第八章 运动和力标准评价卷(考查内容:第八章 时间:60分钟 分值:70分)一、填空题(每空1分,共14分)1.典力学的先驱,伽利略在实验的基础上运用科学推理的方法,正确地揭示了:力不是________物体运动的原因,而是________物体运动状态的原因。2.为了防止校园踩踏事故分发生,同学们下楼时不能走得太快。如果走得太快,当前面的同学意外停下来时,后面的同学由于________,会继续向前运动,这样容易拥挤而发生踩踏事故。3.图2中的水平桌面足够长,不计托盘质量和滑轮与绳的摩擦。物体A重10N,当物体B重为2N时,物体A保持静止,这时A物体受到的摩擦力为________N;当物体B重为3N时,物体A向右做匀速直线运动,运动一段时间托盘着地,此后物体A做________运动,受到的摩擦力是________N。图14.如图2所示,在玻璃杯里装上大半杯米,把一根筷子插在中间,将米压紧并使筷子直立,再往杯内加少许水,过一会儿拿起筷子,可以看到筷子把装米的玻璃杯提起来。这是因为米吸水后发涨发涩,既增大了米对筷子和米对玻璃杯的________,又增大了它们接触面的粗糙程度,从而增大了摩擦力。若米重2N,玻璃杯重1N,则当筷子提着米在空中静止时,米与筷子的摩擦力为________N。图25.天气炎热时多喝水有益于身体健康。图3是某同学买瓶装矿泉水时的情景。当该同学用手握住瓶子使瓶身竖直在空中静止不动时(图甲),手与瓶的摩擦力和瓶子受到的________是一对平衡力,此力的方向________;瓶盖上有一道道条纹(图乙),其目的是在用手拧开瓶盖时能________(选填“增大”或“减少”)摩擦。图36.随着人们生活水平的不断提高,汽车已成为寻常百姓家里的代步工具,小丽的爸爸用汽车送她上学,走到学校附近的路口,向左来了一个急转弯.小丽顿时产生被向右甩出的感觉。请用惯性的知识解释这一现象。答:________。7.惯性是物体保持静止状态或匀速直线运动状态的性质,而力的作用效果之一是改变物体运动状态,在同样的力的作用下,物体的运动状态改变的越小,我们就说这个物体的惯性越大。根据上面的简述和你对生活的观察,你认为物体的惯性与________有关,你的判断理由是________。二、选择题(每小题2分,共16分)在每个小题的选项中,只有一个选项符合题目要求,请将其字母代号填入题后的括号内。8.教室的门关不紧,常被风吹开,小明在门与门框之间塞入硬纸片后,门就不易被风吹开了。下列解释合理是( )A.门被风吹开是因为门没有受到摩擦力的作用B.门没被吹开是因为风吹门的力小于摩擦力C.塞入硬纸片是通过增大压力来增大摩擦D.塞入硬纸片是通过减小接触面的粗糙程度来减小摩擦9.长方体木箱放在水平地面上,木箱上放一木块,则下列分析正确的是( )A.木箱受到的重力和地面对木箱的支持力是一对平衡力B.木箱对木块的支持力和木块对木箱的压力是一对平衡力C.木箱对地面的压力和地面对木箱的支持力是一对相互作用力D.地面对木箱的支持力和木块对木箱的压力是一对相互作用力10.关于力和运动的关系,下列说法正确的是( )A.物体不受力的作用时处于静止状态B.做匀速直线运动的物体一定不受力的作用C.物体运动状态改变时,一定受到力的作用D.物体运动速度越大其惯性越大11.如图4所示,在竖直平面内用轻质细线悬挂一个小球,将小球拉至A点,使细线处于拉直状态,由静止开始释放小球,不计摩擦,小球可在A、B两点间来回摆动.当小球摆到B点时,细线恰好断开,则小球将( )图4A.在B点保持静止B.沿BE方向运动C.沿BC方向运动D.沿BD方向运动12.图5为研究二力平衡条件的实验装置,下列关于这个实验的叙述错误的是( )图5A.为减小摩擦,应选用尽量光滑的水平桌面B.为使实验效果明显,应选用质量较大的小车C.调整两边托盘所放钩码的数量,可以改变力的大小D.将小车扭转一个角度,是为了改变力的作用线的位置13.用测力计两次拉着重为G的物体竖直向上运动,两次运动的s﹣t图象,如图6所示,其对应的测力计示数分别为F↓1,F↓2,则F1和F2的关系是( )A.F↓1>F↓2 B.F↓1=F↓2C.F↓1<F↓2D.以上三种情况都有可能14.物理知识渗透于我们的生活以下警示语中,与惯性知识无关的是( )A.汽车后窗贴有“保持车距”B.公路旁立有“雨天路滑 减速慢行”C.交通规则规定“车辆靠右行驶”D.交通规则写有“行车时系好安全带”15.科学家在实验的基础上进行合理的推理,建立了牛顿第一定律,下列物理规律的得出,也是运用了这种研究方法的是 ( )A.光的反射规律B.真空不能传声C.重力与质量的关系D.二力平衡的条件三、作图题(每小题2分,共4分)16.如图7所示,将一个小球放在竖直放置的弹簧上,用手向下压小球,松手后,小球在弹簧弹力作用下向上加速运动,不考虑空气阻力,请画出此时小球的受力示意图。图717.如图8所示,吸附在竖直磁性黑板上的铁块静止不动,画出它在竖直方向上所受力的示意图。图8四、实验探究题(第18题4分,第19题6分,第20题8分,共18分)18.在学习了《力与运动》的知识后,小明与同桌的小字一起讨论学习后的体会。小明从讲台上拿来一支粉笔,回到座位再用小刀裁一长纸条,将粉笔压在纸条的一端立于水平桌面上,如图9所示,兴趣十足的小宇没等小明说话,随手将纸条拉出,看到粉笔立即倒下,粉笔倒下的原因是________。而小明用一手拉住纸条的一端,用另一手手指快速打击纸条,这样拉出了纸条而粉笔没有倒下,这是因为________。图919.小明同学在探究“阻力对物体运动影响”的实验时,利用如图10甲所示的装置,实验中该同学先后三次将同一小车放在同一斜面上的同一高度,然后分别用不同的力推了一下小车,使其沿斜面向下运动,先后在水平桌面上铺上毛巾、棉布、木板,使水平面的粗糙程度越来越小,观察小车移动的距离,从而得出阻力和运动的关系。(1)在实验操作中有一处明显的错误是(不必解释错误的原因)________。(2)小明用正确方法做了三次实验,小车分别停在如图10乙、丙、丁所示的位置上。由此可以得出结论是:在初速度相同的条件下,水平面越光滑,小车受到的阻力越________,小车运动的距离越________。图10(3)实验结束后,小明和小华进行了交流,为什么在实验中不可能观察到小车在水平面上做匀速直线运动的情形呢?是因为________。20.用图11所示的装置探究摩擦力跟压力大小的关系。图11(1)实验时,拉动木块在水平木板上做匀速直线运动,弹簧测力计的示数就等于摩擦力的大小,因为这时的拉力和摩擦力是一对________力。(2)某次实验中弹簧测力计的指针位置如图11所示,它的示数是________N。实验次数 1 2 3 4 5压力F/N 3 4 5 6 7摩擦力/N 0.6 0.8 1.0 1.2 1.4(3)改变木块上所加钩码的个数进行多次实验,记录的数据如上表所示,请根据表中的数据,在图12中画出摩擦力随压力大小变化的关系图象。图12(4)分析图象可知:当接触面的粗糙程度一定时,摩擦力跟压力的大小成________。(5)实验结束后,小丽同学想探究摩擦力是否与接触面的大小有关,她用弹簧测力计测出木块在水平面上做匀速直线运动时的摩擦力,然后将木块沿竖直方向锯掉一半,测得摩擦力的大小也变为原来的一半。她由此得出:当接触面的粗糙程度一定时,接触面越小,摩擦力越小。你认为她的结论正确吗?________,理由是:________。五、综合应用题(第21题4分,第22题14分,共18分)21.今年“五一”旅游高峰期间,在贵州某市某道路发生一起交通事故,两辆同向行驶的汽车发生“追尾”,虽B车驾驶员紧急刹车,仍撞击了A车(如图13所示)。图13(1)请根据物理知识解释“追尾”原因。(2)“追尾”后,A车驾驶员受到________(选答:“安全气囊”、“安全带”、“汽车头枕”)保护未严重受伤,作出相应的解释。22.现代社会汽车已大量进入寻常百姓家,汽车追尾常发生重大交通事故,其重要原因是遇到意外情况时汽车不能立即停止。死机从看到情况到他肌肉动作操作制动器来刹车需要一段时间,这段时间叫反应时间,汽车需保持元素前进一段距离,这段距离叫制动距离(如图14所示)图14下表是一位司机驾驶一辆保养的很好的汽车分别在干燥和潮湿的相同水平公路上以不同的速度行驶时,测得的反应距离、制动距离和停车距离。速度/km·h↑(-1) 反应距离/m 制动距离/m 停车距离/m干燥 潮湿 干燥 潮湿 干燥 潮湿40 7 7 8 10 15 1750 9 9 13 15 22 2460 11 11 19 23 30 3480 15 15 33 43 48 58100 19 19 52 65 71 84(1)研究上表中的数据可知汽车速度越大,________________、_________________和_________________就越大;(2)影响汽车制动距离的两个主要因素是:_____________和_______________;(3)请你根据以上研究结果,对司机提出两条有利于安全行驶的建议:驾驶骑车时,①___________;②________________。
2020年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。。3.考试结束后,将本试卷和答题卡一并交回。可能用到的相对原子质量:H 1 C 12 N 14 O16 Na 23 Al 27 P 31 Cl 35.5 Ar 40 V 51 Fe 56二、选择题:本题共8小题,每小题6分。共48分。在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。1.行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是( )A. 增加了司机单位面积的受力大小B. 减少了碰撞前后司机动量的变化量C. 将司机的动能全部转换成汽车的动能D. 延长了司机的受力时间并增大了司机的受力面积【答案】D【解析】【详解】A.因安全气囊充气后,受力面积增大,故减小了司机单位面积的受力大小,故A错误;B.有无安全气囊司机初动量和末动量均相同,所以动量的改变量也相同,故B错误;C.因有安全气囊的存在,司机和安全气囊接触后会有一部分动能转化为气体的内能,不能全部转化成汽车的动能,故C错误;D.因为安全气囊充气后面积增大,司机的受力面积也增大,在司机挤压气囊作用过程中由于气囊的缓冲故增加了作用时间,故D正确。故选D。2.火星的质量约为地球质量的1/10,半径约为地球半径的1/2,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A. 0.2 B.0.4 C. 2.0 D. 2.5【答案】B【解析】【详解】设物体质量为m,则在火星表面有3.如图,一同学表演荡秋千。已知秋千的两根绳长均为10 m,该同学和秋千踏板的总质量约为50 kg。绳的质量忽略不计,当该同学荡到秋千支架的正下方时,速度大小为8 m/s,此时每根绳子平均承受的拉力约为( )A. 200 N B.400 N C. 600 N D. 800 N【答案】B【解析】【详解】在最低点由5.一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,为半圆,ac、bd与直径ab共线,ac间的距离等于半圆的半径。一束质量为m、电荷量为q(q>0)的粒子,在纸面内从c点垂直于ac射入磁场,这些粒子具有各种速率。不计粒子之间的相互作用。在磁场中运动时间最长的粒子,其运动时间为( )则粒子在磁场中运动的时间与速度无关,轨迹对应的圆心角越大,运动时间越长。采用放缩圆解决该问题,粒子垂直ac射入磁场,则轨迹圆心必在ac直线上,将粒子的轨迹半径由零逐渐放大。当半径和时,粒子分别从ac、bd区域射出,磁场中的轨迹为半圆,运动时间等于半个周期。当0.5R<r<1.5R时,粒子从半圆边界射出,逐渐将轨迹半径从0.5R逐渐放大,粒子射出位置从半圆顶端向下移动,轨迹圆心角从逐渐增大,当轨迹半径为R时,轨迹圆心角最大,然后再增大轨迹半径,轨迹圆心角减小,因此当轨迹半径等于R时轨迹圆心角最大,即轨迹对应的最大圆心角D.物块下滑2.0m时,重力势能减少12J,动能增加4J,所以机械能损失了8J,D选项错误。故选AB。8.如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。ab、dc足够长,整个金属框电阻可忽略。一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。经过一段时间后( )A. 金属框的速度大小趋于恒定值B. 金属框的加速度大小趋于恒定值C. 导体棒所受安培力的大小趋于恒定值D. 导体棒到金属框bc边的距离趋于恒定值【答案】BC【解析】【详解】由bc边切割磁感线产生电动势,形成电流,使得导体棒MN受到向右的安培力,做加速运动,bc边受到向左的安培力,向右做加速运动。当MN运动时,金属框的bc边和导体棒MN一起切割磁感线,设导体棒MN和金属框的速度分别为、,则电路中的电动势9.某同学用伏安法测量一阻值为几十欧姆的电阻Rx,所用电压表的内阻为1 kΩ,电流表内阻为0.5Ω。该同学采用两种测量方案,一种是将电压表跨接在图(a)所示电路的O、P两点之间,另一种是跨接在O、Q两点之间。测量得到如图(b)所示的两条U–I图线,其中U与I分别为电压表和电流表的示数。回答下列问题:(1)图(b)中标记为II的图线是采用电压表跨接在________(填“O、P”或“O、Q”)两点的方案测量得到的。(2)根据所用实验器材和图(b)可判断,由图线________(填“I”或“II”)得到的结果更接近待测电阻的真实值,结果为________Ω(保留1位小数)。(3)考虑到实验中电表内阻的影响,需对(2)中得到的结果进行修正,修正后待测电阻的阻值为________Ω(保留1位小数)。【答案】 (1). 、 (2). I (3). (4).【解析】【详解】(1)[1]若将电压表接、之间,(1)开动气泵,调节气垫导轨,轻推滑块,当滑块上的遮光片经过两个光电门的遮光时间________时,可认为气垫导轨水平;(2)用天平测砝码与砝码盘的总质量m1、滑块(含遮光片)的质量m2;(3)用细线跨过轻质定滑轮将滑块与砝码盘连接,并让细线水平拉动滑块;(4)令滑块在砝码和砝码盘的拉动下从左边开始运动,和计算机连接的光电门能测量出遮光片经过A、B两处的光电门的遮光时间Δt1、Δt2及遮光片从A运动到B所用的时间t12;(5)在遮光片随滑块从A运动到B的过程中,如果将砝码和砝码盘所受重力视为滑块所受拉力,拉力冲量的大小I=________,滑块动量改变量的大小Δp=________;(用题中给出的物理量及重力加速度g表示)(6)某次测量得到的一组数据为:d=1.000cm,m1=1.5010-2 kg,m2=0.400kg,△t1=3.90010-2 s,Δt2=1.27010-2 s,t12=1.50s,取g=9.80m/s2。计算可得I=________N·s,Δp=____kg·m·s-1;(结果均保留3位有效数字)11.我国自主研制了运-20重型运输机。飞机获得的升力大小F可用描写,k为系数;v是飞机在平直跑道上的滑行速度,F与飞机所受重力相等时的v称为飞机的起飞离地速度,已知飞机质量为时,起飞离地速度为66 m/s;装载货物后质量为,装载货物前后起飞离地时的k值可视为不变。(1)求飞机装载货物后的起飞离地速度;(2)若该飞机装载货物后,从静止开始匀加速滑行1 521 m起飞离地,求飞机在滑行过程中加速度的大小和所用的时间。【答案】,【解析】12.在一柱形区域内有匀强电场,柱的横截面积是以O为圆心,半径为R的圆,AB为圆的直径,如图所示。质量为m,电荷量为q(q>0)的带电粒子在纸面内自A点先后以不同的速度进入电场,速度方向与电场的方向垂直。已知刚进入电场时速度为零的粒子,自圆周上的C点以速率v0穿出电场,AC与AB的夹角θ=60°。运动中粒子仅受电场力作用。(1)求电场强度的大小;(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?(3)为使粒子穿过电场前后动量变化量的大小为mv0,该粒子进入电场时的速度应为多大?2020年普通高等学校招生全国统一考试理科综合能力测试化学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。可能用到的相对原子质量:H 1 C 12 N 14 O16 Na 23 Al 27 P 31 S 32 Cl 35.5 V 51 Fe 56一、选择题:本题共13个小题,每小题6分。共78分,在每小题给出的四个选项中,只有一项是符合题目要求的。【点睛】对于反应机理图的分析,最基本的是判断反应物,产物以及催化剂;一般的,催化剂在机理图中多是以完整的循环出现的;反应物则是通过一个箭头进入整个历程的物质;而产物一般多是通过一个箭头最终脱离整个历程的物质。2020年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科综合生物能力测试一、选择题1.新冠肺炎疫情警示人们要养成良好的生活习惯,提高公共卫生安全意识。下列相关叙述错误的是( )A. 戴口罩可以减少病原微生物通过飞沫在人与人之间的传播B. 病毒能够在餐具上增殖,用食盐溶液浸泡餐具可以阻止病毒增殖C. 高温可破坏病原体蛋白质空间结构,煮沸处理餐具可杀死病原体D. 生活中接触的物体表面可能存在病原微生物,勤洗手可降低感染风险【答案】B【解析】【分析】新冠肺炎是由新型冠状病毒引起的疾病,该病毒不能离开活细胞独立生活。