、 管理等相关学科的领域知识,能推动并引领未来全球“互联网 +”、云计算、大数据技术在各领域的深入应用,具有较强的实践创新能力、跨文化交流能力和跨领域研究能力的高素质复合型人才。从上述培养目标可以看到,该专业的核心是计算机和统计分析,但需要具备多个领域的相关知识,培养目标也是复合型人才。在课程设置上,除了基本的计算机学科和统计学课程,还包括了微观经济学、计量经济学、国际金融、搜索引擎、自然语言处理、数据可视化、机器学习、模式识别以及大数据技术平台等相关课程。专业“钱”景 “数据科学与大数据技术”专业培养的是当下最热门的大数据、云计算、人工智能、算法分析等行业急需的人才。全球顶尖管理咨询公司麦肯锡分析报告显示,到2018年,大数据或者数据工作者的岗位需求将激增。其中大数据科学家的缺口在14万到19万之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达到150万!从国内就业市场来看,根据BOSS直聘发布的《2017春季互联网人才趋势报告》,大数据和人工智能相关岗位出现全行业的旺盛需求,人才供给严重不足。其中,缺口较大的是搜索算法,供给量只能达到需求的44%,还有56%的缺口;推荐算法的缺口比例为50%,算法研究员的为43.9%,图像算法的为43%,深度学习的缺口量排在第十,为33.8%。从国家层面上看,”互联网+”已经上升为国家战略,以大数据战略为牵引,以信息安全、传感器、人工智能等为重点,打造新一代信息技术产业集群。2017年7月,国务院印发《新一代人工智能发展规划》,明确提出我国新一代人工智能“三步走”发展战略,人工智能产业要成为新的重要经济增长点,助推我国产业升级和经济转型,并成为世界主要人工智能创新中心。在就业“钱景”方面,各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。以基本的Hadoop开发工程师为例,入门月薪已经达到了8K 以上,工作1年月薪可达到 12K 以上,资深的hadoop人才年薪可达到30万—50万。热门专业的冷思考 看到这里,是不是对“数据科学与大数据技术”专业跃跃欲试呢?且慢,对于热门专业,我们需要冷思考!就像前几年大热的物联网工程专业,很多学校一哄而上,但是专业课程设置不合理,计算机和通信的课程搞成大杂烩,两边的核心内容都没学好。师资也是赶鸭子上架,上课就是念念PPT,考试也是走过场。毕业出来,才发现基础知识不牢靠,后悔也迟了。对于高校来说,开设“数据科学与大数据技术”专业,需要有多学科的专业积淀,需要有经验的师资队伍,更需要有行业背景。很多高校只是因为专业热门,就拼拼凑凑开设起来,其实各方面积累很不够,学生报考时需要檫亮眼睛。对于学生来说,该专业对数理统计、计算机科学的知识要求很高,数学基础不牢靠的学生需要慎重选择。再者,对于将来当“码农”辛苦加班的日子也要有心理准备哦。对于很多同学来说,笔者建议在本科阶段深入学习一门本科专业,如计算机类、数学类、统计学类,然后再考研深造大数据类、人工智能的专业,既具有深厚的底蕴,又具备鲜明的专业特点,才能有更大的发展空间。不管怎样,对于专业选择,第一是兴趣,第二还是兴趣,有了兴趣才有学习、深造的动力!对了,对人工智能感兴趣的童鞋,“智能科学与技术”专业也是不错的选择哦。这个专业融合了电气、计算机、传感、通讯、控制等众多学科领域,也是培养跨学科的复合型人才,限于篇幅就不多讲了。原创不易,如果您感觉此文很有帮助,请鼓励支持下吧!↓↓↓狗日的作业!最能让青少年成长30部英文电影(下)最能让青少年成长30部英文电影(上)最适合亲子观看的16部BBC纪录片(建议收藏)!这才是中国孩子最需要补的一门课这才是中国父母最需要补的一门课和青春期的孩子对着干?赢了当下,输了未来!不背单词,不上辅导班,能学好英语?这个爸爸的实验结果是……让魔都家长扎心的“公民同招”,开错了药方!曹杨二中王洋校长访谈录——从一个学生家长的视角