【详解】A、戴口罩可以减少飞沫引起的病毒传播,可以在一定程度上预防新冠病毒,A正确;B、病毒只能依赖于活细胞才能存活,不能在餐桌上增殖,B错误;C、煮沸可以破坏病原体蛋白质的空间结构,进而杀死病原体,C正确;D、手可能接触到病毒,勤洗手可以洗去手上的病原体,降低感染风险,D正确。故选B。2.种子贮藏中需要控制呼吸作用以减少有机物的消耗。若作物种子呼吸作用所利用的物质是淀粉分解产生的葡萄糖,下列关于种子呼吸作用的叙述,错误的是( )A. 若产生的CO2与乙醇的分子数相等,则细胞只进行无氧呼吸B. 若细胞只进行有氧呼吸,则吸收O2的分子数与释放CO2的相等C. 若细胞只进行无氧呼吸且产物是乳酸,则无O2吸收也无CO2释放D. 若细胞同时进行有氧和无氧呼吸,则吸收O2的分子数比释放CO2的多【答案】D【解析】【分析】呼吸底物是葡萄糖时,若只进行有氧呼吸,则消耗的氧气=生成的二氧化碳量;若只进行无氧呼吸,当呼吸产物是酒精时,生成的酒精量=生成的二氧化碳量。【详解】A、若二氧化碳的生成量=酒精的生成量,则说明不消耗氧气,故只有无氧呼吸,A正确;B、若只进行有氧呼吸,则消耗的氧气量=生成的二氧化碳量,B正确;C、若只进行无氧呼吸,说明不消耗氧气,产乳酸的无氧呼吸不会产生二氧化碳,C正确;D、若同时进行有氧呼吸和无氧呼吸,若无氧呼吸产酒精,则消耗的氧气量小于二氧化碳的生成量,若无氧呼吸产乳酸,则消耗的氧气量=二氧化碳的生成量,D错误。故选D。3.某研究人员以小鼠为材料进行了与甲状腺相关的实验,下列叙述错误的是( )A. 切除小鼠垂体,会导致甲状腺激素分泌不足,机体产热减少B. 给切除垂体的幼年小鼠注射垂体提取液后,其耗氧量会增加C. 给成年小鼠注射甲状腺激素后,其神经系统的兴奋性会增强D. 给切除垂体的小鼠注射促甲状腺激素释放激素,其代谢可恢复正常【答案】D【解析】【分析】甲状腺可以分泌甲状腺激素,甲状腺激素可以促进神经系统的发育,还可以促进细胞代谢,增加产热。【详解】A、若切除垂体,则垂体分泌的促甲状腺激素减少,会导致甲状腺激素分泌不足,产热减少,A正确;B、给切除垂体的幼年小鼠注射垂体提取液后,该提取液中含有促甲状腺激素,可以促进甲状腺激素的分泌,故小鼠的耗氧量会增加,B正确;C、甲状腺激素可以促进神经系统的发育,故给成年小鼠注射甲状腺激素后,神经系统的兴奋性会增加,C正确;D、促甲状腺激素释放激素作用的靶器官是垂体,故切除垂体后,注射促甲状腺激素释放激素不能让代谢恢复正常,D错误。故选D。4.为达到实验目的,需要选用合适的实验材料进行实验。下列实验目的与实验材料的对应,不合理的是( )A. A B.B C. C D. D【答案】A【解析】【分析】细胞质壁分离及复原的原理:把成熟的植物细胞放置在某些对细胞无毒害的物质溶液中,当细胞液的浓度小于外界溶液的浓度时,细胞液中的水分子就透过原生质层进入到外界溶液中,使原生质层和细胞壁都出现一定程度的收缩。由于原生质层比细胞壁的伸缩性大,当细胞不断失水时,原生质层就会与细胞壁逐渐分离开来,也就是逐渐发生了质壁分离。当细胞液的浓度大于外界溶液的浓度时,外界溶液中的水分子就通过原生质层进入到细胞液中,发生质壁分离的细胞的整个原生质层会慢慢地恢复成原来的状态,使植物细胞逐渐发生质壁分离复原。【详解】A、根尖分生区无成熟的大液泡,不能用于观察细胞的质壁分离与复原,A符合题意;B、蝗虫的精巢细胞可以发生减数分裂,可以用于观察细胞的减数分裂,B不符合题意;C、哺乳动物的红细胞吸水会膨胀,失水会皱缩,故可以用于观察细胞的吸水和失水,C不符合题意;D、人的口腔上皮细胞无色,且含有DNA和RNA,可以用于观察DNA、RNA在细胞中的分布,D不符合题意。故选A。5.已知果蝇的长翅和截翅由一对等位基因控制。多只长翅果蝇进行单对交配(每个瓶中有1只雌果蝇和1只雄果蝇),子代果蝇中长翅∶截翅=3∶1。据此无法判断的是( )A. 长翅是显性性状还是隐性性状B. 亲代雌蝇是杂合子还是纯合子C. 该等位基因位于常染色体还是X染色体上D. 该等位基因在雌蝇体细胞中是否成对存在【答案】C【解析】【分析】由题意可知,长翅与长翅果蝇杂交的后代中出现截翅果蝇,说明截翅是隐性性状,长翅是显性性状。【详解】A、根据截翅为无中生有可知,截翅为隐性性状,长翅为显性性状,A不符合题意;B、根据杂交的后代发生性状分离可知,亲本雌蝇一定为杂合子,B不符合题意;C、无论控制翅形的基因位于X染色体上还是常染色体上,后代中均会出现长翅:截翅=3:1的分离比,C符合题意;D、根据后代中长翅:截翅=3:1可知,控制翅形的基因符合基因的分离定律,故可推测该等位基因在雌蝇体细胞中是成对存在的,D不符合题意。故选C。6.土壤小动物对动植物遗体的分解起着重要的作用。下列关于土壤小动物的叙述,错误的是( )A. 调查身体微小、活动力强的小动物数量常用标志重捕法B. 土壤中小动物类群的丰富度高,则该类群含有的物种数目多C. 土壤小动物的代谢活动会影响土壤肥力,进而影响植物生长D. 土壤小动物呼吸作用产生的CO2参与生态系统中的碳循环【答案】A【解析】【分析】物种丰富度指群落中物种数目的多少。常用取样器取样法调查土壤小动物的丰富度。【详解】A、调查身体微小、活动能力强的小动物数量常用取样器取样法,A错误;B、物种丰富度指群落中物种数目的多少,土壤中小动物丰富度高,说明该类群含有的物种数目多,B正确;C、一些土壤小动物可以将有机物分解为无机物,增加土壤肥力,进而影响植物的生长,C正确;D、土壤小动物可以通过呼吸作用产生二氧化碳,二氧化碳进入大气中,可以参与碳循环,D正确。故选A。三、非选择题7.真核细胞的膜结构具有重要功能。请参照表中内容完成下表。【答案】 (1). 细胞膜 (2). 参与信息传递 (3). 对蛋白质进行加工修饰 (4). 脂质和蛋白质 (5). 叶肉细胞进行光合作用时,光能转化为化学能的过程发生在类囊体膜上【解析】【分析】1、生物膜主要由脂质和蛋白质组成,还有少量的糖类。脂质中磷脂最丰富,功能越复杂的生物膜,蛋白质的种类和数量越多。2、细胞膜的功能:①将细胞与外界环境分隔开;②控制物质进出;③进行细胞间的信息交流。3、分泌蛋白的合成与分泌过程:附着在内质网上的核糖体合成蛋白质→内质网进行粗加工→内质网“出芽”形成囊泡→高尔基体进行再加工形成成熟的蛋白质→高尔基体“出芽”形成囊泡→细胞膜,整个过程还需要线粒体提供能量。【详解】(1)K+进入植物根细胞的过程为主动运输,体现了细胞膜控制物质进出的功能。(2)兴奋在神经元之间是通过突触传递的,当兴奋传递到突触小体时,突触前膜释放神经递质进入突触间隙,与突触后膜上的受体结合,使突触后膜发生兴奋或抑制,该过程体现了细胞膜参与信息传递的功能。(3)由分析可知,在分泌蛋白的合成和分泌过程中,高尔基体对来自内质网的蛋白质进行加工修饰后,“出芽”形成囊泡,最终将蛋白质分泌到细胞外。(4)由分析可知生物膜主要成分是脂质和蛋白质。(5)类囊体薄膜上分布着光合色素和多种酶,是绿色植物进行光反应的场所,光能转化为化学能的过程发生在类囊体膜上。【点睛】本题考查生物膜的成分和功能,要求考生能够识记分泌蛋白合成、分泌的过程,掌握各种生物膜的功能,再结合实例具体分析。8.农业生产中的一些栽培措施可以影响作物的生理活动,促进作物的生长发育,达到增加产量等目的。回答下列问题:(1)中耕是指作物生长期中,在植株之间去除杂草并进行松土的一项栽培措施,该栽培措施对作物的作用有_____________________(答出2点即可)。(2)农田施肥的同时,往往需要适当浇水,此时浇水的原因是_____________________(答出1点即可)。(3)农业生产常采用间作(同一生长期内,在同一块农田上间隔种植两种作物)的方法提高农田的光能利用率。现有4种作物,在正常条件下生长能达到的株高和光饱和点(光合速率达到最大时所需的光照强度)见下表。从提高光能利用率的角度考虑,最适合进行间作的两种作物是___________________,选择这两种作物的理由是___________________。【答案】 (1). 减少杂草对水分、矿质元素和光的竞争;增加土壤氧气含量,促进根系的呼吸作用 (2). 肥料中的矿质元素只有溶解在水中才能被作物根系吸收 (3). A和C (4). 作物A光饱和点高且长得高,可以利用上层光照进行光合作用;作物C光饱和点低且长得矮,与作物A间作后,能利用下层的弱光进行光合作用【解析】【分析】1、中耕松土是指对土壤进行浅层翻倒、疏松表层土壤。中耕作用有:疏松表土、增加土壤通气性、提高地温,促进好气微生物的活动和养分有效化、去除杂草、促使根系伸展、调节土壤水分状况。2、矿质元素只有溶解在水中,以离子形式存在,才能被植物的根系选择吸收。【详解】(1)中耕松土过程中去除了杂草,减少了杂草和农作物之间的竞争;疏松土壤可以增加土壤的含氧量,有利于根细胞的有氧呼吸,促进矿质元素的吸收,从而达到增产的目的。(2)农田施肥时,肥料中的矿质元素只有溶解在水中,以离子形式存在,才能被作物根系吸收。(3)分析表中数据可知,作物A、D的株高较高,B、C的株高较低,作物A、B的光饱和点较高,适宜在较强光照下生长,C、D的光饱和点较低,适宜在弱光下生长,综合上述特点,应选取作物A和C进行间作,作物A可利用上层光照进行光合作用,作物C能利用下层的弱光进行光合作用,从而提高光能利用率。【点睛】本题结合具体实例考查光合作用和呼吸作用的相关内容,掌握光合作用和呼吸作用的原理、影响因素及在生产中的应用是解题的关键。9.某研究人员用药物W进行了如下实验:给甲组大鼠注射药物W,乙组大鼠注射等量生理盐水,饲养一段时间后,测定两组大鼠的相关生理指标。实验结果表明:乙组大鼠无显著变化;与乙组大鼠相比,甲组大鼠的血糖浓度升高,尿中葡萄糖含量增加,进食量增加,体重下降。回答下列问题:(1)由上述实验结果可推测,药物W破坏了胰腺中的________________细胞,使细胞失去功能,从而导致血糖浓度升高。(2)由上述实验结果还可推测,甲组大鼠肾小管液中的葡萄糖含量增加,导致肾小管液的渗透压比正常时的_____________,从而使该组大鼠的排尿量_____________。(3)实验中测量到甲组大鼠体重下降,推测体重下降的原因是________________。(4)若上述推测都成立,那么该实验的研究意义是________________(答出1点即可)。【答案】 (1). 胰岛B (2). 高 (3). 增加 (4). 甲组大鼠胰岛素缺乏,使机体不能充分利用葡萄糖来获得能量,导致机体脂肪和蛋白质的分解增加 (5). 获得了因胰岛素缺乏而患糖尿病的动物,这种动物可以作为实验材料用于研发治疗这类糖尿病的药物【解析】【分析】1、胰岛B细胞能分泌胰岛素,其作用是促进组织细胞加速摄取、利用和储存葡萄糖,从而使血糖水平降低;胰岛A细胞能分泌胰高血糖素,其作用是促进糖原分解,并促进一些非糖物质转化为葡萄糖,从而使血糖水平升高。2、糖尿病的病人由于胰岛B细胞受损,导致胰岛素分泌过少,血糖进入细胞及在细胞内氧化分解发生障碍,而非糖物质转化成糖仍在进行,从而使血糖水平升高,部分糖随尿液排出,而原尿中的葡萄糖又增加了尿液的渗透压,因此导致肾小管、集合管对水分的重吸收减少,进而导致尿量增多。【详解】(1)由于甲组大鼠注射药物W后,血糖浓度升高,可推知药物W破坏了胰腺中的胰岛B细胞,使胰岛素的分泌量减少,从而导致血糖浓度升高。(2)由题干信息可知,甲组大鼠肾小管液中的葡萄糖含量增加,会导致肾小管液的渗透压比正常时的高,因此导致肾小管、集合管对水分的重吸收减少,进而导致尿量增加。(3)甲组大鼠注射药物W后,由于胰岛素分泌不足,使机体不能充分利用葡萄糖来获得能量,导致机体脂肪和蛋白质的分解增加,体重下降。(4)由以上分析可知,药物W破坏了胰腺中的胰岛B细胞,使大鼠因胰岛素缺乏而患糖尿病,这种动物可以作为实验材料用于研发治疗这类糖尿病的药物。【点睛】本题结合药物W的实验,主要考查了糖尿病的病因以及“三多一少”症状出现的原因等相关基础知识,意在考查考生从题中获取信息的能力,并运用所学知识对信息进行分析、推理和解释现象的能力。10.遗传学理论可用于指导农业生产实践。回答下列问题:(1)生物体进行有性生殖形成配子的过程中,在不发生染色体结构变异的情况下,产生基因重新组合的途径有两条,分别是________________。(2)在诱变育种过程中,通过诱变获得的新性状一般不能稳定遗传,原因是________________,若要使诱变获得的性状能够稳定遗传,需要采取的措施是____________。【答案】 (1). 在减数分裂过程中,随着非同源染色体的自由组合,非等位基因自由组合;同源染色体上的等位基因随着非姐妹染色单体的交换而发生交换,导致染色单体上的基因重组 (2). 控制新性状的基因是杂合的 (3). 通过自交筛选性状能稳定遗传的子代【解析】【分析】1、基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。它包括:①减数第一次分裂过程中,随着非同源染色体的自由组合,非等位基因自由组合;②减数分裂形成四分体时期,位于同源染色体上的等位基因随着非姐妹染色单体的交换而发生交换,导致染色单体上的基因重组。2、诱变育种是指利用物理因素或化学因素来处理生物,使生物发生基因突变。用这种方法可以提高突变率,在较短时间内获得更多的优良变异类型。其原理是基因突变。【详解】(1)由分析可知,减数分裂形成配子过程中,基因重组的途径有减数第一次分裂后期,非同源染色体上的非等位基因自由组合;减数第一次分裂前期同源染色体的非姐妹染色单体之间发生交叉互换。(2)在诱变育种过程中,诱变获得的新个体通常为杂合子,自交后代会发生性状分离,故可以将该个体进行自交,筛选出符合性状要求的个体后再自交,重复此过程,直到不发生性状分离,即可获得稳定遗传的纯合子。【点睛】本题考查基因重组和育种的相关知识,要求考生掌握基因重组的概念和分类、诱变育种的原理和应用,并能灵活运用解题。[生物——选修1:生物技术实践]11.某种物质S(一种含有C、H、N有机物)难以降解,会对环境造成污染,只有某些细菌能降解S。研究人员按照下图所示流程从淤泥中分离得到能高效降解S的细菌菌株。实验过程中需要甲、乙两种培养基,甲的组分为无机盐、水和S,乙的组分为无机盐、水、S和Y。回答下列问题:(1)实验时,盛有水或培养基的摇瓶通常采用_______________的方法进行灭菌。乙培养基中的Y物质是_______________。甲、乙培养基均属于______________培养基。(2)实验中初步估测摇瓶M中细菌细胞数为2×107 个/mL,若要在每个平板上涂布100μL稀释后的菌液,且保证每个平板上长出的菌落数不超过200个,则至少应将摇瓶M中的菌液稀释________________倍。(3)在步骤⑤的筛选过程中,发现当培养基中的S超过某一浓度时,某菌株对S的降解量反而下降,其原因可能是________________(答出1点即可)。(4)若要测定淤泥中能降解S的细菌细胞数,请写出主要实验步骤________________。(5)上述实验中,甲、乙两种培养基所含有的组分虽然不同,但都能为细菌的生长提供4类营养物质,即________________。【答案】 (1). 高压蒸汽灭菌 (2). 琼脂 (3). 选择 (4). 104 (5). S的浓度超过某一值时会抑制菌株的生长 (6). 取淤泥加入无菌水,涂布(或稀释涂布)到乙培养基上,培养后计数 (7). 水、碳源、氮源和无机盐【解析】【分析】培养基一般含有水、碳源、氮源、无机盐等。常用的接种方法:平板划线法和稀释涂布平板法。常用的灭菌方法:干热灭菌法、灼烧灭菌法、高压蒸汽灭菌法。【详解】(1)常用高压蒸汽灭菌法处理盛有水或培养基的摇瓶,乙为固体培养基,故需要加入Y琼脂;甲和乙培养基可以用于筛选能降解S的菌株,故均属于选择培养基。(2)若要在每个平板上涂布100μL稀释液后的菌液,且每个平板上长出的菌落数不超过200个,则摇瓶M中的菌液稀释的倍数至少为2×107÷1000×100÷200=1×104倍。(3)当培养基中的S超过某一浓度后,可能会抑制菌株的生长,从而造成其对S的降解量下降。(4)要测定淤泥中能降解S的细菌的细胞数,可以取淤泥加无菌水制成菌悬液,稀释涂布到乙培养基上,培养后进行计数。(5)甲和乙培养基均含有水、无机盐、碳源、氮源。【点睛】培养基常用高压蒸汽灭菌法进行灭菌,接种工具应该进行灼烧灭菌,玻璃器皿等耐高温的、需要干燥的物品,常采用干热灭菌。[生物——选修3:现代生物科技专题]12.为研制抗病毒A的单克隆抗体,某同学以小鼠甲为实验材料设计了以下实验流程。回答下列问题:(1)上述实验前必须给小鼠甲注射病毒A,该处理的目的是_________________。(2)写出以小鼠甲的脾脏为材料制备单细胞悬液的主要实验步骤:_________________。(3)为了得到能产生抗病毒A的单克隆抗体的杂交瘤细胞,需要进行筛选。图中筛选1所采用的培养基属于_________________,使用该培养基进行细胞培养的结果是_________________。图中筛选2含多次筛选,筛选所依据的基本原理是_________________。(4)若要使能产生抗病毒A的单克隆抗体的杂交瘤细胞大量增殖,可采用的方法有________________(答出2点即可)。【答案】 (1). 诱导小鼠甲产生能够分泌抗病毒A抗体的B淋巴细胞 (2). 取小鼠甲脾脏剪碎,用胰蛋白酶处理使其分散成单个细胞,加入培养液制成单细胞悬液 (3). 选择培养基 (4). 只有杂交瘤细胞能够生存 (5). 抗原与抗体的反应具有特异性 (6). 将杂交瘤细胞注射到小鼠腹腔内增殖;将杂交瘤细胞在体外培养【解析】【分析】由图可知,筛选1指用选择培养基筛选出杂交瘤细胞,筛选2指进行克隆化培养和专一抗体检测,筛选出能产生特定抗体的杂交瘤细胞。【详解】(1)实验前给小鼠甲注射病毒A,是为了诱导小鼠甲产生能够分泌抗病毒A抗体的B淋巴细胞。(2)取小鼠的脾脏,剪碎组织,用胰蛋白酶处理获得单个细胞,加入培养液可以制成单细胞悬液。(3)图中筛选1需要用到选择培养基,只有杂交瘤细胞可以存活。筛选2是为了获得能产生特定抗体的杂交瘤细胞,该过程要用到抗原抗体杂交,故筛选所依据的原理是抗原-抗体反应具有特异性。(4)获得能产生抗病毒A的单克隆抗体的杂交瘤细胞后,可以在体外培养液中进行培养,或在小鼠的腹腔中进行培养,使杂交瘤细胞大量增殖。【点睛】制备单克隆抗体的过程中,需要用到动物细胞融合和动物细胞培养,需要用到两次筛选,第一次筛选的目的是获得杂交瘤细胞,第二次筛选的目的是获得能产生特定抗体的杂交瘤细胞。
第 1 组1.任何生物都能独立地具备生物的几个基本特征,并符合细胞学说。错!病毒必须寄生于细胞中。2.不同的生物体内,组成生物体的化学元素种类大体相同,各种化学元素的含量相差很大。对3.构成细胞的任何一种化合物都能在无机自然界中找到。错!自然情况下,有机物只能由生物体制造。4.淀粉、半乳糖以及糖原的元素组成都是相同的。对5.蔗糖和淀粉不能用本尼迪特来检测。果糖没有醛基但是也可以用本尼迪特来检测。本尼迪特的检测需要使用水浴加热。对6.地震灾害后,灾民啃食树皮和草,通过消化纤维素来给机体供能。错!纤维素不能被消化。7.在小鼠的口腔细胞中可以检测到麦芽糖。错!麦芽糖会被消化成葡萄糖,进入细胞,麦芽糖存在于植物细胞。8.糖原的代谢产物是葡萄糖,蛋白质的代谢产物是氨基酸。错!代谢产物是指氧化分解的产物,而不是水解产物。糖原的代谢产物是CO2和H2O,蛋白质的代谢产物是CO2、H2O和尿素。9.脂质只由C、H、O 元素组成,可与糖类之间相互转换。错!脂质除了油脂还包括磷脂等,磷脂含有P。脂质中的油脂只含C、H、O,可与糖类相互转换。10.胰岛素、抗体、淋巴因子都能在一定条件下与双缩脲试剂发生紫色反应。对第 2 组11.成蛋白质的氨基酸都只含有一个氨基与一个羧基,并且连接在同一个碳原子上;每一条肽链至少含有一个游离的氨基与一个游离的羧基。错!氨基酸的R上可能含有氨基和羧基。12.人体内的糖类、脂质、氨基酸可以相互转换,糖类可以经过呼吸作用转换为20种氨基酸。错!糖类只能转换为非必需氨基酸,必需氨基酸只能从食物中获取。13.对于任何种类的多肽,肽键数=氨基酸总数-肽链数。错!环肽中的氨基酸数与肽键数相等。14.某三肽由甘氨酸、丙氨酸、缬氨酸3 种氨基酸构成,则此三肽有27 种可能性。错!每种氨基酸只能出现一次,所以只有6种。15.水不仅是细胞代谢所需的原料,也是细胞代谢的产物,如有氧呼吸、蛋白质与DNA的合成过程中都有水的生成。对16.DNA在不同浓度的NaCl 溶液中的溶解度不同,DNA 也不溶于酒精,据此可用不同浓度的NaCl 溶液以及酒精来分离提纯DNA。对17.卵细胞内储存大量的营养物质,体积大,有利于与外界进行物质交换。错!细胞体积越大,与外界物质交换效率越低。18.细胞学说揭示了整个生物界的统一性。错!细胞学说没有包括病毒。19.细胞学说和生物进化理论共同论证了生物的多样性。错!细胞学说只能说明统一性。20.细胞保持完整是细胞能正常完成各项生命活动的前提条件。对第 3 组21.具有一定的流动性是细胞膜的功能特性,这一特性与细胞间的融合、细胞的变形运动以及胞吞胞吐等生理活动密切相关。错!一定的流动性是膜的结构特性。22.糖蛋白只存在细胞膜的外表面,其它生物膜结构几乎没有糖蛋白。对!23.如果用单层磷脂分子构成的脂质体来包裹某种药物,则该药物应该属于脂溶性的。如果用双层的脂质体包裹药物,则该药物应该属于水溶性。对!24.细胞膜、线粒体、叶绿体、溶酶体、液泡、细胞核、内质网与高尔基体等都是具膜结构的细胞器。错!细胞膜不是细胞器。25.线粒体和叶绿体内含DNA、RNA 和核糖体,所以不受核基因的控制。错!线粒体和叶绿体是半自主细胞器,其中的某些蛋白质是由细胞器中的基因编码,而另一些是由核基因编码。26.性激素的合成与内质网有关。对!27.核膜和内质网都可以附着核糖体。对!28.植物细胞含有细胞壁,但不一定含有液泡与叶绿体;动物细胞含有中心体(不考虑哺乳动物成熟红细胞),但不一定含有线粒体。对!蛔虫不含有线粒体。29.内质网是生物膜的转换中心,内质网膜与高尔基体膜、质膜可以进行相互转换,因为内质网膜与高尔基体膜和质膜直接相连。错!内质网膜与高尔基体膜,内质网膜与质膜是通过小泡间接相连。30.细胞中的所有蛋白质都需要经过内质网和高尔基体的加工。错!只有分泌蛋白才需要经过内质网和高尔基体的加工第 4 组31.高尔基体与动物的分泌功能有关,所以小汗腺的高尔基体数量众多。错!小汗腺分泌的水分、无机盐和尿素与高尔基体无关。32.水绵、蓝藻、黑藻、金鱼藻都属于自养型的原核生物。错!水绵是绿藻,黑藻、金鱼藻是草,属于真核生物。33.染色质与染色体是细胞中同一物质在不同时期呈现的两种不同形态。对!34.染色体由DNA 和蛋白质构成,所以可以用甲基绿和双缩脲对染色体进行染色。错!甲基绿只能证明是否有DNA,双缩脲只能证明是否有蛋白质,所以不能用两者来对染色体染色。染色体染色是碱性染料-醋酸洋红或龙胆紫。35.细胞的核糖体都需要在核仁内进行组装。错!原核细胞和线粒体、叶绿体的核糖体组装不在核仁区域。36.真核细胞可能含有多个细胞核,如动物的骨骼肌细胞和植物成熟的筛管细胞。错!成熟的筛管细胞不含细胞核。37.核孔是没有选择性的,物质通过核孔不需要能量和载体。错!核孔有选择性,物质通过需要能量和载体。38.龙胆紫、醋酸洋红是一种碱性染料,pH>7。错!碱性染料是指用阳离子染色的染料,与pH无关。39.细胞在显微镜下观察不到细胞核,此细胞一定是原核生物。错!哺乳动物成熟的红细胞没有细胞核。40.具有细胞结构的生物,其细胞中通常同时含有DNA与RNA,并且其遗传物质都是DNA。对!第 5 组41.细菌没有蛋白质,只有裸露的DNA,所以不能形成染色体。错!细菌具有蛋白质,只不过DNA没有和相应的蛋白质结合在一起。42.观察细菌的染色体可以用龙胆紫将其染成深色。错!细菌没有染色体。43.草履虫、变形虫等原生生物具有细胞核和其它细胞器。对!44.在现代生物技术中,去除各种细胞的细胞壁需要使用纤维素酶。错!真菌和细菌的细胞壁化学成份不是纤维素。45.ATP 在细胞内含量并不高,活细胞都能产生ATP,也都会消耗ATP。对!46.ATP 含有3 个高能磷酸键,但是只有一个高能磷酸键会发生断裂。错!ATP只含2个高能磷酸键。47.100m,200m跑步主要由ATP(直接)和磷酸肌酸(间接)供能;400m,800m跑步主要由无氧呼吸供能;长跑主要由有氧呼吸供能。只有ATP 才能给肌肉直接供能。对!48.ATP 中的A 不代表腺嘌呤,当再脱去两个磷酸根后,形成的物质为RNA 的基本单位之一。对!49.酶的合成需要ATP 供能,此ATP 来自于光合作用和呼吸作用。错!光合作用产生的ATP,是由光反应产生的,只能用于碳反应。50.酶的催化反应都需要消耗ATP。错!只有某些催化反应消耗ATP,呼吸作用和光合作用中的有些催化反应甚至产生ATP。第 6 组51.利用U 形管做渗透作用实验(U 形管中间用半透膜隔开)时,当管的两侧液面不再变化时,U 形管两侧溶液的浓度一定相等。错!渗透装置中会出现液面的高度差,高度差产生的水压本身就需要用浓度差产生的水势来维持。52.自由扩散因为不受载体和能量的限制,所以运输速度超过协助转运和主动转运。错!自由扩散速度较慢。53.任何物质都是从溶液的高浓度向溶液的低浓度扩散。错!水刚好相反。54.主动运输一定需要载体、消耗能量。需要载体的运输一定是主动运输。错!需要载体也可能是易化扩散。55.葡萄糖进出红细胞和小肠上皮细胞属于易化扩散。K 离子和Na 离子进出细胞只能通过主动运输。错!葡萄糖进入红细胞是易化扩散,葡萄糖进入小肠上皮细胞是主动转运。K离子出可兴奋性细胞和Na离子进入可兴奋细胞是易化扩散。K离子进入可兴奋性细胞和Na离子出可兴奋细胞是主动转运。56.物质出入细胞的方式中,需要消耗能量的一定是主动运输。错!胞吞和胞吐也需要消耗能量。57.细胞核中转录而成的RNA 要与核糖体结合来翻译相关蛋白质穿过0 层膜,胰腺合成分泌的消化酶到十二指肠消化食物需穿过0 层膜。对!58.胞吞和胞吐体现了生物膜的选择透过性。错!胞吞和胞吐没有真正地通过膜,无法体现选择透过性。59.将植物细胞的原生质体置于高浓度的蔗糖溶液中,该原生质体将会发生质壁分离现象。错!原生质体是去除细胞壁的植物细胞。60.“质壁分离”中“质”是指细胞质,“壁”是指细胞壁。错!“质”是指原生质层,由细胞膜、细胞质、液泡膜组成。第 7 组61.显微镜下观察到如图所示的细胞,说明此细胞正在进行质壁分离。错!无法判断此图处于质壁分离还是复原的过程中。62.当外界溶液浓度大于细胞内液体浓度时,显微镜下的细胞没有发生质壁分离,则该细胞一定是死细胞。错!没有细胞壁的动物细胞不会发生质壁分离。63.质壁分离复原实验中,从载物台拿下装片,用镊子轻轻撬起盖玻片,滴入清水后重新压片进行观察。错!从盖玻片的一侧滴入清水,在另一次用吸水纸吸引,重复几次。64.与硝酸钾不同,甘油经自由扩散进入细胞,所以当外界溶液为甘油时只能发生质壁分离,无法自动复原。错!甘油通过自由扩散进入细胞后,最终导致膜内外甘油浓度一致,但是细胞内还含有其它溶质,总浓度比外部浓度高,从外界吸水复原。65.观察质壁分离及复原实验时,应选用洋葱外表皮细胞。因为洋葱内表皮细胞无法发生质壁分离及复原。错!洋葱内表皮细胞也可以发生质壁分离,但是内表皮细胞的液泡无色,所以难以观察。66.在做温度影响酶的活性的实验中,若某两支试管的反应速率相同,在其他条件均相同的条件下,可判断这两支试管所处的环境温度也一定是相同的。错!可能存在两个不同的温度,这两个温度分别位于最适温度的左右,此时酶的活性相同。67.以酶促反应速度为纵坐标,当以反应物浓度为横坐标时会出现饱和现象,当以酶浓度为横坐标时一般不需要考虑饱和现象。对!68.如果以淀粉为底物,以淀粉酶为催化剂探究温度影响酶活性的实验,则酶促反应的速率既可以通过碘液检测淀粉的分解速率,也可以通过本尼迪特检测淀粉水解产物的生成速率。错!本尼迪特的检测需要用水浴加热,在加热过程中,温度被改变,原本因为因低温失活的酶会暂时恢复活性。69.酶是活细胞产生的具有催化作用的蛋白质,酶的催化作用既可发生在细胞内,也可以发生在细胞外。错!酶可能是RNA。70.酶被水解后产生氨基酸。错!核酶分解形成核糖核苷酸。第 8 组71.在测定胃蛋白酶活性时,将溶液的pH 由10 降到2 的过程中,胃蛋白酶的活性将逐渐增强。错!酶在pH=10的时候已经变性,无法复原。72.葡萄糖由小肠黏膜上皮细胞吸收进入肌肉细胞进行有氧呼吸,至少需要穿过9 层膜。错!葡萄糖不进入线粒体,穿过的是7层膜。73.无氧呼吸的第一阶段产生[H],第二阶段消耗[H],所以整个无氧呼吸无[H]积累。无氧呼吸的第一阶段产生ATP,第二阶段不产生ATP。对!74.在有氧呼吸过程的第三个阶段,[H]与O2 结合生成水,在厌氧呼吸过程中,则没有此过程。据此,是否有[H]的产生,可以作为判断有氧呼吸与厌氧呼吸的依据。错!厌氧呼吸与需氧呼吸的第一阶段完全相同,自然会产生[H]。75.探究酵母菌的呼吸方式时,不能用澄清的石灰水来检测CO2 的产生,但可以用重铬酸钾来检测乙醇。错!只要分别设置密闭和不密闭的装置,结合澄清的石灰水来检测CO2的产生。76.测得某油料作物的种子萌发时产生的CO2 与消耗的O2 的体积相等,则该萌发种子在测定条件下的呼吸作用方式只有有氧呼吸。错!油料作物中的油脂在需氧呼吸时,消耗的O2要比产生的CO2要多。所以产生的CO2与消耗的O2的体积相等时,应该需氧呼吸和厌氧呼吸同时在进行。77.对于呼吸作用来说,有H2O 生成一定在进行需氧呼吸,有CO2 生成一定不是乳酸发酵。有酒精生成的呼吸一定在进行厌氧呼吸,动物细胞无氧呼吸一定不会产生酒精。对!78.在探究酵母菌呼吸方式的实验中,将培养液一组进行煮沸并冷却处理,另一组不做煮沸处理。煮沸培养液的目的是进行实验自变量的控制。对!79.可以从CO2 的产生与否判断酵母菌是进行需(有)氧呼吸还是厌氧呼吸。错!酵母菌的需氧呼吸和厌氧呼吸都会产生CO2。80.哺乳动物成熟的红细胞无细胞核,也无核糖体,更无线粒体,只能进行无氧呼吸。对!第 9 组81.线粒体是有氧呼吸的主要场所,叶绿体是光合作用的场所,原核细胞没有线粒体与叶绿体,因此不能进行需氧呼吸与光合作用。错!原核细胞如蓝藻可以进行需氧呼吸与光合作用。82.植物细胞光合作用的光反应在类囊体膜上进行,碳反应在叶绿体基质中进行;需氧呼吸的第一阶段在线粒体基质中进行,第二、三阶段在线粒体内膜上进行。错!需氧呼吸的第一阶段在细胞溶胶中进行,第二阶段主要在线粒体基质中进行,第三阶段在线粒体内膜上进行。83.线粒体的内膜所含的蛋白质比线粒体外膜更多。对!84.光合作用产物C6H12O6 中的碳和氧来自CO2,氢来自水;产物H2O 中氢来自水,氧来自CO2;产物O2 中氧来自H2O。对!85.光反应的过程中不需要酶的参与错!光反应中ATP和NADPH的产生都需要酶。86.当光合作用正常进行时,三碳化合物比五碳化合物多。对!87.在光合作用的相关实验中,可以通过测定绿色植物在光照条件下CO2 的吸收量、O2 释放量以及有机物的积累量来体现植物实际光合作用的强度。错!可以用实验测定是表观光合速率。88.炎热夏天中午,植物“午休”,气孔关闭,光合作用停止。错!午休时,气孔不可能完全关闭,光合作用速度减慢,但未完全终止。89.给植物施用有机肥,不仅能为植物提供生命活动所需的无机盐,还能为植物生命活动提供CO2 与能量。错!有机肥不能提供能量,能量来自光能,植物不能直接利用有机肥,有机肥需要分解为无机物才能被吸收。90.光合作用中的[H]都来自于水,呼吸作用中的[H]都来自于有机物。错!呼吸作用中的[H]还来自水。第 10 组91.当植物处于光补偿点意味着叶肉细胞的光合速率等于呼吸速率。错!植物能进行光合作用的细胞是少数的,大多数的细胞只能进行呼吸作用。只有叶肉细胞的光合速率大于呼吸速率,总体上,植物的光合速率才会等于呼吸速率。92.正常情况下,当外界CO2 浓度上升时,光补偿点向左移动,光饱和点向右移动。对!93.光合作用中,ADP 从类囊体薄膜向叶绿体基质移动。错!ADP是在叶绿体基质中合成,在类囊体中用来合成ATP。94.有丝分裂是真核生物主要的分裂方式;无丝分裂是原核生物的分裂方式。错!原核生物的分裂方式是二分裂。95.人体细胞中最多有92 条染色体和92 条DNA。错!虽然人体的细胞核中的染色体和DNA最多为92,但是细胞质中没有染色体却有DNA。96.在观察植物根尖有丝分裂的实验中,如果能清晰观察到分散的细胞,但不能观察到处于不同分裂时期的细胞,则导致这种结果的因素不包括解离与压片。对!97.在细胞分裂过程中,染色体数目的增加与DNA 数量的增加不可能发生在细胞周期的同一个时期;DNA 数目的减半与染色体数目的减半可以发生在细胞周期的同一时期。对!98.在动植物细胞有丝分裂的中期都会出现赤道板,其中只有在植物细胞有丝分裂的末期才会出现细胞板。错!赤道板不是一个结构而只是表示位置,所以赤道板不能用“出现”表述。99.动物细胞和植物细胞的有丝分裂的区别主要发生在前期和末期;动物细胞的胞质分裂开始于后期,植物细胞的胞质分裂开始于末期。对!100.一个处于细胞周期中的细胞,如果碱基T 与U 被大量利用,则该细胞不可能处于细胞周期的分裂期。对!第 11 组101.某一处于有丝分裂中期的细胞中,如果有一染色体上的两条染色单体的基因不相同,如分别为A 与a,则该细胞在分裂过程中很可能发生了基因突变或交叉互换。错!有丝分裂不需要考虑交叉互换。102.人的成熟红细胞既不进行有丝分裂,也不进行无丝分裂。对!103.细胞分化是基因选择性表达的结果;细胞的癌变是基因突变的结果;细胞的凋亡是细胞生存环境恶化的结果。错!细胞的凋亡是细胞的编程性死亡,是细胞自动结束生命的过程。生存环境恶化的结果是细胞坏死。104.受精卵的细胞全能性最高,细胞越分化,全能性越低。所以生殖细胞的全能性比普通体细胞的全能性低。错!生殖细胞的全能性可能比普通体细胞高,所以会有配子不经受精直接发育成新个体——雄蜂的产生。105.无限分裂的细胞不一定是癌细胞,也可能是良性肿瘤细胞。对!106.多细胞生物个体的衰老与细胞的衰老过程密切相关,个体衰老过程是组成个体的细胞的普遍衰老过程,但未衰老的个体中也有细胞的衰老。对!107.用显微镜观察标本时,应先上升镜筒,再下降镜筒直到找到标本。.错!先下降,后在上升的过程中找标本。108.显微镜目镜为10×,物镜为10×时,视野被相连的64 个分生组织细胞所充满,若物镜转换为40×后,则在视野中可检测到的分生组织细胞数为16。错!视野的放大倍数是镜头放大倍数的平方,所以视野中的细胞仅为64/(4×4)=4。109.目镜长度越长,放大倍数越低;物镜长度越长,放大倍数越高。对!110.若洋葱外表皮细胞颜色较浅,则可调亮光源,使液泡更清晰。错!显微镜观察颜色浅的物体时,应调暗,以增加对比度。第 12 组111.光圈、放大倍数都会影响显微镜视野的明亮程度:光圈越大,放大倍数越小,则视野越亮。对!112.字母“b”在光学显微镜下呈现“p”错!显微镜下,物像与物体上下颠倒,左右互换,所以应该呈现“q”。113.低倍镜换高倍镜观察时,需先升高镜筒,以免压碎盖玻片。错!正规的显微镜都是经过调试,低倍镜换成高倍镜后,只需要微调就可以对焦。或者说,低倍镜换成高倍镜,不会压碎盖玻片。114.某正常分裂中的细胞如果含有两条Y 染色体,则该细胞一定不可能是初级精母细胞。对!115.