闻所未闻

一名大数据专业研究生的自述:跟上这个时代是挺好的事

走进经济生活里的一切导读:2016年2月,教育部公布新增“数据科学与大数据技术”专业,北京大学、对外经济贸易大学、中南大学成为首批获批高校。次年,又有32所高校获批。此次248所高校获批“数据科学与大数据技术”专业,几乎是前两次获批高校的8倍。来源丨21世纪经济报道(ID:jjbd21)记者丨王峰 北京报道图片来源/ 图虫创意(资料图)“没有什么行业是没有数据的”“我认为没有什么行业是没有数据的。”清华-伯克利深圳学院数据科学与信息技术专业一年级硕士生王宇杰说。 他在去年9月从一名工科本科生跨学科进入了大数据专业。大数据专业正成为时下火热的高校新增专业。在4月28日举行的教育部新闻发布会上,教育部高等教育司副司长范海林介绍,2017年全国高校备案专业中,新增数据科学与大数据技术专业点250个,同比增加了近7倍。从中国人民大学、北京师范大学、厦门大学等知名大学,到一些地方院校均投入了这股热潮。王宇杰大二时在一次展会上不经意接触到了一款大数据可视化软件Tableau,由此对大数据产生了浓厚的兴趣。通过Tableau,王宇杰感受到,数据分析这个行业的潜力无可限量。随着移动互联网大数据时代的到来,数据量正在不断增长。未来,更多人将学会分析数据,并将数据的洞察运用到工作和生活中的方方面面。数据分析会从小众走向主流,人人都可以成为数据分析师。接下来的大学时间里,他参加了一些数据科学家训练营,和一些商业机构组织的训练营,还在慕课网站上自修了国外大学的大数据课程。他在2016年的Tableau可视化分析争霸赛北京赛区比赛中拿到了第一名。Tableau可视化分析争霸赛是全球可视化数据分析人士的年度饕餮盛宴,每年都会成千上万数据狂人参加这一比拼。这其中,既有来自各行各业的数据分析专家,也有像王宇杰这样的数据爱好者,而王宇杰是获奖选手中唯一一名大学生。通过这些活动,王宇杰结识了这个一不断壮大的数据分析社区,也让他对这个行业更加充满热情。大四时,王宇杰得到了保研的机会,“国内开设大数据方向研究生专业的大学并不多,主要有清华大学、北京大学、复旦大学、北京航空航天大学等,这是当时比较知名的几个高校。”王宇杰说。王宇杰得到了北大和清华的offer,权衡之后,他选择了清华-伯克利深圳学院,这是清华和伯克利合办的硕士研究生项目,不仅可以在清华拿到数据科学学位,还有机会到美国加州大学伯克利分校去进行为期9个月的学习,同时拿到相关学位。“我是清华-伯克利深圳学院招收的第二届硕士生,也就是说,大数据专业其实是一个非常崭新的学科,在我申请的那一年,相对来说,大家对这个概念还不是特别了解,当然已经有一定数量的申请者,远超我们实际录取的人数,但并不是那么的火爆。”王宇杰说。“到了我下面那届,就是招收第三届硕士生的时候,竞争就变得异常激烈,在短短一年时间里,这个专业成为了大家认可的非常有潜力的专业,大批的工程本科生,或者是数学、经济方面的学生开始申请我们这个方向,因此录取率直线下降。个人感觉在近几年内,竞争会变得越来越激烈。”他说。清华-伯克利深圳学院的数据科学与信息技术研究中心设有6个实验室,分别为传感器与微系统实验室、纳米器件实验室、物联网与社会物理信息系统实验室、未来互联网研究实验室、大数据实验室、智能成像实验室。“我想一般人会认为我们专业课的名称会比较高大上,像大数据分析、大数据基础等,的确会有这些,但从本质上来说,我认为我们学的课程跟数学、工程学这些基础学科没有太大区别,当然加入了一些新兴科技的课程,比如现在很火的深度学习、人工智能。”他告诉记者。王宇杰进入了智能成像实验室,学习和科研课题是关于计算机视觉。“用一句话来概括,我们要做的是赋予计算机人的视觉能力。怎么理解呢?以后是一个有大量机器人存在的世界,而机器人要跟人类进行交互,做一些基本的工作,必须要有视觉能力,看得懂周围的环境,所以我们做的事情就是通过技术的方法让计算机拥有人的这种视觉能力。”他说。热门专业:数据科学与大数据技术图片来源 / 新华社(资料图)3月21日,教育部公布了2017年度普通高等学校本科专业备案和审批结果。在新增备案本科专业中,“数据科学与大数据技术”最为热门。根据统计,共有250所高校新增“数据科学与大数据技术”专业,其中包括中国人民大学、北京师范大学、厦门大学等19所教育部直属高校。河南省21所高校新增该专业,为最多的省份。河北、山东、安徽、广东、江苏等省也有较多高校成功获批。2016年2月,教育部公布新增“数据科学与大数据技术”专业,北京大学、对外经济贸易大学、中南大学成为首批获批高校。次年,又有32所高校获批。此次248所高校获批“数据科学与大数据技术”专业,几乎是前两次获批高校的8倍。该专业备受高校青睐与国家大力支持大数据产业发展及该产业人才奇缺相关。国务院2015年8月曾印发《关于印发促进大数据发展行动纲要的通知》,明确鼓励高校设立数据科学和数据工程相关专业,重点培养专业化数据工程师等大数据专业人才。根据教育部上述2017年度高校本科专业备案和审批结果,此次共有60所高校获批“机器人工程”专业。“机器人工程”专业大热的背后,是人工智能行业的持续发展。3月6日,南京大学官网正式发布新闻,经研究决定,南京大学正式成立人工智能学院。今年政府工作报告中四次提及“智能”,并特别指出要“加强新一代人工智能研发应用”、“发展智能产业”。值得注意的是,从清华大学到地方高校,大数据专业成为普遍的时尚。“清华或者其他一般院校,在这个领域里对科研的贡献会有差异,但事实上,在如今的大环境之下,大家都想跟上时代潮流,所以我认为无论处于怎样的研究水平,敢于去跟上这个时代,就是挺好的一件事情。”王宇杰说。“大数据是一个概念,它包含的范围非常广,不同的专业方向,对外显示的名称可能都是大数据分析、大数据工程与技术,但是整个产业其实非常庞大,从前到后拥有一个很大的产业链。”他说。“我认为数据分析师这个称谓已经太过宽泛了,我觉得这个行业需要细分,未来会有专门做算法的工程师,专门做硬件实现的工程师,以及专门做理论推导的科研人员等。”他说。(编辑 戴春晨)