某一处于分裂后期的细胞,同源染色体正在移向两极,同时细胞质也在进行均等的分配,则该细胞一定是初级精母细胞。对!116.将精原细胞所有的DNA 分子用32P 标记后在31P的培养基中先进行一次有丝分裂,产生的两个子细胞继续进行减数分裂后产生8 个精子,含有32P 标记的占1/2。错!如果细胞中只有一对同源染色体的确如此,但是细胞中会含有多对同源染色体,相互间进行自由组合,即在减数分裂过程中随机分配给子细胞。比如有两对同源染色体,这个结果可能是4/8,也可能是6/8或者8/8。117.减数分裂过程中,当在显微镜下观察到交叉现象时,片段互换已经发生。.对!118.减数分裂过程中,一定会发生交叉互换。错!交叉互换不一定发生,有些生物如雄果蝇还未观察到交叉互换。119.在减数分裂过程中,细胞中核DNA 与染色体数目之比为2 的时期包括G2期、减数第一次分裂时期、减数第二次分裂的间期、前期与中期。.对!120.基因型同为Aa 的雌雄个体,产生的含A 的精子与含a 的卵细胞的数目之比为1:1。错!精子的数量远比卵子多,不能进行比较。第 13 组121.某二倍体生物在细胞分裂后期含有10 条染色体,则该细胞一定处于减数第一次分裂的后期。错!有可能是减Ⅱ后期。122.基因型为AABB 的个体,在减数分裂过程中发生了某种变化,使得一条染色体的两条染色单体上的基因分别为A 和a,则在减数分裂过程中发生的这种变化可能是基因突变,也可能是同源染色体的交叉互换。错!交叉互换不能让A转变为a。123.在正常情况下,同时含有2 条X 染色体的细胞一定不可能出现在雄性个体中。错!在雄性个体细胞的有丝分裂后期和减Ⅱ后期,X染色体会着丝粒断裂,形成2个X。124.二倍体生物的有丝分裂过程中始终存在同源染色体,但是四分体的数目为0。对!125.观察细胞的减数分裂,发现细胞质均匀分配,则此细胞一定来源于雄性动物体内。错!雌性体内的第一极体分裂形成两个第二极体的过程中,细胞质是均匀分配的。126.在具有有性染色体的生物中,排除环境和染色体数目对生物性别的影响,如果所有的染色体在大小形态上一一对应,则此个体一定为雌性。错!ZW性别决定型的生物,性染色体一致的是雄性;XY性别决定型的雄性生物的细胞在有丝分裂后期和减Ⅱ后期,也会出现所有的染色体大小形态上一一对应。127.DNA不是一切生物的遗传物质,但一切细胞生物的遗传物质都是DNA。对!128.在噬菌体侵染细菌的实验中,同位素标记是一种基本的技术。在侵染实验前首先要获得同时含有32P 与35S 标记的噬菌体。错!必须分成两组,分开标记蛋白质和DNA,否则无法区分放射性来自哪种化合物。129.在噬菌体侵染细菌的实验前,用分别含有32P 与35S 的培养基培养噬菌体,从而让噬菌体带上放射性标记。错!无法直接标记噬菌体,只能先标记细菌,然后让噬菌体侵染这些细菌,从而使噬菌体带上标记。130.噬菌体侵染细菌的实验不仅直接证明了DNA 是遗传物质,也直接证明了蛋白质不是遗传物质。错!只能间接证明蛋白质不是遗传物质,因为蛋白质没有进入细菌内部。第 14 组131.人的遗传物质含有4 种碱基,细菌的遗传物质可能为DNA 或RNA,烟草的遗传物质为RNA。人体内的核酸含有8 种核苷酸,TMV 含4 种核苷酸,噬菌体含4种核苷酸。人体内的遗传物质含4 种核苷酸。错!细菌作为一种细胞,它的遗传物质是DNA。烟草的遗传物质是DNA。132.在噬菌体侵染细菌的实验中,如果用32P 和35S 分别标记噬菌体的DNA和蛋白质外壳,结果复制出来的绝大多数噬菌体没有放射性。对!噬菌体利用细菌中不带放射性的物质作为原料,结合DNA的半保留复制方式,所以新合成的噬菌体中只有2个噬菌体的DNA带有放射性。133.磷脂双分子层是细胞膜的基本骨架;磷酸与脱氧核糖交替连接成的长链是DNA分子的基本骨架。对!134.DNA 分子中,每个脱氧核糖都连接两个磷酸基团。错!每条链都有一端,其脱氧核糖只连接一个磷酸基团。135.每个DNA 分子上的碱基排列顺序是一定的,其中蕴含了遗传信息,从而保持了物种的遗传特性。对!136.已知某双链DNA 分子的一条链中(A+C)/(T+G)=0.25,(A+T)/(G+C)=0.25,则同样是这两个比例在该DNA 分子的另一条链中的比例为4 与0.25,在整个DNA分子中是1 与0.25。对!137.一条不含32P 标记的双链DNA分子,在含有32P 的脱氧核苷酸原料中经过n次复制后,形成的DNA 分子中含有32P 的为2n-2。错,所有的DNA至少有一条链含有32P。138.把培养在轻氮(14N)中的大肠杆菌,转移到含有重氮(15N)的培养基中培养,细胞分裂一次后,再放回14N 的培养基中培养,细胞又分裂一次,此时每个大肠杆菌细胞中的DNA 是1/2 轻氮型,1/2 中间型。错!应该是所有的大肠杆菌中的DNA是1/2轻氮型,1/2中间型。如果大肠杆菌中的DNA只有一条,则有一半的大肠杆菌中的DNA为轻氮型,有一半的大肠杆菌中的DNA为中间型。139.DNA 的复制和转录,都需要专门的解旋酶参与。错!转录时,RNA聚合酶具有解旋的功能。140.转录过程中,只存在A-U 配对,而不会出现A-T 配对。错!当DNA模板上的对应位置上为T,RNA用A与之配对。第 15 组141.一条DNA 与RNA 的杂交分子,其DNA 单链含A、T、G、C 4 种碱基,则该杂交分子中共含有核苷酸8 种,碱基5 种;在非人为控制条件下,该杂交分子一定是在转录的过程中形成的。错!也可能处于逆转录的过程中。142.基因是有遗传效应的DNA 片段,基因对性状的决定都是通过基因控制结构蛋白的合成实现的。错!RNA病毒的基因在RNA上。基因对性状的决定还可能通过控制酶的合成,从而间接地控制生物性状。143.通过控制酶的合成,从而直接控制性状是基因控制性状的途径之一。错!这是间接控制生物性状。144.人体细胞中某基因的碱基对数为N,则由其转录成的mRNA 的碱基数等于N,由其翻译形成的多肽的氨基酸数目等于N/3。错!转录和翻译都不是从模板的第一个碱基开始,到最后一个碱基结束的。而且mRNA和蛋白质在合成后可能还需要被剪切。145.酶的产生都需要经过转录和翻译两个过程。错!核酶不需要翻译。146. tRNA 与mRNA 的基本单位相同,但前者是双链,后者是单链,且tRNA 是由三个碱基组成的。错!两种RNA都是单链,只是tRNA形成三叶草形,在局部部位形成自身的碱基配对。tRNA有80个左右的碱基,只是其中的3个碱基形成反密码子。147.某细胞中,所有的mRNA 在还未完成转录时,已有核糖体与之结合,并翻译合成蛋白质,则该细胞一定不可能是真核细胞。对!148.碱基间的互补配对现象可能发生在染色体、核糖体、细胞核、线粒体、叶绿体等结构中。对!149.DNA 的复制和转录过程中存在碱基互补配对,翻译过程中不存在碱基互补配对。错!翻译时,tRNA上的反密码子和mRNA上的密码子碱基互补配对。150.人体的不同细胞中,mRNA 种类存在差异,但tRNA 种类没有差异;蛋白质种类存在差异,但是核基因种类没有差异。对!第 16 组151.一种氨基酸有多种密码子,一种密码子也可以决定不同的氨基酸。错!61种密码子中,每种密码子决定一种氨基酸;3个终止密码子没有对应的氨基酸。152.真核细胞细胞核DNA 的复制与转录分别发生在细胞核和细胞质中。错!核基因的转录发生在细胞核中。153.中心法则仅仅揭示了自然界中真核生物与原核生物遗传信息的传递与表达过程,而不能应用于所有生物。错!所有生物都符合中心法则。154.人体中的大多数细胞,既会发生染色体的复制,又有转录与翻译过程。错!大多数细胞不会分裂,因而不进行染色体的复制。155.决定细胞生物性状的直接原因是蛋白质,而根本原因是DNA 上的遗传信息。对!156.在一个成年人的神经细胞中,只有转录与翻译过程,没有DNA 的复制过程。对!157.除病毒以外的所有生命体的遗传现象都遵循孟德尔遗传定律。错!原核细胞没有同源染色体,也不进行减数分裂,因而不符合孟德尔遗传定律。158.人类的所有遗传病都可用孟德尔定律进行遗传病分析。错!多基因遗传病往往与环境共同作用,情况复杂,难以用孟德尔定律进行遗传病分析。159.遗传病是指可以遗传给后代的疾病错!遗传病可能因为病情严重无法产生后代。160.“选择放松”造成的有害基因的增大是有限的。.对!第 17 组161.基因型为AaBb 的个体测交,后代表现型比例为3:1 或1:2:1,则该遗传可以是遵循基因的自由组合定律的。.对!162.基因型为AaBb 的个体自交,后代出现3:1 的比例,则这两对基因的遗传一定不遵循基因的自由组合定律。错!如果两对基因同时控制一对相对性状,理论上可能出现3:1的比例。163.一对等位基因(Aa)如果位于XY 的同源区段,则这对基因控制的性状在后代中的表现与性别无关。错!只要基因位于性染色体,性状都与性别有关。164.对于XY 型的性别决定的生物而言,雄性都是杂合子,雌性都是纯合子。错!杂合子和纯合子不是指染色体的类型,是相对基因而言。雄性也会是纯合子。165.某一对等位基因(Aa)如果只位于X染色体上,Y 上无相应的等位基因,则该性状的遗传不遵循孟德尔的分离定律。错!伴性遗传不是一个特殊的遗传规律,它符合孟德尔遗传定律。166.基因分离定律发生在减数第一次,基因自由组合定律发生在减数第二次。错!自由组合定律发生在减Ⅱ后期。167.若含X 染色体的隐性基因的雄配子具有致死效果,则自然界中找不到该隐性性状的雌性个体,但可以有雄性隐性性状个体的存在。对!168.基因型为AaBb 的一个精原细胞,产生了2 个AB、2 个ab 的配子,则这两对等位基因一定不位于两对同源染色体上。错!如不考虑交叉互换,即使这两对等位基因分别位于两对同源染色体上,也只能产生2种精子。169.按基因的自由组合定律,两对相对性状的纯合体杂交得F1,F1 自交得F2,则F2 中表现型与亲本表现型不同的个体所占的理论比为6/16。错!也可能是10/16。170.一个基因型为AaXbY 的果蝇,产生了一个AaaXb 的精子,则与此同时产生的另三个精子的基因型为AXb、Y、Y。对!第 18 组171.生物的表现型是由基因型决定的。基因型相同,表现型一定相同;表现型相同,基因型不一定相同。错!基因型相同,表现型不一定相同,因为还有环境的影响。172.番茄的果皮颜色红色对黄色为显性,杂交实验结果是当红色♀×黄色♂时,果皮为红色,当黄色♀×红色♂时,果皮为黄色,此遗传现象最有可能为细胞质遗传。错!果皮是由母体的子房壁发育而来,所以果皮的细胞是属于母本的,果皮表现出母本的性状,仍可能是核基因的遗传。胚和胚发育而来的子代始终保持与母本性状一致,才是细胞质遗传。173.单基因遗传病的发病率高,多基因遗传病的发病率低。错!单基因遗传病的种类多,但是每种病的发病率低;多基因遗传病的发病率高。174.在遗传学的研究中,利用自交、测交、杂交等方法都能用来判断基因的显隐性。错!因为测交得到的子代中两种性状比例相同,无法判断显隐性。175.让高杆抗病(DDTT)与矮杆不抗病(ddtt)的小麦杂交得到F1,F1 自交得到F2,可从F2 开始,选择矮杆抗病的类型连续自交,从后代中筛选出纯种的矮杆抗病品种。类似地,用白色长毛(AABB)与黑色短毛(aabb)的兔进行杂交得到F1,F1雌雄个体相互交配得F2,从F2 开始,在每一代中选择黑色长毛雌雄兔进行交配,选择出纯种的黑色长毛兔新品种。错!动物一般用测交检测基因型。176.紫花植株与白花植株杂交,F1 均为紫花,F1 自交后代出现性状分离,且紫花与白花的分离比是9:7。据此推测,两个白花植株杂交,后代一定都是白花的。错!紫花基因型为A_B_,其余的基因型皆为白花。则白花A_bb与白花aaB_的杂交后代会得到紫花AaBb。177.果蝇X染色体的部分缺失可能会导致纯合致死效应,这种效应可能是完全致死的,也可能是部分致死的。一只雄果蝇由于辐射而导致产生的精子中的X 染色体均是有缺失的。现将该雄果蝇与正常雌果蝇杂交得到F1,F1 雌雄果蝇相互交配得F2,F2 中雌雄果蝇的比例为2:1。由此可推知,这种X 染色体的缺失具有完全致死效应。对!178.一对黑毛豚鼠,生了5 只小豚鼠,其中3 只是白色的,两只是黑色的,据此可判断,豚鼠毛色的遗传不遵循孟德尔分离定律。错!动物的后代数量少,所以子代的性状分离比会远离理论比值。179.孟德尔利用豌豆作为实验材料,通过测交的方法对遗传现象提出了合理的解释,然后通过自交等方法进行了证明。错!孟德尔通过先自交后杂交的方法对遗传现象提出了合理的解释,然后通过测交进行了证明。180.生物体发生的可遗传变异一定能够遗传给后代。错!体细胞中发生的可遗传变异一般不能传递给后代,变异是一种严重的遗传病也不能传递给后代。第 19 组181.在肺炎双球菌转化实验中,R 型与加热杀死的S 型菌混合产生了S 型,其生理基础是发生了基因重组。对!判断题182.染色体结构变异和基因突变的实质都是染色体上的DNA 中碱基对排列顺序的改变。错!基因不一定在染色体上的DNA中,细菌和病毒也可能发生基因突变,细胞质基因也会发生基因突变。183.基因突变一定发生在细胞分裂间期。错!分裂期也可能发生基因突变。184.秋水仙素处理幼苗,成功使染色体数目加倍后,一定会得到纯合子.错!如果幼苗是杂合子Aa,染色体加倍后得到的AAaa仍旧是杂合子。185.同源多倍体生物的可育性一定比二倍体生物低。多倍体中偶数倍体(如四倍体)可以发生联会现象,但是要比普通的二倍体生物结实率低。对!186.基因突变不一定导致性状的改变;导致性状改变的基因突变不一定能遗传给子代。对!187.基因突变会产生新的基因,新的基因是原有基因的等位基因;基因重组不产生新的基因,但会形成新的基因型。对!188.基因重组是生物变异的主要来源;基因突变是生物变异的根本来源。对!189.六倍体小麦通过花药离体培养培育成的个体称为三倍体。错!花药离体培养得到单倍体。190.花药离体培养后得到纯合子。错!花药离体培养得到单倍体,后经秋水仙素加倍才得到纯合子。第 20 组191.三倍体无籽西瓜具有发育不全的种皮 对!192.单倍体细胞中只含有一个染色体组,因此都是高度不育的;多倍体是否可育取决于细胞中染色体组数是否成双,如果染色体组数是偶数则可育,如果是奇数则高度不育。错!四倍体马铃薯的单倍体含有2个染色体组。193.在减数分裂过程中,无论是同源染色体还是非同源染色体间都可能发生部分片段的互换,这种交换属于基因重组。错!非同源染色体间的片段互换是染色体易位,属于染色体结构变异。194.杂合高茎豌豆自交后代出现了矮茎豌豆,属于基因重组。错!基因重组包括自由组合和交叉互换,至少涉及两对基因,一对等位基因的分离而引起的性状分离现象不属于基因重组。195.如果不考虑XY 同源区段上的基因,一对表现正常的夫妇,生下了一个患病的女孩,则该致病基因一定是隐性且位于常染色体上。对!196.一对表现正常的夫妇,生了一个XbXbY(色盲)的儿子。如果异常的原因是夫妇中的一方减数分裂产生配子时发生了一次差错之故,则这次差错可能发生在父方减数第一次分裂的过程中。错!父亲的基因型为XbY,母亲的基因型为XBXb,可见是母亲的减Ⅱ中,Xb着丝粒断裂后没有平均分给两个子细胞的原因。197.一对表现型正常的夫妇,妻子的父母都表现正常,但妻子的妹妹是白化病患者,丈夫的母亲是患者。则这对夫妇生育一个白化病男孩的概率是1/12;若他们的第一胎生了一个白化病的男孩,则他们再生一个患白化病的男孩的概率是1/8。对!198.在调查人类某种遗传病的发病率及该遗传病的遗传方式时,选择的调查对象都应该包括随机取样的所有个体。错!应该调查患者的家族系谱图,否则无法判断患病类型和遗传方式。调查发病率的确需要随机取样。199.一个家族仅一个人出现的疾病不是遗传病;不携带遗传病基因的个体不会患遗传病。错!一个家族可能就一个人出现遗传病,而没有遗传给他的后代,或他根本没有后代。染色体遗传病的很多类型是不携带致病基因的,如21-三体综合征只是染色体数目异常。200.遗传病往往表现为先天性和家族性,但先天性疾病与家族性疾病并不都是遗传病。对!第 21 组201.一个基因型为AaBbCc 的植物(三对基因可以自由组合),用其花粉离体培养获得aabbCC 的个体占1/8。错!花粉离体培养得到的单倍体的基因型如abc,秋水仙素作用后才得到aabbcc。202.杂交育种与转基因育种依据的遗传学原理是基因重组;诱变育种依据的原理是基因突变和染色体畸变;单倍体育种与多倍体育种依据的原理是染色体变异。对!203.单倍体育种离不开组织培养技术,多倍体育种可以不需要组织培养技术。对!204.自然界中发生的自发突变的突变率非常低,诱发突变的突变率则很高。错!诱发突变的突变率比自发突变高,但绝对值仍旧很低。205.如果隐性纯合子致死,则Aa 连续自交n 次,每代中的杂合子占(2/3)的n 次。错!这种算法是错误的。应该先不要考虑致死效应。Aa=(1/2)n, AA=aa=[1-(1/2)n]/2。Aa=Aa/(AA+Aa)=2/(2n+1)206.四倍体西瓜与二倍体西瓜属于不同的物种;骡因为没有后代,所以不是一个物种。对!207.达尔文自然选择学说不仅能解释生物进化的原因,也能很好地解释生物界的适应性与多样性,但不能解释遗传与变异的本质,且对进化的解释仅限于个体水平。对!208.种群是生物繁殖的基本单位,也是生物进化的基本单位。对!209.一个符合遗传平衡的群体,无论是自交还是相互交配,其基因频率及基因型频率都不再发生改变。错!自交不是随机交配,后代基因型频率会发生改变。210.现代进化理论认为,自然选择决定生物进化的方向,生物进化的实质是种群基因频率的改变。对!第 22 组211.隔离是物种形成的必要条件。生殖隔离的形成必须要有地理隔离,地理隔离必然导致生殖隔离。错!同地的染色体数目加倍后也能与原有物种形成生殖隔离。地理隔离时间短不会导致生殖隔离。