红财神

数据科学与大数据技术专业哪家强?考取难度排名前100院校出炉!

1.排名情况1.1院校层次分布2015年9月国务院推出《促进大数据发展行动纲要》,同年数据科学与大数据技术成为新增备案专业。数据科学与大数据技术距今仅发展了5年,现发展基本稳定且还处于探索阶段。数据科学与大数据技术专业考取难易度排名前100的院校中211及以上院校占29%,重点院校占55%。表1 数据科学与大数据技术专业考取难易度排名Top100数据来源:2018年全国普通本科批录取数据(西藏数据缺失)注:1.本排名代表各院校此专业的综合考取难度排名,单个省份中可能存在差异;2.本排名不包含招生简章中未注明具体招生专业的院校;3.本排名不包含中外合作专业;4.重点包含省重点和全国重点。2.考取难度解析2.1 知名财经类大学热度高上海财经大学、对外经济贸易大学的数据科学与大数据技术的考取难度仅次于同济大学。上财的数据科学与大数据技术为数学、计算机科学和统计学的交叉学科,该专业分为理学和工学两个专业方向,理学方向的建设基础是统计学,工学方向的建设基础是计算机科学与技术。对外经济贸易大学的数据科学与大数据技术专业涉及统计学、数学、计算机科学、经济学、金融学等方面的知识,致力于打造能够从事经济、金融、管理等领域的数据分析工作的复合型人才。2.2 中国农大数据科学与大数据技术的报考难度高中国农业大学的数据科学与大数据技术考取难度排在第9位,该院校的数据科学与大数据技术专业于2018年新增。该专业设有国际班,就读于中国农大数据科学与大数据技术专业的学生有机会获得500强高校的学历学位。专业课程设置侧重于计算机,如:Spark核心编程、数据可视化等,基本符合当今的市场需求,可从事职业也较为多元化,不局限于数据分析和数据挖掘。特别声明:本文为优志愿原创作品。未经著作权人授权,禁止转载和使用,否则将承担法律责任。填志愿时在大厚本上翻找资料,很容易遗漏掉一些不错的院校,优志愿分享高考资讯、填报志愿、大学、专业等相关的信息,帮助您轻松获取历年分数线等数据资料。