212.进化过程一定伴随着基因频率的改变。对!213.自然情况下,突变、基因重组、自然选择都会直接导致基因频率的改变。错!基因重组不会引起基因频率改变。自然选择通过作用于表现性间接地导致基因频率改变214.长期使用农药后,害虫会产生很强的抗药性,这种抗药性的产生是因为农药诱导害虫产生了抗药性突变之故。错!抗药性在使用农药之前,就产生了。215.某校学生(男女各半)中,有红绿色盲患者3.5%(均为男生),色盲携带者占5%,则该校学生中的色盲基因频率为5.67%。.对!216.生物的变异是不定向的,但在自然选择的作用下,种群的基因频率会发生定向的改变,从而使生物向着一定的方向进化。.对!217.生物进化的基本单位是种群,但是自然选择通过作用于个体而影响种群的基因频率。自然选择直接作用于表现型而非基因型。.对!218.生殖隔离一定导致形成新物种,不同物种一定存在生殖隔离;新物种产生一定存在进化,进化一定意味着新物种的产生。错!进化不一定导致新物种的产生,进化相当于量变,新物种形成是质变。219.植物生长素能促进植物生长是通过促进细胞的分裂与生长实现的;生长素的作用具有双重性,即低浓度促进生长,高浓度抑制生长。错!植物生长素不能促进细胞分裂。220.顶端优势现象、根的向地生长、茎的背地生长都说明了生长素作用的双重性。错!茎的背地生长无法表现出高浓度抑制生长的生长素特性。第 23 组221.不同种类的植物对生长素的敏感性不同,同一种植物的不同器官对生长素的敏感性也不同。.对!222.植物生长素在胚芽鞘尖端部位的运输会受光与重力的影响而横向运输,但在尖端下面的一段只能是极性运输,即只能从形态学的上端向形态学的下端运输,这种运输是需要能量的主动运输。.对!223.连续下雨天影响了玉米的传粉,此时可施用适宜浓度的生长素挽救玉米产量。错!玉米收获的是种子,没有传粉就不会有种子。224.两种不同浓度的生长素溶液都不具有促进植物细胞生长的作用,其原因一定是其中的一种溶液浓度过高,另一种溶液浓度过低。错!两种浓度可能都是高浓度抑制。225.生长素、细胞分裂素和赤霉素对植物的生长发育有促进作用,属于植物生长的促进剂;脱落酸与乙烯对植物的生长、发育有抑制作用,属于生长抑制剂。.对!226.内环境中含有多种成分,激素、抗体、淋巴因子、血浆蛋白、葡萄糖、尿素等都是内环境的成分。.对!227.肺泡不属于内环境,所以呼吸系统与内环境稳态的维持没有关系。错!内环境稳态直接需要呼吸、消化、排泄、循环四大系统的作用。228.血糖是血液中的葡萄糖,所以适当摄入果糖对血糖浓度没有显著影响。对!229.红细胞的内环境是血浆;毛细血管壁细胞的内环境是血浆与组织液;毛细淋巴管壁细胞的内环境是淋巴与血浆。错!毛细淋巴管壁细胞的内环境是淋巴与组织液。230.人体局部组织活动增加时,代谢产物增加,组织液增多,淋巴增加。对!第 24 组231.人体内环境的稳态是在神经调节、体液调节与免疫调节下由各器官、系统协调作用下实现的。对!232.甲状腺激素、肾上腺激素、性激素可以口服,下丘脑、垂体、胰岛分泌的激素必须注射才能起作用。对!233.皮肤上的一个温度感受器既能感受热,又能感受冷。错!冷觉感受器和温觉感受器是独立的两种温度感受器。234.某哺乳动物体温为40℃左右,将此动物放于0℃的环境中,耗氧量增加;将此动物的组织细胞放置于0℃下,耗氧量减少。对!235.为了增加母鸡的产蛋量,可以人工延长鸡舍中的光照时间,从而直接通过体液调节提高产蛋量。错!光信息首先被反射弧的感受器接受,是神经-体液调节。236.某人40 度高烧一天,是因为此人在这一天中的产热大于散热。错!温度稳定时,产热=散热。237.人体进入寒冷的环境中,因为酶的活性降低,新陈代谢减弱。错!进入寒冷的环境中,人体散热增加,为了保持体温,代谢加快,产热也增加。人是恒温动物,体内酶活性不受外界温度影响。238.K+主要维持细胞外渗透压的稳定。错!K+主要位于细胞内,主要维持细胞内渗透压。239.反射是神经调节的基本方式,反射的结构基础是反射弧,反射弧是由五个基本环节构成的。对!240.离体情况下,刺激传入神经也能引起效应器的活动,属于反射。错!反射必须经历完整反射弧。第 25 组241.神经信号可以从轴突到树突,也可以从树突到轴突。对!242.一个反射弧中只含有一条传入神经,一条传出神经,则只含有一个突触结构(不考虑神经肌肉接点)。错!上一个神经元的轴突分叉形成众多的神经末梢,从而与下一个神经元形成多个突触结构。243.神经元接受刺激产生兴奋或抑制的生理基础是Na+的内流或阴离子(Cl-)的内流。对!244.增加细胞外K+的浓度可以增加静息电位的值;阻断Na+通道可以降低静息电位的值。错!增加细胞外K+的浓度降低了静息电位的值;阻断Na+通道降低了动作电位的值。245.人体在完成反射活动的过程中,兴奋在神经纤维上的传导方向一定是双向的,而在突触的传递方向是单向的。错!刺激只能刺激在反射弧的感受器上,所以体内的兴奋传导是从感受器向效应器方向。246.神经冲动可以从一个神经元的轴突传递到下一个神经元的胞体、树突或轴突。.对!247.一个神经元兴奋可能会导致下一个神经元抑制。.对!248.在一个反射弧的链条中不可能存在两个中间抑制性神经元,因为抑制作用(超级化状态)是不能被传递的。.对!249.发生动作电位时,膜内的Na+浓度高于膜外。错!去极化时,Na+的内流是易化扩散,所以膜外的Na+浓度始终高于膜内。250.神经递质借助膜的流动性进入下一个神经元。激素则与质膜上的受体细胞结合不进入受体细胞内部。错!神经递质与后膜的受体结合后被分解或被前膜重吸收。性激素是固醇类,能进入细胞内与细胞内的受体结合。第 26 组251.人体饥饿时,血液流经肝脏后,血糖的含量会升高,血液流经胰岛后,血糖的含量会减少。对!252.胰岛素是人体中降低血糖的唯一激素,而胰高血糖素和肾上腺素均能提高血糖浓度。对!253.胰腺中的腺泡组织属于外分泌部,具有导管,能分泌消化酶;胰腺中的胰岛组织属于内分泌部,无导管,能分泌激素。对!254.因为胰高血糖素的靶细胞是肝脏等处的细胞,而非肌细胞。肝糖元可以分解成葡萄糖,肌糖元不能分解成葡萄糖。对!255.胰岛素的增加直接导致胰高血糖素的降低,但是胰高血糖素的增加直接导致胰岛素的增加。对!256.验证雄性激素和甲状腺激素的功能,普遍采用先切除后再移植的方法进行二次对照。错!甲状腺是柔性的器官,很难移植,采用的是摘除-注射法。257.所有的激素只能作用于一种或少数几种靶细胞或靶组织。错!有些激素的靶细胞是全身细胞,如生长激素。258.能合成激素的所有的活细胞都能产生酶,但只有内分泌腺的细胞会合成激素。错!有些内分泌细胞分散分布于肠胃道。259.细胞产生的激素、淋巴因子以及神经递质等都属于信号分子,在细胞间起到传递信息的作用。对!260.在饮水不足、体内失水过多或吃的食物过咸的情况下,人体血液中的抗利尿激素的含量会增加。对!第 27 组261.人体中的抗利尿激素和催产素是下丘脑合成和分泌,经过神经垂体释放的。对!262.促甲状腺激素释放激素的靶细胞是垂体,促甲状腺激素的靶细胞是甲状腺,甲状腺激素的靶细胞是全身各处的组织细胞,包括垂体与下丘脑。对!263.激素间的作用包括协同与拮抗作用,促甲状腺激素与促甲状腺激素释放激素、甲状腺激素间的关系属于协同关系;胰岛素与胰高血糖素间具有拮抗作用。错!协同作用是指作用相似,所以促甲状腺激素与促甲状腺激素释放激素、甲状腺激素间的关系属于分级调控。264.甲状腺激素对下丘脑和垂体分泌促甲状腺激素释放激素和促甲状腺激素具有反馈调节作用;垂体产生的促甲状腺激素对下丘脑分泌促甲状腺激素释放激素具有反馈调节作用。错!促甲状腺激素没有反馈机制。265.下丘脑是内分泌腺调节的枢纽,也是血糖调节、体温调节以及水盐平衡调节的中枢。垂体是最重要的分泌腺,是激素的调节中心。对!266.下丘脑是通过神经系统控制胰岛和肾上腺髓质分泌相应的激素。对!267.无论是植物激素还是动物激素,对生物的影响都不是孤立地起作用的,而是多种激素相互作用、共同调节。对!268.抗体主要分布在血清中,也可以在组织液和外分泌液中。对!269.神经递质与突触后膜受体的结合,各种激素与激素受体的结合,抗体与抗原的作用都发生在内环境中。错!性激素与激素受体的结合发生在细胞内部。270.特异性免疫是人体的第三道防线,是在后天获得的,对特定的病原体起作用。对!第 28 组271.具有对抗原特异性识别的细胞包括T 细胞、B 细胞、效应T 细胞、记忆细胞以及浆细胞(效应B 细胞)等。错!效应B细胞没有直接识别抗原的能力,是它分泌的抗体识别抗原。272.吞噬细胞对抗原没有识别能力。错!吞噬细胞具有非特异性识别能力。273.效应B 细胞不能特异性识别抗原,但其分泌的抗体能特异性识别抗原,并将其直接消灭。错!抗体与抗原结合后,可能需要形成沉淀,然后被吞噬细胞吞噬消化。274.一______________个效应B 细胞产生一种抗体,每个抗体只识别一种抗原,每个抗体与两个抗原结合。对!判断题275.凝集素和抗毒素都是一种抗体,抗体本质上是一种球蛋白。对!276.细胞免疫中,抗原决定簇需要经过吞噬细胞处理;而体液免疫中,抗原决定簇可以直接成递给B 细胞。对!277.抗体在体内存留的时间相对较短,而记忆细胞可长期存在或终身存在。对!278.淋巴因子只在体液免疫中起作用,在细胞免疫中不起作用。错!活化的辅助性T细胞在细胞免疫中也分泌淋巴因子。279.检查血液中的某一种抗体可确定一个人是否曾经受到某种特定的病原体的侵袭。可利用此原理检测血液中的艾滋病病毒。对!280.抗原具有异物性,即抗原都是进入机体的外来物质,自身的物质不可能作为抗原。错!自身的细胞,如癌细胞,也可能称为抗原。第 29 组281.种群密度是种群的最基本的数量特征,出生率与死亡率、迁入与迁出,直接影响种群密度;年龄组成预示着种群未来的发展趋势。对!282.在稳定型年龄结构的种群中,种群出生率约等于零。错!出生率约等于死亡率,而不是约等于零。283.使用样方法调查密度时,对于落入样方边线的样本,一般来说取上边,左边,左上顶点的样本,而不统计下边,右边,和其它三个顶角的样本。对!284.用标志重捕法调查某动物的种群密度时,由于被标记动物经过一次捕捉,被再次重捕的概率减小,由此将会导致被调查的种群的数量较实际值偏小。错!较实际值偏大285.用血球计数板计数某酵母菌样品中的酵母菌数量。血球计数板的计数室由25×16=400 个小室组成,容纳的液体总体积是0.1mm3。某同学操作时将1mL酵母菌样品加入99mL 无菌水中稀释,然后利用血球计数板观察计数。如果该同学观察到血球计数板计数的5 个中格80 个小室中共有酵母菌48 个,则估算1mL 样品中有酵母菌2.4×108 个。对!286.在种群的S 型增长曲线中,达到1/2K 值时种群的增长速率最快,达到K 值时种群的增长速率为0。对!287.J 型增长曲线中增长率常表示为λ,S 型增长曲线的增长率先增大,后减少。错!S型增长曲线的增长率不断减少。288.一座高山从山脚向山顶依次分布着阔叶林、针叶林、灌木林、草甸等群落,这是群落的垂直结构。错!高山中分布的是多个群落,垂直结构是指一个群落内部的结构。289.群落最终都会演替成森林。错!干旱的地方,顶极群落不是森林。290.某片竹林中的竹子长势整齐,没有明显的高株和矮株,因此说明这个群落没有垂直结构。错!群落的垂直结构一定是存在的,没有考虑土壤中的生物。第 30 组291.一个森林中的所有动物与植物构成了这个森林的生物群落。错!群落还应该包括微生物。292.食物链与食物网是生态系统的营养结构,生态系统的物质循环与能量流动就是沿着这种渠道进行的。对!293.在生态系统中,生产者由自养型生物构成,一定位于第一营养级。对!294.在捕食食物链中,食物链的起点总是生产者,占据最高营养级的是不被其他动物捕食的动物。对!295.生物体内能量的去路包括呼吸消耗、流入后一营养级、被微生物分解和随动物的排遗物流失。错!动物的排遗物属于前一营养级中的能量。296.在一条食物链中,由低营养级到高营养级推算,前一营养级比后一营养级含量一定多的指标是“能量”,而“数量”和“干重”可能出现反例。对!297.植物A 属于第一营养级,动物B 属于第二营养级,所以所有植物A 中包含的能量一定多于所有动物B 所包含的能量。错!每个营养级中所有生物所包含的能量构成能量金字塔。第一营养级中的A很稀少,第二营养级中的B可以更多地取食其它生物,维持生存。298.动物吃100g食物,一般只能使体重增加10g,这就是生态系统中的能量传递效率为10%的例证。错!这是食物的利用率,能量传递效率是两个营养级之间的能量的比值。299.对于捕食链来说,第一营养级一定是生产者,分解者一定不占营养级,无机成分也一定不占营养级。对!300.在一个生态系统中,分解有机物的是微生物。错!腐食动物也可以分解有机物。第 31 组301.食物链纵横交错形成的复杂营养关系就是食物网。食物网的复杂程度取决于该生态系统中生物的数量。.错!食物网的复杂程度取决于有食物关系的生物的种类。302.生态系统的能量流动是从生产者固定太阳能开始的,流经生态系统的总能量就是该生态系统生产者所固定的全部太阳能。对!303.发展生态农业,实现物质与能量的循环利用,是实现人与自然和谐发展的一项合理措施。错!能量不能循环利用。304.对任何一个自然生态系统而言,物质可以被生物群落反复利用而不依赖于系统外的供应,但能量是逐级递减的,且是单向流动不循环的,必须从系统外获得。错!物质是在整个生态系统中循环,而不是在群落中循环。305.负反馈在生态系统中普遍存在,它是生态系统自我调节的基础。正反馈则是加速破坏平衡。所以负反馈都是有利的,正反馈都是有害的。错!负反馈和正反馈都有积极和消极的作用。306.全球性生态环境问题主要包括全球气候变暖、水资源短缺、臭氧层破坏、酸雨、土地荒漠化、海洋污染和生物多样性锐减等。对!307.在一个生态系统中,植物不一定是生产者,动物不一定是消费者,微生物不一定是分解者。同样,生产者不一定是植物,消费者不一定是动物,分解者不一定是微生物。对!308.保护生物多样性,必须做到禁止开发和利用,如禁止森林砍伐,保护森林;保护海洋生物,必须禁止乱捕乱捞。错!人类合理开发自然界,有利于保护生态系统的多样性。309.当发生火灾或者火山爆发后的群落演替属于次生演替。湖底的演替属于原生演替。错!火山爆发属于原生演替。310.C 以CO2 的形式在无机环境与生物群落之间循环。对!第 32 组311.根据胰岛素基因制作的基因探针,仅有胰岛B 细胞中的DNA 与RNA 能与之形成杂交分子,而其他细胞中只有DNA 能与之形成杂交分子。对!312.解旋酶、DNA 聚合酶、DNA 连接酶、限制性内切酶都能作用于DNA 分子,它们的作用部位都是相同的。错!解旋酶作用与氢键。313.用限制性核酸内切酶切割烟草花叶病毒的核酸。错!烟草花叶病毒的核酸是RNA,限制酶只能切割DNA,不能切割RNA。314.利用显微注射的方法将目的基因直接导入受体细胞,而不需要DNA 载体。错!目的基因必须与DNA载体结合,否则目的基因无法复制,无法与宿主细胞DNA整合。315.运载体是基因工程中的重要工具,能够自我复制,含有一个或多个限制性内切酶的切点,具有某些标记基因等,是运载体必须具备的基本条件。.对!316.用同个生物的不同细胞构建的cDNA 文库都是相同的。错!不同细胞因为选择性表达,mRNA的种类不同,所以反转录而来的cDNA文库不一定相同。317.如果要将人生长激素基因导入大肠杆菌,应从cDNA 文库中获取目的基因,或用人工化学合成的方法获取。对!318.用限制性内切酶切割得到的人胰岛素原基因,导入大肠杆菌细胞后不能得到有效的表达。对!319.成功导入外源基因就标志着基因工程的成功。错!外源基因是否能够成功表达才是成功的标志。320.检测受体细胞是否导入了目的基因,以及受体细胞中导入的目的基因是否转录出mRNA,可用相同的目的基因探针进行诊断。对!第 33 组321.要获得转基因植物,可选用植物的体细胞作受体细胞,然后通过组织培养技术获得;如果要获得转基因动物,可选用动物的体细胞作受体细胞,然后通过动物细胞培养技术获得。错!动物转基因的受体细胞一般是受精卵,因为普通的动物体细胞没有全能性。322.基因工程的运载体可以采用大肠杆菌的质粒,但是并不是所有的大肠杆菌的质粒都可以用于基因工程。对!323.通过转基因方式获得的抗虫棉的后代具有永久抗虫的能力。错!外源基因可能在繁殖过程中丢失。或者认为转基因植物细胞中一般只有一个外源基因,在减数分裂的过程中,会有一半的生殖细胞不含外源基因。324.用相同的限制性内切酶切割DNA 留下的粘性末端是一定相同的;用不同的限制性内切酶切割DNA 留下的粘性末端一定是不相同的。错!不同的限制酶也可能产生相同的粘性末端。325.采用转基因方法将人的凝血因子基因导入山羊受精卵,培育出了转基因羊。但是人的凝血因子只存在于转基因山羊的乳汁中。这说明,在该转基因山羊中,只有乳腺细胞中存在人凝血因子基因,而其他细胞中不存在。错!外源基因也是选择性表达,所以其它细胞含有这个基因但是没有表达出来。326.基因治疗是指将缺陷基因诱变为正常基因;基因诊断依据的原理是DNA 分子杂交;一种基因探针能够检测水体中的各种病毒。错!基因治疗往往是导入正常的基因。基因诊断还需要利用DNA凝胶电泳技术。基因探针具有特异性,一般只能检测一种病毒。327.通过转基因培育抗虫品种,利用种间关系控制害虫的数量,利用昆虫激素干扰昆虫的繁殖等都属于生物防治的范畴。对!328.DNA 连接酶与DNA 聚合酶都是催化磷酸二酯键的形成,但前者只催化游离脱氧核苷酸连接到已有脱氧核苷酸链上,后者催化两个DNA 片段的连接。错!两种酶的作用说反了。329.