三月聚粮

选择数据科学与大数据技术专业,该如何确定学习重点和考研方向

首先,当前在本科阶段选择数据科学与大数据技术专业是完全可以的,未来随着大数据技术开始逐渐落地应用,大数据领域的人才需求类型也会逐渐多元化,本科生甚至是专科生都能在大数据领域找到适合自己发展的岗位。虽然大数据专业的发展前景不错,但是学习大数据专业的压力还是比较大的,一方面大数据本身涉及到数学、统计学和计算机的诸多学科,知识量比较大,另一方面大数据技术体系的学习难度也相对比较高,需要完成大量的实验。虽然大数据专业涉及到的内容比较多,但是如果不能有一个自己的主攻方向并持续深入,很容易导致自身的专业性不足,这会影响自己的就业竞争力。如果有明确的考研计划,应该围绕考研的要求来制定学习计划,由于当前大数据专业的硕士点并不算多,所以考研的时候可以考研计算机专业。当然,当前除了计算机专业之外,统计学、金融学等专业也有培养大数据研究生的能力,学生可以根据自身的实际情况和发展规划来选择具体考研哪个专业。如果没有考研的计划,应该选择一个自己的主攻方向,围绕行业领域的岗位需求来制定学习计划,比如当前可以重点关注一下大数据开发方向,当前开发方向的人才需求量还是比较大的,而且未来在工业互联网时代,大数据开发人才的需求潜力会进一步得到挖掘和释放。最后,对于大一的新生来说,不论未来是选择考研还是就业,在大一和大二期间应该重视参加一些专业比赛,这不仅会促进自身的学习,同时也会开阔自己的眼界。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!

樛木

美国十大热门数据科学Data Science硕士项目解析 | 指南者留学

编者按:项目分析是由我们指南者留学新推出的一个专栏。应广大粉丝号召,我们将挑选部分热门专业,对比分析不同开设院校的项目特色、申请难度、申请要求、就业数据、课程设置、师资力量等,都是干货接地气的信息,希望对大家选校和申请准备有所帮助。很多同学对成为数据科学家(Data Scientist)很感兴趣,我们在这里介绍一下Data Science和Analytics这类专业的申请特点和如何定位。严格地说,Data Science和Analytics不一样,同样是做Data Scientist不同行业不同公司侧重点也可能不一样。本文主要从申请出发,故不做特别区分。下面我们将具体介绍10大热门数据科学硕士研究生项目:哥伦比亚大学哥伦比亚大学的MS in Data Science 项目处于美国数据科学硕士申请难度的第一梯队。该项目为期1年,学生共需修读30个学分,无需撰写毕业论文。该项目开设获得专业成就认证必需的四门基础课程,学生可以在此课程基础上将数据科学技术运用于各自的兴趣领域。该项目要求申请者拥有一定的数学及编程基础,最好学过微积分、线性代数、计算机编程等课程,没有强制性的工作经验要求,有的话也会为申请者加分。需要递交GRE成绩,托福100、雅思7.0,不可使用GMAT代替GRE成绩。项目的学生将有机会从事包括毕业项目在内的独创研究,并与行业合作伙伴以及教学人员沟通互动。毕业生可以选择金融等服务领域工作,也可以选择偏向技术的IT企业。杜克大学杜克大学的Master in Interdisciplinary Data Science (MIDS)项目为期2年,该项目致力于培养一批能够使用计算策略来激发创新能力和洞察力,并且善于定量思考的新型领导者。旨在培养学生成为能给任何领域做出贡献的数据科学家,通过跨学科训练与团队合作科学实验的经验促进学生更好地利用数据的力量。项目规模不大,每年招收25-35名学生。申请要求方面,不强制要求申请者有数学、计算机等专业背景,但是最好要学过微积分、线性代数、统计等数学方面的课程。需要递交GRE成绩,托福90,雅思7。毕业生去向良好,实习就业机会较多,从事的领域以计算机科学,金融,生物科学等领域居多。宾夕法尼亚大学宾夕法尼亚大学数据科学硕士项目为期一年半至两年,将有关机器学习、大数据分析与统计学等核心课题的前沿课程与多样化的选修课有机结合,给予学生选择在特定的目标专业领域内应用技能的机会。项目包括基础课程及数据科学应用领域的实习。要求提供GRE,无最低分数要求。托福100,雅思7.5。毕业生就业形势良好,就业率较高,可以进入工程技术、咨询、决策等领域。西北大学西北大学分析学理学硕士项目(MSiA program)由西北大学工业工程与管理科学学院开设,为期15个月。该项目的核心课程由统计学、机器学习、优化、数据库、数据处理组成,每一门课都已之前的课程为基础,强调在商业实际中的学术研究。申请要求方面,需要提供GRE分数,要求托福95,雅思7.5。适合本科工程、商学、计算机科学、数学、信息科学技术专业背景的人士。该项目面向商业,加上课程时间较短,有很多的实习机会,大部分学生毕业后选择直接工作,毕业生多进入金融领域。康奈尔大学康奈尔大学运筹学与信息工程硕士项目(数据分析方向)为期1年,共计30个学分,要求申请者拥有数学、工程、物理、化学、数学经济学等本科背景,且已经修读过微积分、概率论、统计、计算机编程、数据结构等课程。每年招收50人左右,其中中国人大约30个。该项目选课自由度很大,并且有选CS系课程的优先级,无论你是想学CS,IS还是商科,金融,统计,统统都可以选。这种选课的自由度放眼全美也是十分罕见的。申请者需要托福100(写作不低于20,听力不低于15,阅读不低于20,口语不低于22);雅思7;GRE数学不低于166,阅读不低于165,写作不低于3.5;不接受GMAT。毕业生2015年平均起薪达到83925美元,大部分学生进入苹果,微软,甲骨文,Facebook等互联网公司。南加州大学南加州大学计算机(数据科学)理学硕士项目需要修满28个学分,要求课程读完GPA不低于3.0,班级规模较小,每年招收20-30人,偏向于理论研究方向。要求申请者提供GRE,托福:90-100(单项不低于20);雅思:6.5-7(单项不低于6),不需要接受学校ISE测试,GPA3.0以上。该项目的毕业生可进入微软、百度等世界500强的企业机构。卡耐基梅隆大学卡耐基梅隆大学Heinz学院下设两个数据科学硕士项目:MSPPM Data Analytics track和MISM Business Intelligence & Data Analytics。一个偏技术导向,一个偏商科导向。这里只介绍技术型的MSPPM Data Analytics track项目。该项目分标准(Standard)、延伸(Extended)、快捷(Accelerated)三种修读模式,学制分别为16个月、20个月和12个月,总学分均为144个学分,每年招收学生较少。该项目要求提供GRE,不接受GMAT,托福100以上,雅思7以上。项目的综合性课程体系有助于学生习得专业技能与知识,以开发用于下一代大规模信息系统部署相关的技术层,以及分析这些系统生成的数据。毕业生就业形势良好,能够成为前沿信息技术、软件服务与社会传媒企业中备受青睐的软件工程师、数据科学家与项目经理人。佐治亚理工学院佐治亚理工学院的MS in Data Analytics项目是2015 Fall新开设的项目,有三个Track:Analytical Tools Track、Business Analytics Track、Computational Data Analytics Track。是跨学科硕士项目,根据以往的经验,这个学校的所有研究生项目都不太好申请,跟UC-Berkeley类似,申请难度较大。申请者需要提供GRE,且托福100,不接受雅思。学生有机会直接向顶级的国际商业智能权威机构、统计学与运筹学尖端分析技术的开发者,以及大数据与高性能计算领域的世界级领导者学习。毕业去向主要面向商业智能与决策支持。New York University纽约大学的MS in Data Science 以其超高的就业率一直人气颇高。这是一个2年制的项目,且拿到了STEM资质。班级规模30-40人,且50%为国际生。一般为期4个学期,要求学生有足够优秀的数学知识背景和一定的计算机科学基础知识,并且学习过微积分、线性代数、统计学、概率论以及计算机科学等课程。要求托福100,雅思7,接受GRE/GMAT。该项目跟CMU类似,有很多细分的项目,跟不同的院系合作设立,从偏技术到偏商业的都有,偏技术的相对好申请。北卡罗莱纳州立大学北卡罗莱纳州立大学分析学理学硕士项目是由高等分析研究所(Institute for Advanced Analytics)开设的全美第一个分析学硕士项目。NCSU analytics是分析学项目里的顶级老牌项目,但是学校综合排名不高。要求托福80(单项不低于18),雅思6.5(单项不低于6.5);不要求GRE/GMAT,每年招收20-30人,其中国际生50%。