限制性核酸内切酶有3000 多种,能识别并切割回文序列,具有较强专一性;DNA 连接酶能连接所有的粘性末端,所以没有专一性。错!DNA连接酶只能连接DNA,不能连接蛋白质,就说明专一性,只是专一性比限制酶弱。330.生物体内DNA 分子的解旋一定需要解旋酶,在体外则只需要高温。错!转录时,DNA的解旋由RNA聚合酶完成,不需要专门的解旋酶。第 34 组331.为检测胰岛素基因转录的mRNA 是否翻译成胰岛素原,常用抗原-抗体杂交技术。对!332.抗生素-卡那霉素可以用来对转基因的植物细胞起到筛选的作用。对!333.在获取植物的原生质体时,使用高浓度的甘露醇溶液可以防止原生质体吸水胀破。对!334.在植物组织培养中,生长素/细胞分裂素比例高时有利于根的分化,比例低时有利于芽的分化,比例适中促进愈伤组织的形成。对!335.离体的植物体细胞与生殖细胞都可以作为植物组织培养的外植体,因为这些细胞都至少含有一个染色体组,具有全能性。对!336.愈伤组织的细胞排列整齐而紧密,且为高度液泡化、无定形状的薄壁细胞。错!愈伤组织排列疏松无规则。337.在植物组织培养的过程中,脱分化阶段不需要光照,再分化阶段需要给予光照的条件。对!338.在植物组织培养过程中,加入适量的蔗糖不仅可以为细胞提供能源物质,而且可以调节培养基的渗透压。对!339.一个四倍体的某植物体细胞与一个二倍体的另一种植物体细胞进行杂交,如果形成的杂交细胞中染色体没有丢失,则该杂交细胞通过组织培养长成的植株属于六倍体,而且是可育的。对!340.制备单克隆抗体所涉及的生物技术包括:动物细胞融合与动物细胞培养;获得番茄—马铃薯种间杂种个体用到的技术包括:植物体细胞杂交与植物组织培养;获得转基因抗虫棉用到的技术只是转基因技术。错!植物转基因技术离不开细胞组织培养。第 35 组341.植物产生的种子能发育成新的个体,是种子细胞全能性的体现。错!种子内部已经形成了各种组织细胞,胚就相当于一个小型的植物,所以这是长大的过程。342.同一株绿色开花植物不同部分的细胞经组织培养获得的愈伤组织细胞基因都是相同的。错!花药组织培养和体细胞组织培养所获得的细胞的基因型不同。343.将愈伤组织包埋在人工种皮中,就形成了人工种子。人工种皮需要具有透气与透水等特点。错!愈伤组织进一步培养成胚状体才能组装成人工种子。344.我国政府不反对治疗性克隆,禁止生殖性克隆。对!345.在细胞克隆培养时,需要滋养细胞;当进行胚胎干细胞培养时需要饲养层细胞。对!346.在动物细胞培养与植物组织培养中,都需要对培养基灭菌,还都需要用到CO2培养箱。错!动物细胞培养时,CO2用来维持PH值。植物培养不需要认为控制CO2,因为环境中的CO2足够进行光合作用。347.动物细胞培养与植物组织培养依据的原理都是细胞的全能性。错!动物细胞培养的原理是细胞增殖。348.动物细胞培养中,细胞具有贴壁生长以及接触抑制的特点,因此在培养中需要用胰蛋白酶处理贴壁的细胞并进行分瓶培养,分瓶后的培养称为传代培养。对!349.动物细胞培养中配制的培养基属于合成培养基与液体培养基,在使用时,该培养基中还需要添加血清等天然成分。对!350.如果要通过动物细胞培养提供动物克隆的供体细胞,一般应选用10 代以内的培养细胞,以保证供体细胞正常的遗传基础。对!第 36 组351.动物细胞培养中绝大多数细胞不能活过10 代。.对!352.诱导动物细胞融合除可以用离心、振荡、电激等物理方法和聚乙二醇处理等化学方法外,还可以采用灭活的病毒进行处理;诱导植物细胞融合则不能使用灭活的病毒。.对!353.将B 淋巴细胞与骨髓瘤细胞进行诱导融合,培养液中融合后的细胞即为杂交瘤细胞。错!诱导产生的细胞也可能是两个淋巴细胞的融合或两个瘤细胞的融合。354.在动物细胞培养中需要进行二次筛选。第一次是用选择性培养基筛选出杂交瘤细胞;第二次是用抗原—抗体结合的原理筛选出能产生特定抗体的杂交瘤细胞。对!355.杂交瘤细胞具有既能产生抗体又能无限增殖的特点;杂交瘤细胞产生的单抗具有特异强、灵敏度高的特点。对!356.通过核移植获得的克隆动物,完全继承了供核个体的遗传性,因此其性状表现只与供核个体相关,与其他个体无关。错!克隆动物的细胞质基因来自提供细胞质的个体。357.胚胎干细胞具有分化成各种组织器官的能力,这说明了胚胎干细胞的发育全能性。诱导胚胎干细胞分化的培养基中不需要加入饲养层细胞。对!358.胚胎移植之前需要对供体和受体进行免疫检查,防止发生免疫排斥反应。错!胚胎移植不会出现免疫排斥。359.动物细胞克隆、转基因工程等只要最后一步涉及胚胎移植,代孕母亲与供体母亲必须进行同期发情处理。对!360.试管婴儿和胚胎移植技术都属于有性生殖。错!胚胎移植技术无所谓有性还是无性,关键看胚胎的来源是受精卵形成的,还是无性繁殖形成的。第 37 组361.试管婴儿技术中,从生物体内取出的精子是成熟的,卵是不成熟的。完成受精后,可以立即进行胚胎移植,最晚不能原肠胚时期。错!需要卵裂到8个细胞,才能移植,否则无法着床。362.卵裂期细胞数目不断增加但卵裂球总体积并不增加,有机物的总量也不断减少。对!363.精子的获能不是获得ATP,而是受到外界环境中某些物质如酶和离子的作用,具备了受精的能力。对!364.我国古代的“无废弃物农业”,从生态学上看是遵循了物质循环再生原理。对!365.生态农业的建立,提高了各营养级之间的能量传递效率。错!人类很难改变能量传递效率,而只能使能量更多地流向对人类有益的部分。
4月18日,东岳硅材举行30万吨有机硅项目开工暨园区项目建设誓师大会。2020年《政府工作报告》提出,激发内生发展动力,推动制造业升级和新兴产业发展;支持制造业高质量发展。践行《政府工作报告》这一要求,化工行业有了生动的注脚。上半年,在新冠肺炎疫情突如其来的情况下,山东东岳集团前进的脚步仍然铿锵有力,每一步都足以载入企业的发展史册。东岳集团也成为我国化工新材料和氢能产业的风向标,引领和带动着产业链的升级。3月12日,东岳集团分拆子公司——山东东岳有机硅材料股份有限公司(简称:东岳硅材)在深交所“云上市”,山东新年第一股就此诞生。4月18日,东岳硅材年产30万吨有机硅项目开工暨园区项目建设推进誓师大会举行,未来18个月里,投资29.8亿元的东岳硅材30万吨有机硅单体及20万吨深加工项目将建设竣工。6月9日,东岳未来氢能材料有限公司举行股权增资签约仪式,与5家投资公司代表签约,签约增资额3亿元。至此,一直被认为是氟硅材料龙头企业的东岳集团,进入了产业链进一步丰富完备的全新发展时期。33载励精图治,东岳集团的产业格局已经清晰,氟、硅、膜、氢四大支柱产业擎起了东岳产业新版图。氟材料昂首挺进高端从事氟化工产业是东岳集团的看家本领。在国际上,由于产品具有高性能和高附加值特点,氟化工产业被称为“黄金产业”。1987年,从被国有企业淘汰的2台无水氟化氢转炉起步, 38名初创者在退伍军人张建宏的带领下,开始了东岳集团的创业历程。1993年5月1日,东岳集团上马的第一套3000吨含氟制冷剂R22装置投产,这是东岳集团靠自己的力量开发出的第一个氟深加工产品。1998年,“老乡结皇亲”,东岳集团着眼于绿色环保事业,与清华大学联手率先在国内推出R415a、R418等东岳集团清华绿色制冷剂系列产品,获得国家技术发明奖,并获得国际统一编号。直至多年后,这些制冷剂依然是东岳的盈利担当。在当时选择上马绿色制冷剂产品无疑是超前的。2001年,东岳集团敏锐地上马3000吨聚四氟乙烯(PTFE)项目,仅仅用11个月时间就顺利投产,结束了中国含氟高分子材料主要依靠进口和低档次小规模生产的历史,达到PTFE世界先进水平,同时也练就了东岳的四氟“铁军”。此后2年迅速将PTFE规模扩建到万吨,占当时国内总装置能力的50%。2007年,东岳集团在香港联交所上市,开启了产业拥抱资本的新阶段。同时公司沿着科技、环保、国际化的发展方向,成长为亚洲规模最大的氟硅材料生产基地、中国氟硅行业的龙头企业,主导产品绿色环保制冷剂、聚四氟乙烯高分子材料,规模、技术、市场占有率居行业前列。东岳集团拥有国家级企业技术中心、博士后科研工作站、泰山学者岗位,承担着国家重点火炬计划、国家863计划、“十二五”国家科技支撑计划和山东省高新技术“一号工程”等重大科技项目,是全国重点高新技术企业、国家新材料产业化基地骨干企业。2015年,国家正式批准成立含氟功能膜材料国家重点实验室,标志着东岳集团已经成为我国含氟功能材料领军企业。2016年6月,东岳集团通过国家工信部审核,成为氟化工智能工厂试点示范单位,跻身全国63家智能工厂试点示范,是淄博市第一家,也是全国氟化工行业首家企业。作为一家民营科技型企业,科技创新成为东岳集团深入骨髓的基因,张建宏董事长惜才爱才也有着一段段佳话。东岳集团“以效益体现价值,用财富回报才智”的人才理念是时任国务院副总理李克强2008年在东岳集团调研时专门修订的。“人才在哪里,东岳去哪里。”为满足科研和园区产业发展的人才需求,作为淄博市桓台县土生土长的企业,2019年,东岳集团强力推进“621”泰山攀登计划,6个研发中心的北京、上海、深圳三地研发中心已注册成立运行,加拿大、日本、德国3个研发中心已成雏形。东岳集团先后与上海交大、北京化工大学、清华大学、山东大学、中科院兰州化学物理研究所等高校、科研院所共建16个平台,开展合作项目46个。东岳集团研究院院长冯威博士说:“目前,东岳集团基本形成了外地研发中心、联合实验室与园区研究院、各公司研究所统分结合、分工协作、集成联动的新型科研机制与体系。”近几年,东岳集团瞄准产业转型发展过程中涉及国民经济发展重大需求和国家战略急需的高端氟硅材料,布局高端氟硅材料产业新旧动能转换,突破产业化共性技术瓶颈,发展特种氟碳单体和新型聚合物,制备高端氟硅材料,特别是满足新能源、航空航天、国防军工对高端氟硅材料的迫切需求。如从2016年开始,东岳集团与中科院兰州化物所刘维民院士团队联合攻关航天航空润滑油核心材料特型全氟聚醚。高端含氟材料的创新如火如荼。2019年,东岳集团推出了大量高品质专供料,共有40多个新品种、新牌号。改性悬浮树脂DF-161成功应用于半导体领域;高耐压、低渗透的改性分散树脂DF-2049,大规模用在电力、钢铁等行业的耐腐蚀换热器中,并将用于大飞机输油管;与嘉善东方合作的DF-16A成为高铁项目的关键材料。为满足5G基站建设和线缆铺设高端材料需求,东岳集团组成专门科研团队,迅速推出了5G高频专供料分散树脂和浓缩液,成为华为等5G企业直接或间接重要供应商。2019年6月13日,东岳集团乙烯-四氟乙烯共聚树脂(ETFE)项目通过了科技成果鉴定,形成DS405、DS4051和DS406三个系列产品,填补国内空白。这一国家支持的高端绝缘、防腐和新能源用材料,东岳集团持续研发了12年。如今,东岳集团年产6万吨新型制冷剂R125、20000吨高性能含氟聚合物、5.3万吨高端含氟精细化学品等项目都已经陆续开工建设。其中R125环保制冷剂项目将于今年10月1日前建成投产。东岳集团总裁王维东说:“这些项目建成投产后,东岳集团的供货能力将大大增强,在行业中的地位和市场竞争优势也将更加明显,可进一步提升企业发展潜力和经营效益,促进新旧动能转换的效率。”中国工程院院士干勇评价说:“中国制造业强国的建设,已经进入高质量发展阶段。东岳集团作为一家科技创新型的企业,成功地推出一大批国产化替代高科技产品,如含氟功能膜材料,航天航空润滑油用的全氟聚醚,包括高铁、大飞机等用的关键材料。东岳集团就像华为一样有着10年、20年布局的勇气和技术研发过程的恒力。中国的企业特别需要这种科技创新的静气与定力。”3月12日,东岳硅材在深交所“云上市”。有机硅材料支撑“高新”产业有机硅被誉为“工业维生素”和“科技催化剂”,是一种新型高分子材料。有机硅以独特的耐高低温、耐候性、生理惰性、可修复性等,不仅广泛应用于传统产业,而且对国防军工以及新能源、高速轨道交通、电子信息、半导体照明、生物医药等战略性新型产业具有重要的支撑作用,是我国高端制造和新基建不可或缺的基础和功能材料。有机硅属于典型的战略新兴产业。东岳集团进军有机硅领域的时间不算早,但其独特之处在于效益位居行业前列。即使是在2020年上半年,东岳集团依然克服疫情影响,保持了行业最高开车率。2020年3月12日,东岳集团控股子公司——山东东岳有机硅材料股份有限公司(简称:东岳硅材)在深交所创业板上市。至此,东岳集团诞生“第二股”。招股书显示:东岳硅材成立于2006年12月,是国家高新技术企业,主要从事有机硅生产、研发和销售。通过长期技术研发和生产实践,东岳硅材现已掌握年产能15万吨单体合成装置设计、运行技术,为单套产能最高的国产装置之一,规模优势显著。2019年有机硅单体产能已提升至30万吨/年。同时持续拓展有机硅下游深加工产业链,产品品类不断丰富,拥有硅橡胶、硅油、硅树脂、气相白炭黑等各类深加工产品共120多种规格,位居行业前列,且下游深加工系列产品已成为公司的核心盈利来源。4月18日,东岳硅材年产30万吨有机硅项目开工暨园区项目建设推进誓师大会隆重举行,东岳集团以誓师大会为契机,吹响了今年推进项目建设的冲锋号。未来18个月的时间里,投资29.8亿元的东岳硅材年产30万吨有机硅单体及20万吨深加工项目将在这里建设竣工。东岳集团将以东岳速度、东岳担当、东岳品质在全国乃至全球有机硅领域再现东岳力量。“东岳硅材年产30万吨有机硅项目开工建设,对东岳有机硅进入全国前三、世界前五,对东岳打造有机硅上下游全产业链、打造世界级硅材先进制造业,具有中国力量、中国品牌和山东新旧动能转换重大项目的现实意义和深远的历史意义。”东岳集团董事长张建宏铿锵有力的话语,响彻会场。“我们赶上了一个伟大的创业时代,在各方面都已经具备了把项目建好的条件和要素,只有第一没有第二,唯有第一别无选择。”据了解,该项目承载着东岳集团在这个领域打破垄断、替代进口、满足高端制造业,特别是航空、航天、医疗、汽车等领域材料垄断的重大使命。作为东岳集团历史上建设规模最大、一次性使用募投资金投资最大的建设项目,年产30万吨有机硅项目采用世界一流的智能信息化技术,按照循环经济、清洁生产和绿色化工的原则进行工程设计。项目竣工后,东岳有机硅单体年总产能能够达到60万吨,产品达到5大类300个产品牌号,跻身全球有机硅强企之林。随着生产规模的扩大,东岳集团在生产管理、市场营销等方面的规模效益进一步凸显。桓台县委书记贾刚表示,东岳硅材年产30万吨有机硅单体及20万吨深加工项目是桓台县依托淄博东岳经济开发区,打造千亿级氟硅新材料产业集群的重点项目之一。随着有机硅材料、含氟聚合物、新型环保制冷剂、基础设施配套等一系列项目建成投用,东岳园区必将实现提速发展的新突破,桓台必将迎来转型跨越高质量发展的新局面。中国氟硅有机材料工业协会张建军说:“东岳集团新建有机硅项目拥有国内外最先进的有机硅及下游深加工技术,单套装置设计年产能国内第一,项目建成后将是全球一流的现代化工厂、智能化工厂和绿色工厂。这是企业发展达到新水平的重要标志,必将对全行业产生巨大的鼓舞和示范作用。”张建军表示,我国正大力发展的新基建七大领域都离不开有机硅产品,包括5G建设及应用、光伏电网及特高压、工业互联网、城际高速铁路和城际轨道交通、新能源车及充电桩、人工智能、云计算大数据中心等,有机硅在这些领域具有不可替代的作用。新基建为有机硅行业发展带来了新契机,也为东岳硅材开启了新的市场增长空间。投资者参观新建成的东岳未来氢能技术示范中心质子交换膜展区。“双膜”守护“中国芯”氯碱工业的核心装备是电解槽,电解槽的关键部件是氯碱离子膜,它被称为氯碱工业的“芯片”。我国氯碱离子膜早年间完全依赖进口,严重影响我国基础产业安全。直至2009年9月22日,东岳集团氯碱离子膜成功下线,摘取了这一材料行业“皇冠上的明珠”, 攻克了这一跨世纪重大难题,彻底结束了我国氯碱工业受制于人的历史。国产氯碱离子膜的问世,让中国氯碱行业从此有了“中国芯”。这是东岳集团为祖国和民族作出的里程碑式的贡献,东岳集团氯碱离子膜因此被称为 “争气膜”。在持续改进氯碱离子膜性能的同时,东岳集团也瞄准了燃料电池汽车的“芯片”——高性能燃料电池质子膜。在经过10年研发的基础上,2013年11月27日,东岳集团与奔驰福特合资公司(AFCC)举行联合开发车用燃料电池膜签约仪式,张建宏和AFCC公司首席执行官安德鲁斯代表双方在《联合开发协议》上签字。通过双方的合作,旨在进一步提高东岳集团燃料电池膜的技术水平,加快推动世界清洁新能源燃料电池车产业化进程。冯威说:“燃料电池膜的用量目前还处于爬坡阶段,但东岳集团燃料电池膜已经获得奔驰和福特(AFCC)公司燃料电池膜全面认证,寿命突破6000小时,性能全球领先,这是中国在这一高技术领域取得的辉煌成果,不但支撑中国燃料电池汽车的发展,也对全球燃料电池汽车的大规模量产具有重要意义。”站在全球视野,东岳集团具有燃料电池质子膜全产业链优势,形成了从原料、中间体、单体、聚合物到成膜技术的全产业链条,为最终实现高性能、长寿命、低成本的目标奠定了坚实基础,是我国燃料电池及其燃料电池汽车领域科技竞争力的体现。国产高品质燃料电池质子膜生产线即将建成,届时可全部满足我国燃料电池汽车的发展需要。2019年8月18日,在以“创新求变 聚合赋能”为主题的2019第二届膜产业“马踏湖”高峰论坛上,“中国膜谷”正式落户桓台。“中国膜谷”这4个字,既蕴涵了企业发展的创新梦,也蕴涵了区域发展的产业梦。6月9日,东岳未来氢能材料有限公司举行股权增资签约仪式。精准发力拥抱氢能时代为加快实现氢燃料电池膜产业化和市场化应用,2017年12月,东岳集团正式创建山东东岳未来氢能材料有限公司(简称:东岳未来氢能),致力于建成全球领先的高性能燃料电池膜及关键材料供应商。2019年,推动加氢设施建设首次写入《政府工作报告》,氢能由此开启了化石能源之后的一个能源新时代。“氢能产业的发展契合东岳集团产业链的发展方向,是最能体现科研高度和东岳科研价值的好领域,是我们最终的选择。” 张建宏十分笃定。又一次,东岳集团站在了时代风口。东岳集团董事会早在今年4月份发布的公告中决议批准东岳未来氢能公司启动申报科创板上市工作。这是继今年3月份东岳硅材在深圳创业板挂牌交易之后,东岳集团的又一大资本举动。如果冲刺成功,算上在香港上市的东岳集团,东岳将拥有3家上市公司。东岳未来氢能公司的东岳氢能研发中心、第五代燃料电池膜生产线都将在今年陆续投入运行,这是东岳在氢能关键材料领域争夺世界制高点的开创性工程。目前,以氢元素为核心的氢能技术示范中心已在5月底投入使用;氢能公司燃料电池膜生产线的配套原材料生产基地已经于今年6月18日成功投产。同时,东岳集团利用强大的行业影响力与自身副产氢气资源,积极推动在氢能领域与国内外优势企业开展全面深化的产业合作。2019年9月18日,东岳集团与国内氢燃料电池龙头企业——北京亿华通公司签订了战略合作协议,拟打造园区副产氢气资源综合利用示范项目(构建副产氢气生产、运输、储存、加注体系及交通、发电等应用示范),着力共同打造氢燃料电池汽车全产业链。同时积极参与巴拉德、潍柴、奥迪、现代等国际领先企业新电堆、新车型的开发,拟为其定制开发专用燃料电池膜产品等。中国科学院院士欧阳明高说:“氢能是符合我国战略发展的新兴产业,核心技术必须要国产化。东岳集团质子交换膜技术是核心中的核心,在燃料电池质子交换膜方面具有独一无二的世界领先的先进技术。亿华通是国内燃料电池的领军企业,两者强强联手,一定能把中国氢能燃料电池的核心技术搞上去。”6月9日,在新落成的东岳未来氢能技术示范中心,东岳未来氢能股权增资签约仪式举行。东岳集团副总裁、东岳未来氢能董事长兼总经理张恒分别与5家投资公司签约,签约增资额3亿元。据了解,东岳未来氢能材料巨大的市场前景及东岳集团强有力的产业链和信用保证,使本轮增资备受资本市场关注与追捧,先后有60多家投资企业与东岳集团对接。经过综合评估和筛选,最后选出了中金启辰、江苏投管、上海国和、中车时代和东岳硅材5家投资企业。淄博市副市长刘荣喜希望东岳集团进一步集中优势资源、加强资本运作、加快项目建设,全力打造以东岳未来氢能为中心的淄博氢燃料电池关键部件及材料产业集群,为淄博市氢能产业发展提供强力引擎。张建宏表示,东岳集团将不负期望和信任,发挥全产业链和规模、科技、技术优势,把项目做实、把科研做实、把管理做实,并加快上海科创板IPO进程,创造科技+资本全新发展模式,迎接和拥抱氢能时代。中金资本董事总经理、中金启辰负责人徐怡说,相信东岳未来氢能公司在管理和技术人员的共同努力及资本方的全力配合下,一定能够早日完成上市,成为含氟精细化学品、树脂和氢能材料的“独角兽”。氟、硅、膜、氢四大主业,每个都是科技含量极高的领域。从东岳集团的发展轨迹来看,对科技创新的孜孜以求使她成为一家值得尊敬的公司。有理由相信:科技创造未来,将在东岳集团的实践中更加生动地诠释。
同学们复习高中生物必修一、必修二、必修三、选修三的知识点时总找不到合适的方法。以前的经验表明,选择题因为选项间的相互暗示,填空题因为填写枯燥乏味和缺乏深入思考,效果均不太理想。用判断对错的形式进行复习是一种新的尝试。本模块的难度是高考模拟题的难度。内容较多,百分教育建议同学们收藏下来,分块复习。第 1 组1.任何生物都能独立地具备生物的几个基本特征,并符合细胞学说。错!病毒必须寄生于细胞中。2.不同的生物体内,组成生物体的化学元素种类大体相同,各种化学元素的含量相差很大。对3.构成细胞的任何一种化合物都能在无机自然界中找到。错!自然情况下,有机物只能由生物体制造。4.淀粉、半乳糖以及糖原的元素组成都是相同的。对5.蔗糖和淀粉不能用本尼迪特来检测。果糖没有醛基但是也可以用本尼迪特来检测。本尼迪特的检测需要使用水浴加热。对6.地震灾害后,灾民啃食树皮和草,通过消化纤维素来给机体供能。错!纤维素不能被消化。7.在小鼠的口腔细胞中可以检测到麦芽糖。错!麦芽糖会被消化成葡萄糖,进入细胞,麦芽糖存在于植物细胞。8.糖原的代谢产物是葡萄糖,蛋白质的代谢产物是氨基酸。错!代谢产物是指氧化分解的产物,而不是水解产物。糖原的代谢产物是CO2和H2O,蛋白质的代谢产物是CO2、H2O和尿素。9.脂质只由C、H、O 元素组成,可与糖类之间相互转换。错!脂质除了油脂还包括磷脂等,磷脂含有P。脂质中的油脂只含C、H、O,可与糖类相互转换。10.胰岛素、抗体、淋巴因子都能在一定条件下与双缩脲试剂发生紫色反应。对第 2 组11.成蛋白质的氨基酸都只含有一个氨基与一个羧基,并且连接在同一个碳原子上;每一条肽链至少含有一个游离的氨基与一个游离的羧基。错!氨基酸的R上可能含有氨基和羧基。12.人体内的糖类、脂质、氨基酸可以相互转换,糖类可以经过呼吸作用转换为20种氨基酸。错!糖类只能转换为非必需氨基酸,必需氨基酸只能从食物中获取。13.对于任何种类的多肽,肽键数=氨基酸总数-肽链数。错!环肽中的氨基酸数与肽键数相等。14.某三肽由甘氨酸、丙氨酸、缬氨酸3 种氨基酸构成,则此三肽有27 种可能性。错!每种氨基酸只能出现一次,所以只有6种。15.水不仅是细胞代谢所需的原料,也是细胞代谢的产物,如有氧呼吸、蛋白质与DNA的合成过程中都有水的生成。对16.DNA在不同浓度的NaCl 溶液中的溶解度不同,DNA 也不溶于酒精,据此可用不同浓度的NaCl溶液以及酒精来分离提纯DNA。对17.卵细胞内储存大量的营养物质,体积大,有利于与外界进行物质交换。错!细胞体积越大,与外界物质交换效率越低。18.细胞学说揭示了整个生物界的统一性。错!细胞学说没有包括病毒。19.细胞学说和生物进化理论共同论证了生物的多样性。错!细胞学说只能说明统一性。20.细胞保持完整是细胞能正常完成各项生命活动的前提条件。对第 3 组21.具有一定的流动性是细胞膜的功能特性,这一特性与细胞间的融合、细胞的变形运动以及胞吞胞吐等生理活动密切相关。错!一定的流动性是膜的结构特性。22.糖蛋白只存在细胞膜的外表面,其它生物膜结构几乎没有糖蛋白。对!23.如果用单层磷脂分子构成的脂质体来包裹某种药物,则该药物应该属于脂溶性的。如果用双层的脂质体包裹药物,则该药物应该属于水溶性。对!24.细胞膜、线粒体、叶绿体、溶酶体、液泡、细胞核、内质网与高尔基体等都是具膜结构的细胞器。错!细胞膜不是细胞器。25.线粒体和叶绿体内含DNA、RNA 和核糖体,所以不受核基因的控制。错!线粒体和叶绿体是半自主细胞器,其中的某些蛋白质是由细胞器中的基因编码,而另一些是由核基因编码。26.性激素的合成与内质网有关。对!27.核膜和内质网都可以附着核糖体。对!28.植物细胞含有细胞壁,但不一定含有液泡与叶绿体;动物细胞含有中心体(不考虑哺乳动物成熟红细胞),但不一定含有线粒体。对!蛔虫不含有线粒体。29.内质网是生物膜的转换中心,内质网膜与高尔基体膜、质膜可以进行相互转换,因为内质网膜与高尔基体膜和质膜直接相连。错!内质网膜与高尔基体膜,内质网膜与质膜是通过小泡间接相连。30.细胞中的所有蛋白质都需要经过内质网和高尔基体的加工。错!只有分泌蛋白才需要经过内质网和高尔基体的加工第 4 组31.高尔基体与动物的分泌功能有关,所以小汗腺的高尔基体数量众多。错!小汗腺分泌的水分、无机盐和尿素与高尔基体无关。32.水绵、蓝藻、黑藻、金鱼藻都属于自养型的原核生物。错!水绵是绿藻,黑藻、金鱼藻是草,属于真核生物。33.染色质与染色体是细胞中同一物质在不同时期呈现的两种不同形态。对!34.染色体由DNA 和蛋白质构成,所以可以用甲基绿和双缩脲对染色体进行染色。错!甲基绿只能证明是否有DNA,双缩脲只能证明是否有蛋白质,所以不能用两者来对染色体染色。染色体染色是碱性染料-醋酸洋红或龙胆紫。35.细胞的核糖体都需要在核仁内进行组装。错!原核细胞和线粒体、叶绿体的核糖体组装不在核仁区域。36.真核细胞可能含有多个细胞核,如动物的骨骼肌细胞和植物成熟的筛管细胞。错!成熟的筛管细胞不含细胞核。37.核孔是没有选择性的,物质通过核孔不需要能量和载体。错!核孔有选择性,物质通过需要能量和载体。38.龙胆紫、醋酸洋红是一种碱性染料,pH>7。错!碱性染料是指用阳离子染色的染料,与pH无关。39.细胞在显微镜下观察不到细胞核,此细胞一定是原核生物。错!哺乳动物成熟的红细胞没有细胞核。40.具有细胞结构的生物,其细胞中通常同时含有DNA与RNA,并且其遗传物质都是DNA。对!第 5 组41.细菌没有蛋白质,只有裸露的DNA,所以不能形成染色体。错!细菌具有蛋白质,只不过DNA没有和相应的蛋白质结合在一起。42.观察细菌的染色体可以用龙胆紫将其染成深色。错!细菌没有染色体。43.草履虫、变形虫等原生生物具有细胞核和其它细胞器。对!44.在现代生物技术中,去除各种细胞的细胞壁需要使用纤维素酶。错!真菌和细菌的细胞壁化学成份不是纤维素。45.ATP 在细胞内含量并不高,活细胞都能产生ATP,也都会消耗ATP。对!46.ATP 含有3 个高能磷酸键,但是只有一个高能磷酸键会发生断裂。错!ATP只含2个高能磷酸键。47.100m,200m跑步主要由ATP(直接)和磷酸肌酸(间接)供能;400m,800m跑步主要由无氧呼吸供能;长跑主要由有氧呼吸供能。只有ATP 才能给肌肉直接供能。对!48.ATP 中的A 不代表腺嘌呤,当再脱去两个磷酸根后,形成的物质为RNA 的基本单位之一。对!49.酶的合成需要ATP 供能,此ATP 来自于光合作用和呼吸作用。错!光合作用产生的ATP,是由光反应产生的,只能用于碳反应。50.酶的催化反应都需要消耗ATP。错!只有某些催化反应消耗ATP,呼吸作用和光合作用中的有些催化反应甚至产生ATP。第 6 组51.利用U 形管做渗透作用实验(U 形管中间用半透膜隔开)时,当管的两侧液面不再变化时,U 形管两侧溶液的浓度一定相等。错!渗透装置中会出现液面的高度差,高度差产生的水压本身就需要用浓度差产生的水势来维持。52.自由扩散因为不受载体和能量的限制,所以运输速度超过协助转运和主动转运。错!自由扩散速度较慢。53.任何物质都是从溶液的高浓度向溶液的低浓度扩散。错!水刚好相反。54.主动运输一定需要载体、消耗能量。需要载体的运输一定是主动运输。错!需要载体也可能是易化扩散。55.葡萄糖进出红细胞和小肠上皮细胞属于易化扩散。K 离子和Na 离子进出细胞只能通过主动运输。错!葡萄糖进入红细胞是易化扩散,葡萄糖进入小肠上皮细胞是主动转运。K离子出可兴奋性细胞和Na离子进入可兴奋细胞是易化扩散。K离子进入可兴奋性细胞和Na离子出可兴奋细胞是主动转运。56.物质出入细胞的方式中,需要消耗能量的一定是主动运输。错!胞吞和胞吐也需要消耗能量。57.细胞核中转录而成的RNA 要与核糖体结合来翻译相关蛋白质穿过0 层膜,胰腺合成分泌的消化酶到十二指肠消化食物需穿过0 层膜。对!58.胞吞和胞吐体现了生物膜的选择透过性。错!胞吞和胞吐没有真正地通过膜,无法体现选择透过性。59.将植物细胞的原生质体置于高浓度的蔗糖溶液中,该原生质体将会发生质壁分离现象。错!原生质体是去除细胞壁的植物细胞。60.“质壁分离”中“质”是指细胞质,“壁”是指细胞壁。错!“质”是指原生质层,由细胞膜、细胞质、液泡膜组成。第 7 组61.显微镜下观察到如图所示的细胞,说明此细胞正在进行质壁分离。错!无法判断此图处于质壁分离还是复原的过程中。62.当外界溶液浓度大于细胞内液体浓度时,显微镜下的细胞没有发生质壁分离,则该细胞一定是死细胞。错!没有细胞壁的动物细胞不会发生质壁分离。63.质壁分离复原实验中,从载物台拿下装片,用镊子轻轻撬起盖玻片,滴入清水后重新压片进行观察。错!从盖玻片的一侧滴入清水,在另一次用吸水纸吸引,重复几次。64.与硝酸钾不同,甘油经自由扩散进入细胞,所以当外界溶液为甘油时只能发生质壁分离,无法自动复原。错!甘油通过自由扩散进入细胞后,最终导致膜内外甘油浓度一致,但是细胞内还含有其它溶质,总浓度比外部浓度高,从外界吸水复原。65.观察质壁分离及复原实验时,应选用洋葱外表皮细胞。因为洋葱内表皮细胞无法发生质壁分离及复原。错!洋葱内表皮细胞也可以发生质壁分离,但是内表皮细胞的液泡无色,所以难以观察。66.在做温度影响酶的活性的实验中,若某两支试管的反应速率相同,在其他条件均相同的条件下,可判断这两支试管所处的环境温度也一定是相同的。错!可能存在两个不同的温度,这两个温度分别位于最适温度的左右,此时酶的活性相同。67.以酶促反应速度为纵坐标,当以反应物浓度为横坐标时会出现饱和现象,当以酶浓度为横坐标时一般不需要考虑饱和现象。对!68.如果以淀粉为底物,以淀粉酶为催化剂探究温度影响酶活性的实验,则酶促反应的速率既可以通过碘液检测淀粉的分解速率,也可以通过本尼迪特检测淀粉水解产物的生成速率。错!本尼迪特的检测需要用水浴加热,在加热过程中,温度被改变,原本因为因低温失活的酶会暂时恢复活性。69.酶是活细胞产生的具有催化作用的蛋白质,酶的催化作用既可发生在细胞内,也可以发生在细胞外。错!酶可能是RNA。70.酶被水解后产生氨基酸。错!核酶分解形成核糖核苷酸。第 8 组71.在测定胃蛋白酶活性时,将溶液的pH 由10 降到2 的过程中,胃蛋白酶的活性将逐渐增强。错!酶在pH=10的时候已经变性,无法复原。72.葡萄糖由小肠黏膜上皮细胞吸收进入肌肉细胞进行有氧呼吸,至少需要穿过9 层膜。错!葡萄糖不进入线粒体,穿过的是7层膜。73.无氧呼吸的第一阶段产生[H],第二阶段消耗[H],所以整个无氧呼吸无[H]积累。无氧呼吸的第一阶段产生ATP,第二阶段不产生ATP。对!74.在有氧呼吸过程的第三个阶段,[H]与O2 结合生成水,在厌氧呼吸过程中,则没有此过程。据此,是否有[H]的产生,可以作为判断有氧呼吸与厌氧呼吸的依据。错!厌氧呼吸与需氧呼吸的第一阶段完全相同,自然会产生[H]。75.探究酵母菌的呼吸方式时,不能用澄清的石灰水来检测CO2 的产生,但可以用重铬酸钾来检测乙醇。错!只要分别设置密闭和不密闭的装置,结合澄清的石灰水来检测CO2的产生。76.测得某油料作物的种子萌发时产生的CO2 与消耗的O2 的体积相等,则该萌发种子在测定条件下的呼吸作用方式只有有氧呼吸。错!油料作物中的油脂在需氧呼吸时,消耗的O2要比产生的CO2要多。所以产生的CO2与消耗的O2的体积相等时,应该需氧呼吸和厌氧呼吸同时在进行。77.对于呼吸作用来说,有H2O 生成一定在进行需氧呼吸,有CO2 生成一定不是乳酸发酵。有酒精生成的呼吸一定在进行厌氧呼吸,动物细胞无氧呼吸一定不会产生酒精。对!78.在探究酵母菌呼吸方式的实验中,将培养液一组进行煮沸并冷却处理,另一组不做煮沸处理。煮沸培养液的目的是进行实验自变量的控制。对!79.可以从CO2 的产生与否判断酵母菌是进行需(有)氧呼吸还是厌氧呼吸。错!酵母菌的需氧呼吸和厌氧呼吸都会产生CO2。80.哺乳动物成熟的红细胞无细胞核,也无核糖体,更无线粒体,只能进行无氧呼吸。对!第 9 组81.线粒体是有氧呼吸的主要场所,叶绿体是光合作用的场所,原核细胞没有线粒体与叶绿体,因此不能进行需氧呼吸与光合作用。错!原核细胞如蓝藻可以进行需氧呼吸与光合作用。82.植物细胞光合作用的光反应在类囊体膜上进行,碳反应在叶绿体基质中进行;需氧呼吸的第一阶段在线粒体基质中进行,第二、三阶段在线粒体内膜上进行。错!需氧呼吸的第一阶段在细胞溶胶中进行,第二阶段主要在线粒体基质中进行,第三阶段在线粒体内膜上进行。83.线粒体的内膜所含的蛋白质比线粒体外膜更多。对!84.光合作用产物C6H12O6 中的碳和氧来自CO2,氢来自水;产物H2O 中氢来自水,氧来自CO2;产物O2 中氧来自H2O。对!85.光反应的过程中不需要酶的参与错!光反应中ATP和NADPH的产生都需要酶。86.当光合作用正常进行时,三碳化合物比五碳化合物多。对!87.在光合作用的相关实验中,可以通过测定绿色植物在光照条件下CO2 的吸收量、O2 释放量以及有机物的积累量来体现植物实际光合作用的强度。错!可以用实验测定是表观光合速率。88.炎热夏天中午,植物“午休”,气孔关闭,光合作用停止。错!午休时,气孔不可能完全关闭,光合作用速度减慢,但未完全终止。89.给植物施用有机肥,不仅能为植物提供生命活动所需的无机盐,还能为植物生命活动提供CO2与能量。错!有机肥不能提供能量,能量来自光能,植物不能直接利用有机肥,有机肥需要分解为无机物才能被吸收。90.光合作用中的[H]都来自于水,呼吸作用中的[H]都来自于有机物。错!呼吸作用中的[H]还来自水。第 10 组91.当植物处于光补偿点意味着叶肉细胞的光合速率等于呼吸速率。错!植物能进行光合作用的细胞是少数的,大多数的细胞只能进行呼吸作用。只有叶肉细胞的光合速率大于呼吸速率,总体上,植物的光合速率才会等于呼吸速率。92.正常情况下,当外界CO2 浓度上升时,光补偿点向左移动,光饱和点向右移动。对!93.光合作用中,ADP 从类囊体薄膜向叶绿体基质移动。错!ADP是在叶绿体基质中合成,在类囊体中用来合成ATP。94.有丝分裂是真核生物主要的分裂方式;无丝分裂是原核生物的分裂方式。错!原核生物的分裂方式是二分裂。95.人体细胞中最多有92 条染色体和92 条DNA。错!虽然人体的细胞核中的染色体和DNA最多为92,但是细胞质中没有染色体却有DNA。96.在观察植物根尖有丝分裂的实验中,如果能清晰观察到分散的细胞,但不能观察到处于不同分裂时期的细胞,则导致这种结果的因素不包括解离与压片。对!97.在细胞分裂过程中,染色体数目的增加与DNA 数量的增加不可能发生在细胞周期的同一个时期;DNA 数目的减半与染色体数目的减半可以发生在细胞周期的同一时期。对!98.在动植物细胞有丝分裂的中期都会出现赤道板,其中只有在植物细胞有丝分裂的末期才会出现细胞板。错!赤道板不是一个结构而只是表示位置,所以赤道板不能用“出现”表述。99.动物细胞和植物细胞的有丝分裂的区别主要发生在前期和末期;动物细胞的胞质分裂开始于后期,植物细胞的胞质分裂开始于末期。对!100.