田颖

大三计算机科学与技术专业的本科生如何准备考研

计算机科学与技术专业选择考研是不错的选择,一方面该专业比较注重基础知识,同时知识面也比较广阔,另一方面该专业考研之后会打开更多的就业渠道,在当前IT行业进行结构调整的大背景下,研究生的岗位起点和薪资待遇都相对比较高。计算机科学与技术专业在考研专业方向的选择上还是比较灵活的,计算机相关专业几乎都可以考虑,在具体研究方向方面应该结合目标学校的资源整合情况,同时结合当前行业发展的大趋势,可以重点考虑一下大数据、云计算、物联网和人工智能相关方向。对于基础比较薄弱的本科生来说,考研应该尽早准备,在复习的初期可以先多选择几个目标学校,但是要注意考试内容的一致性,在复习一段时间之后再最终决定选择哪个。由于研究生阶段主要以培养创新型人才为主,所以在目标学校的选择上尽量选择资源整合能力强一些的高校,这样会有更好的学习体验,未来的就业也会更有保障。计算机相关专业是当前的考研热门,所以在复习的时候要注重三方面内容,其一是注重专业知识面的拓展,不仅要为初试做准备,还要考虑到复试环节;其二是注重动手实践能力的锻炼,大三期间的专业课实验一定有重视,因为一部分高校在复试环节会设置“上机考试”,重点考察学生的实践能力;其三是根据自身的知识基础制定复习计划,最好按照时间段制定复习计划,以保证各个考试科目的整体复习进度。最后,在复习考研的过程中,一定有注重逐步提升自己的有效复习时间,在复习的初期可以定在每天5个小时左右,然后逐步进行提升,争取在报考之前多完成几轮复习,尤其是数学和英语,这两个科目的考试内容相对比较多,成绩的提升往往需要时间的积累。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

富则多事

入行数据科学一定要有研究生学位吗?

作者 | Jeremie Harris翻译 | MikaCDA 数据分析师原创作品,转载需授权首先我要说的是,我是一名博士肄业生。这个头衔给我带来了所谓的光环,它暗示我在研究生院待过,做过一些学术研究。完成博士学位,意味着你不过是千万个”书呆子”中的一员,而在学了几年后辍学似乎显得你更有个性。人们期待知道你之后会做些什么。他们可能会说,“特斯拉的CEO Elon Musk就选择放弃研究生学位,离开学校去创业,你也可能成为下一个Elon!”那么如果想入行数据科学,学历重要吗?一定需要博士学历或研究生学历吗?在本文中我将分享我的看法。我在数据科学导师制创业公司工作。在工作中,我已经面试过数千位有抱负的数据科学家,当中有些人有博士学位,有些有硕士学位,有些是本科生,也有各个阶段的肄业生。这也让我对数据科学职业有了更深的认识。STEM:科学(Science),技术(Technology),工程(Engineering),数学(Mathematics)这四门学科有许多人会向他人咨询,是否要继续深造读研或读博,而当中很多人对前景没有全面的分析。其实不是所有的学位都适合每个人,原因如下。一、博士学位(这可能会让许多有博士学位的人感到不舒服,在此我提前道歉。)“我看到许多数据科学工作都需要博士学位。我是否要有博士学位才能成为数据科学家呢?“不,并不需要。不要误会我的意思,博士头衔的确会给你带来明显的优势。但也要考虑一些现实因素。如果你的目标是成为数据科学家或机器学习工程师/研究员,那么有博士学位会给你加分不少。但与此同时也要考虑以下两点:1.获得博士学位需要非常长的时间。2.除非你跟着合适的导师,攻读合适的学位,否则你可能学不到任何有价值的东西。针对第1点,在美国或加拿大,获得博士学位需要4年到8年才能完成。平均需要5到6年,具体取决于学校。现在让我们把它放到透视中。在数据科学领域瞬息万变,5年内各种成果层出不穷。要知道,在5年前Spark、XGBoost、jupyter notebook、GloVe、spaCy、TensorFlow、Keras、Pytorch、InceptionNet、ResNet、强化学习等等都还不存在。因此,除非你打算当新技术出现时,花时间自己钻研。否则你会发现学习期间接触到的技术远远跟不上当下的发展。这意味着即使你毕业后,还需要自己学习这些技术。关键在于,数据科学和机器学习的发展非常快,在未来只会发展得更快。因此,当考虑攻读数据科学或机器学习相关领域的博士学位时,你实际上是把赌注都下在你所要学习的领域。你希望在毕业时,该领域还是炙手可热的。而这样的赌注很冒险,而且赌注很高。第2点,思考一下你的导师是谁,为什么他们没有在Google或Facebook工作。当然,有些人更喜欢学术研究,而不是在行业中运用数据科学或机器学习。但值得记住的是,行业顶级的机器学习人才的薪资是非常丰厚的,因此学术界的可能会稍逊一筹。当然,有些地方也有些例外。这主要指的是加拿大的Vector Institute或MILA;麻省理工学院和美国伯克利的数据科学课程等顶级精英项目。总结一下:如果你只想成为Airbnb的深度学习工程师,那么博士学位一定程度上能成为你的敲门砖。但是,如果你不是在顶级项目中攻读博士学位,那么不要期望被行业顶尖的公司录用。但是,如果你想找份普通的数据科学工作,获得博士学位可能并不是正确的举措。你可以用4到8年的时间获得丰富的工作经验,去成长为一名真正的数据科学家,那么出现新技术时,你能更好的进行预测,保持领先的位置。如果你考虑攻读与数据科学无关领域的博士学位(例如物理,生物学,化学),并且目标是找数据科学方面的工作,那么这条建议可能有些刺耳:如果你离毕业还有18个月或更长时间,而且你确定自己想成为一名数据科学家,那么可以考虑辍学。考虑到沉没成本,你应该对之前决策感到质疑,根据我之前的经验来看放弃可能是正确的选择。二、硕士学位入行数据科学需要硕士学位吗?视情况而定。以下是我列出的记分表,如果根据你的情况,分数大于6,那么答案是“硕士学位可能会有所帮助”。你有非常相关的STEM背景(物理、数学、计算机科学等本科学历):0分你有较为相关的STEM背景(生物学、生物化学、经济学等本科学历):2分你没有相关的STEM背景:5分你有不到1年的Python使用经验:3分你没有编程相关的工作经验:3分你不认为自己擅长独立学习:4分当我说这个记分表实际是一个逻辑回归算法时,你不明白我的意思:1分注意:需要考虑的是,你是否需要数据科学硕士学位或数据科学训练营。如果选择参加训练营,要注意他们的激励措施:是否课程完成后保证聘用?是否有与训练营相关的求职指导服务?许多人都对训练营持怀疑态度,这是有道理的。但大多数忽略的是,他们对待大学所提供的相关硕士学位也该如此。巩固硕士学位就相当于训练营。如果你不在乎你的成绩,那么要注重你从中学到了什么。在选择相应的硕士学位和课程项目时要询问其研究生就业率。有的大学希望学生选一个简单的专业,而不是好的专业,这是一场心理博弈。你的目标是最终被聘用,找到理想的工作,而不是仅仅为了一纸文凭而付出时间和精力。即使完成了硕士学位,你还需要学习很多技能,可能比你预想的还要多。但只要硕士课程的时间较短(最好不超过2年),成本不是太高。三、本科学位总的来说,是的,成为数据科学家你需要相关本科学位。不仅仅是因为你需要掌握相关知识,而且公司并不认为你通过自学,参加训练营和一些在线课程就能胜任数据科学的工作 。但关于本科学位你要注意的是,如果你和科技行业的人聊聊,你很快会发现科技型工作中涉及到的内容要远远超出学校课本。这是因为学校所教的本科课程一般比现实情况要滞后5到10年。如果你学的是不会发生很大变化的专业是没有太大问题的,比如如物理、数学或统计数据等。但是如果你是工程或计算机科学专业,并且你在一家出色的公司实习,你想休学或肄业来获得更多的工作经验,那么你可以考虑这样做。如果你读本科的目的是为了获得一份工作,你已经在一家有不错前景的公司获得职位,那么何必多付几年学费呢。我的意思并不是你应该不读完本科就去工作,我想说的是,如果你完成了实习并且获得了相应的全职工作,那么对于是否完成学业应该有更开放的观念。而不是因为大家都这么做,才做出这种选择。结语在本文中,我给出的一些建议可能不是那么常规。但在数据科学这样快速发展的领域,惯例往往并不是最优选择。当今社会中,人们对传统教育价值的看法应该与时俱进。当然,这并不意味着正规教育以及研究生学位是不值得的。但是,不应该认为获得硕士或博士学位是必备的。如果你读研读博只是为了符合数据科学职业轨迹的刻板印象,那么你可能需要重新考虑了。

黑豹天

计算机科学与技术专业的大一学生考研可以选择哪些方向

首先,本科期间选择计算机科学与技术专业在读研时会有更多的选择,一方面原因是该专业的知识面比较广泛,另一方面原因是该专业比较注重基础知识的学习,会为学生打下一个扎实的数学、物理、电子电路等知识基础,所以如果有明确的读研计划,选择计算机科学与技术专业是比较理想的选择。在选择考研方向时,结合目前计算机行业的发展趋势,以及当前产业结构升级的大背景,可以重点考虑一下边缘计算、大数据、物联网、区块链和人工智能相关方向,这些方向未来的发展空间都比较大,而且研发型人才的需求量也会比较大。边缘计算是继云计算之后又一个热点方向,未来行业领域将普遍采用“云+边”的业务处理模式,从大的技术方向来看,也可以把云计算看成是边缘计算的一部分。当前边缘计算尚处在发展的初期,所以更容易做出一定的创新成果,可以重点关注一下。随着5G通信的落地应用,未来边缘计算的发展空间还是非常大的。大数据当前正处在落地应用的初期,虽然从技术体系结构上来看,大数据技术已经趋于成熟了,但是大数据在落地应用的过程中依然会释放出大量的创新点,所以当前读研选择大数据方向依然是不错的选择。选择大数据方向还可以与行业领域(金融、医疗、出行等)相结合,这样会在一定程度上提升自身的就业竞争力。物联网方向是当前的热点方向,而且由于物联网目前对于大数据和人工智能技术的发展都有比较关键的作用,所以未来物联网的发展速度将进一步加快。当前选择物联网方向可以考虑物联网与人工智能相结合(AIoT)的细分方向,未来AIoT领域的就业机会还是比较多的。区块链技术在2019年受到了广泛的关注,随着行业领域的应用场景逐渐成熟,未来区块链技术的落地应用将成为一个大的发展趋势,所以这个过程必然会释放出大量的人才需求。选择区块链方向需要重点考虑一下目标学校的资源整合能力,资源整合能力越强则学习效果也会越好。最后,人工智能方向也是目前一个热度比较高的方向,而且由于人工智能的发展空间非常大,所以人才需求也相对比较多。虽然人工智能的前景比较好,但是当前算法岗位的招聘数量却并不多,这在2019年的秋招时有比较明显的体现,这一点应该引起一定的重视。但是从长远发展来看,人工智能方向的前景还是非常值得期待的。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!