一个处于细胞周期中的细胞,如果碱基T 与U 被大量利用,则该细胞不可能处于细胞周期的分裂期。对!第 11 组101.某一处于有丝分裂中期的细胞中,如果有一染色体上的两条染色单体的基因不相同,如分别为A 与a,则该细胞在分裂过程中很可能发生了基因突变或交叉互换。错!有丝分裂不需要考虑交叉互换。102.人的成熟红细胞既不进行有丝分裂,也不进行无丝分裂。对!103.细胞分化是基因选择性表达的结果;细胞的癌变是基因突变的结果;细胞的凋亡是细胞生存环境恶化的结果。错!细胞的凋亡是细胞的编程性死亡,是细胞自动结束生命的过程。生存环境恶化的结果是细胞坏死。104.受精卵的细胞全能性最高,细胞越分化,全能性越低。所以生殖细胞的全能性比普通体细胞的全能性低。错!生殖细胞的全能性可能比普通体细胞高,所以会有配子不经受精直接发育成新个体——雄蜂的产生。105.无限分裂的细胞不一定是癌细胞,也可能是良性肿瘤细胞。对!106.多细胞生物个体的衰老与细胞的衰老过程密切相关,个体衰老过程是组成个体的细胞的普遍衰老过程,但未衰老的个体中也有细胞的衰老。对!107.用显微镜观察标本时,应先上升镜筒,再下降镜筒直到找到标本。.错!先下降,后在上升的过程中找标本。108.显微镜目镜为10×,物镜为10×时,视野被相连的64 个分生组织细胞所充满,若物镜转换为40×后,则在视野中可检测到的分生组织细胞数为16。错!视野的放大倍数是镜头放大倍数的平方,所以视野中的细胞仅为64/(4×4)=4。109.目镜长度越长,放大倍数越低;物镜长度越长,放大倍数越高。对!110.若洋葱外表皮细胞颜色较浅,则可调亮光源,使液泡更清晰。错!显微镜观察颜色浅的物体时,应调暗,以增加对比度。第 12 组111.光圈、放大倍数都会影响显微镜视野的明亮程度:光圈越大,放大倍数越小,则视野越亮。对!112.字母“b”在光学显微镜下呈现“p”错!显微镜下,物像与物体上下颠倒,左右互换,所以应该呈现“q”。113.低倍镜换高倍镜观察时,需先升高镜筒,以免压碎盖玻片。错!正规的显微镜都是经过调试,低倍镜换成高倍镜后,只需要微调就可以对焦。或者说,低倍镜换成高倍镜,不会压碎盖玻片。114.某正常分裂中的细胞如果含有两条Y 染色体,则该细胞一定不可能是初级精母细胞。对!115.某一处于分裂后期的细胞,同源染色体正在移向两极,同时细胞质也在进行均等的分配,则该细胞一定是初级精母细胞。对!116.将精原细胞所有的DNA 分子用32P 标记后在31P的培养基中先进行一次有丝分裂,产生的两个子细胞继续进行减数分裂后产生8 个精子,含有32P 标记的占1/2。错!如果细胞中只有一对同源染色体的确如此,但是细胞中会含有多对同源染色体,相互间进行自由组合,即在减数分裂过程中随机分配给子细胞。比如有两对同源染色体,这个结果可能是4/8,也可能是6/8或者8/8。117.减数分裂过程中,当在显微镜下观察到交叉现象时,片段互换已经发生。.对!118.减数分裂过程中,一定会发生交叉互换。错!交叉互换不一定发生,有些生物如雄果蝇还未观察到交叉互换。119.在减数分裂过程中,细胞中核DNA 与染色体数目之比为2 的时期包括G2期、减数第一次分裂时期、减数第二次分裂的间期、前期与中期。.对!120.基因型同为Aa 的雌雄个体,产生的含A 的精子与含a 的卵细胞的数目之比为1:1。错!精子的数量远比卵子多,不能进行比较。第 13 组121.某二倍体生物在细胞分裂后期含有10 条染色体,则该细胞一定处于减数第一次分裂的后期。错!有可能是减Ⅱ后期。122.基因型为AABB 的个体,在减数分裂过程中发生了某种变化,使得一条染色体的两条染色单体上的基因分别为A 和a,则在减数分裂过程中发生的这种变化可能是基因突变,也可能是同源染色体的交叉互换。错!交叉互换不能让A转变为a。123.在正常情况下,同时含有2 条X 染色体的细胞一定不可能出现在雄性个体中。错!在雄性个体细胞的有丝分裂后期和减Ⅱ后期,X染色体会着丝粒断裂,形成2个X。124.二倍体生物的有丝分裂过程中始终存在同源染色体,但是四分体的数目为0。对!125.观察细胞的减数分裂,发现细胞质均匀分配,则此细胞一定来源于雄性动物体内。错!雌性体内的第一极体分裂形成两个第二极体的过程中,细胞质是均匀分配的。126.在具有有性染色体的生物中,排除环境和染色体数目对生物性别的影响,如果所有的染色体在大小形态上一一对应,则此个体一定为雌性。错!ZW性别决定型的生物,性染色体一致的是雄性;XY性别决定型的雄性生物的细胞在有丝分裂后期和减Ⅱ后期,也会出现所有的染色体大小形态上一一对应。127.DNA不是一切生物的遗传物质,但一切细胞生物的遗传物质都是DNA。对!128.在噬菌体侵染细菌的实验中,同位素标记是一种基本的技术。在侵染实验前首先要获得同时含有32P 与35S 标记的噬菌体。错!必须分成两组,分开标记蛋白质和DNA,否则无法区分放射性来自哪种化合物。129.在噬菌体侵染细菌的实验前,用分别含有32P 与35S 的培养基培养噬菌体,从而让噬菌体带上放射性标记。错!无法直接标记噬菌体,只能先标记细菌,然后让噬菌体侵染这些细菌,从而使噬菌体带上标记。130.噬菌体侵染细菌的实验不仅直接证明了DNA 是遗传物质,也直接证明了蛋白质不是遗传物质。错!只能间接证明蛋白质不是遗传物质,因为蛋白质没有进入细菌内部。第 14 组131.人的遗传物质含有4 种碱基,细菌的遗传物质可能为DNA 或RNA,烟草的遗传物质为RNA。人体内的核酸含有8 种核苷酸,TMV 含4 种核苷酸,噬菌体含4种核苷酸。人体内的遗传物质含4 种核苷酸。错!细菌作为一种细胞,它的遗传物质是DNA。烟草的遗传物质是DNA。132.在噬菌体侵染细菌的实验中,如果用32P 和35S 分别标记噬菌体的DNA和蛋白质外壳,结果复制出来的绝大多数噬菌体没有放射性。对!噬菌体利用细菌中不带放射性的物质作为原料,结合DNA的半保留复制方式,所以新合成的噬菌体中只有2个噬菌体的DNA带有放射性。133.磷脂双分子层是细胞膜的基本骨架;磷酸与脱氧核糖交替连接成的长链是DNA分子的基本骨架。对!134.DNA 分子中,每个脱氧核糖都连接两个磷酸基团。错!每条链都有一端,其脱氧核糖只连接一个磷酸基团。135.每个DNA 分子上的碱基排列顺序是一定的,其中蕴含了遗传信息,从而保持了物种的遗传特性。对!136.已知某双链DNA 分子的一条链中(A+C)/(T+G)=0.25,(A+T)/(G+C)=0.25,则同样是这两个比例在该DNA 分子的另一条链中的比例为4 与0.25,在整个DNA分子中是1 与0.25。对!137.一条不含32P 标记的双链DNA分子,在含有32P 的脱氧核苷酸原料中经过n次复制后,形成的DNA 分子中含有32P 的为2n-2。错,所有的DNA至少有一条链含有32P。138.把培养在轻氮(14N)中的大肠杆菌,转移到含有重氮(15N)的培养基中培养,细胞分裂一次后,再放回14N 的培养基中培养,细胞又分裂一次,此时每个大肠杆菌细胞中的DNA 是1/2 轻氮型,1/2 中间型。错!应该是所有的大肠杆菌中的DNA是1/2轻氮型,1/2中间型。如果大肠杆菌中的DNA只有一条,则有一半的大肠杆菌中的DNA为轻氮型,有一半的大肠杆菌中的DNA为中间型。139.DNA 的复制和转录,都需要专门的解旋酶参与。错!转录时,RNA聚合酶具有解旋的功能。140.转录过程中,只存在A-U 配对,而不会出现A-T 配对。错!当DNA模板上的对应位置上为T,RNA用A与之配对。第 15 组141.一条DNA 与RNA 的杂交分子,其DNA 单链含A、T、G、C 4 种碱基,则该杂交分子中共含有核苷酸8 种,碱基5 种;在非人为控制条件下,该杂交分子一定是在转录的过程中形成的。错!也可能处于逆转录的过程中。142.基因是有遗传效应的DNA 片段,基因对性状的决定都是通过基因控制结构蛋白的合成实现的。错!RNA病毒的基因在RNA上。基因对性状的决定还可能通过控制酶的合成,从而间接地控制生物性状。143.通过控制酶的合成,从而直接控制性状是基因控制性状的途径之一。错!这是间接控制生物性状。144.人体细胞中某基因的碱基对数为N,则由其转录成的mRNA 的碱基数等于N,由其翻译形成的多肽的氨基酸数目等于N/3。错!转录和翻译都不是从模板的第一个碱基开始,到最后一个碱基结束的。而且mRNA和蛋白质在合成后可能还需要被剪切。145.酶的产生都需要经过转录和翻译两个过程。错!核酶不需要翻译。146. tRNA 与mRNA 的基本单位相同,但前者是双链,后者是单链,且tRNA 是由三个碱基组成的。错!两种RNA都是单链,只是tRNA形成三叶草形,在局部部位形成自身的碱基配对。tRNA有80个左右的碱基,只是其中的3个碱基形成反密码子。147.某细胞中,所有的mRNA 在还未完成转录时,已有核糖体与之结合,并翻译合成蛋白质,则该细胞一定不可能是真核细胞。对!148.碱基间的互补配对现象可能发生在染色体、核糖体、细胞核、线粒体、叶绿体等结构中。对!149.DNA 的复制和转录过程中存在碱基互补配对,翻译过程中不存在碱基互补配对。错!翻译时,tRNA上的反密码子和mRNA上的密码子碱基互补配对。150.人体的不同细胞中,mRNA 种类存在差异,但tRNA 种类没有差异;蛋白质种类存在差异,但是核基因种类没有差异。对!第 16 组151.一种氨基酸有多种密码子,一种密码子也可以决定不同的氨基酸。错!61种密码子中,每种密码子决定一种氨基酸;3个终止密码子没有对应的氨基酸。152.真核细胞细胞核DNA 的复制与转录分别发生在细胞核和细胞质中。错!核基因的转录发生在细胞核中。153.中心法则仅仅揭示了自然界中真核生物与原核生物遗传信息的传递与表达过程,而不能应用于所有生物。错!所有生物都符合中心法则。154.人体中的大多数细胞,既会发生染色体的复制,又有转录与翻译过程。错!大多数细胞不会分裂,因而不进行染色体的复制。155.决定细胞生物性状的直接原因是蛋白质,而根本原因是DNA 上的遗传信息。对!156.在一个成年人的神经细胞中,只有转录与翻译过程,没有DNA 的复制过程。对!157.除病毒以外的所有生命体的遗传现象都遵循孟德尔遗传定律。错!原核细胞没有同源染色体,也不进行减数分裂,因而不符合孟德尔遗传定律。158.人类的所有遗传病都可用孟德尔定律进行遗传病分析。错!多基因遗传病往往与环境共同作用,情况复杂,难以用孟德尔定律进行遗传病分析。159.遗传病是指可以遗传给后代的疾病错!遗传病可能因为病情严重无法产生后代。160.“选择放松”造成的有害基因的增大是有限的。.对!第 17 组161.基因型为AaBb 的个体测交,后代表现型比例为3:1 或1:2:1,则该遗传可以是遵循基因的自由组合定律的。.对!162.基因型为AaBb 的个体自交,后代出现3:1 的比例,则这两对基因的遗传一定不遵循基因的自由组合定律。错!如果两对基因同时控制一对相对性状,理论上可能出现3:1的比例。163.一对等位基因(Aa)如果位于XY 的同源区段,则这对基因控制的性状在后代中的表现与性别无关。错!只要基因位于性染色体,性状都与性别有关。164.对于XY 型的性别决定的生物而言,雄性都是杂合子,雌性都是纯合子。错!杂合子和纯合子不是指染色体的类型,是相对基因而言。雄性也会是纯合子。165.某一对等位基因(Aa)如果只位于X染色体上,Y 上无相应的等位基因,则该性状的遗传不遵循孟德尔的分离定律。错!伴性遗传不是一个特殊的遗传规律,它符合孟德尔遗传定律。166.基因分离定律发生在减数第一次,基因自由组合定律发生在减数第二次。错!自由组合定律发生在减Ⅱ后期。167.若含X 染色体的隐性基因的雄配子具有致死效果,则自然界中找不到该隐性性状的雌性个体,但可以有雄性隐性性状个体的存在。对!168.基因型为AaBb 的一个精原细胞,产生了2 个AB、2 个ab 的配子,则这两对等位基因一定不位于两对同源染色体上。错!如不考虑交叉互换,即使这两对等位基因分别位于两对同源染色体上,也只能产生2种精子。169.按基因的自由组合定律,两对相对性状的纯合体杂交得F1,F1 自交得F2,则F2 中表现型与亲本表现型不同的个体所占的理论比为6/16。错!也可能是10/16。170.一个基因型为AaXbY 的果蝇,产生了一个AaaXb 的精子,则与此同时产生的另三个精子的基因型为AXb、Y、Y。对!第 18 组171.生物的表现型是由基因型决定的。基因型相同,表现型一定相同;表现型相同,基因型不一定相同。错!基因型相同,表现型不一定相同,因为还有环境的影响。172.番茄的果皮颜色红色对黄色为显性,杂交实验结果是当红色♀×黄色♂时,果皮为红色,当黄色♀×红色♂时,果皮为黄色,此遗传现象最有可能为细胞质遗传。错!果皮是由母体的子房壁发育而来,所以果皮的细胞是属于母本的,果皮表现出母本的性状,仍可能是核基因的遗传。胚和胚发育而来的子代始终保持与母本性状一致,才是细胞质遗传。173.单基因遗传病的发病率高,多基因遗传病的发病率低。错!单基因遗传病的种类多,但是每种病的发病率低;多基因遗传病的发病率高。174.在遗传学的研究中,利用自交、测交、杂交等方法都能用来判断基因的显隐性。错!因为测交得到的子代中两种性状比例相同,无法判断显隐性。175.让高杆抗病(DDTT)与矮杆不抗病(ddtt)的小麦杂交得到F1,F1 自交得到F2,可从F2 开始,选择矮杆抗病的类型连续自交,从后代中筛选出纯种的矮杆抗病品种。类似地,用白色长毛(AABB)与黑色短毛(aabb)的兔进行杂交得到F1,F1雌雄个体相互交配得F2,从F2 开始,在每一代中选择黑色长毛雌雄兔进行交配,选择出纯种的黑色长毛兔新品种。错!动物一般用测交检测基因型。176.紫花植株与白花植株杂交,F1 均为紫花,F1 自交后代出现性状分离,且紫花与白花的分离比是9:7。据此推测,两个白花植株杂交,后代一定都是白花的。错!紫花基因型为A_B_,其余的基因型皆为白花。则白花A_bb与白花aaB_的杂交后代会得到紫花AaBb。177.果蝇X染色体的部分缺失可能会导致纯合致死效应,这种效应可能是完全致死的,也可能是部分致死的。一只雄果蝇由于辐射而导致产生的精子中的X 染色体均是有缺失的。现将该雄果蝇与正常雌果蝇杂交得到F1,F1 雌雄果蝇相互交配得F2,F2 中雌雄果蝇的比例为2:1。由此可推知,这种X 染色体的缺失具有完全致死效应。对!178.一对黑毛豚鼠,生了5 只小豚鼠,其中3 只是白色的,两只是黑色的,据此可判断,豚鼠毛色的遗传不遵循孟德尔分离定律。错!动物的后代数量少,所以子代的性状分离比会远离理论比值。179.孟德尔利用豌豆作为实验材料,通过测交的方法对遗传现象提出了合理的解释,然后通过自交等方法进行了证明。错!孟德尔通过先自交后杂交的方法对遗传现象提出了合理的解释,然后通过测交进行了证明。180.生物体发生的可遗传变异一定能够遗传给后代。错!体细胞中发生的可遗传变异一般不能传递给后代,变异是一种严重的遗传病也不能传递给后代。第 19 组181.在肺炎双球菌转化实验中,R 型与加热杀死的S 型菌混合产生了S 型,其生理基础是发生了基因重组。对!判断题182.染色体结构变异和基因突变的实质都是染色体上的DNA 中碱基对排列顺序的改变。错!基因不一定在染色体上的DNA中,细菌和病毒也可能发生基因突变,细胞质基因也会发生基因突变。183.基因突变一定发生在细胞分裂间期。错!分裂期也可能发生基因突变。184.秋水仙素处理幼苗,成功使染色体数目加倍后,一定会得到纯合子.错!如果幼苗是杂合子Aa,染色体加倍后得到的AAaa仍旧是杂合子。185.同源多倍体生物的可育性一定比二倍体生物低。多倍体中偶数倍体(如四倍体)可以发生联会现象,但是要比普通的二倍体生物结实率低。对!186.基因突变不一定导致性状的改变;导致性状改变的基因突变不一定能遗传给子代。对!187.基因突变会产生新的基因,新的基因是原有基因的等位基因;基因重组不产生新的基因,但会形成新的基因型。对!188.基因重组是生物变异的主要来源;基因突变是生物变异的根本来源。对!189.六倍体小麦通过花药离体培养培育成的个体称为三倍体。错!花药离体培养得到单倍体。190.花药离体培养后得到纯合子。错!花药离体培养得到单倍体,后经秋水仙素加倍才得到纯合子。第 20 组191.三倍体无籽西瓜具有发育不全的种皮 对!192.单倍体细胞中只含有一个染色体组,因此都是高度不育的;多倍体是否可育取决于细胞中染色体组数是否成双,如果染色体组数是偶数则可育,如果是奇数则高度不育。错!四倍体马铃薯的单倍体含有2个染色体组。193.在减数分裂过程中,无论是同源染色体还是非同源染色体间都可能发生部分片段的互换,这种交换属于基因重组。错!非同源染色体间的片段互换是染色体易位,属于染色体结构变异。194.杂合高茎豌豆自交后代出现了矮茎豌豆,属于基因重组。错!基因重组包括自由组合和交叉互换,至少涉及两对基因,一对等位基因的分离而引起的性状分离现象不属于基因重组。195.如果不考虑XY 同源区段上的基因,一对表现正常的夫妇,生下了一个患病的女孩,则该致病基因一定是隐性且位于常染色体上。对!196.一对表现正常的夫妇,生了一个XbXbY(色盲)的儿子。如果异常的原因是夫妇中的一方减数分裂产生配子时发生了一次差错之故,则这次差错可能发生在父方减数第一次分裂的过程中。错!父亲的基因型为XbY,母亲的基因型为XBXb,可见是母亲的减Ⅱ中,Xb着丝粒断裂后没有平均分给两个子细胞的原因。197.一对表现型正常的夫妇,妻子的父母都表现正常,但妻子的妹妹是白化病患者,丈夫的母亲是患者。则这对夫妇生育一个白化病男孩的概率是1/12;若他们的第一胎生了一个白化病的男孩,则他们再生一个患白化病的男孩的概率是1/8。对!198.在调查人类某种遗传病的发病率及该遗传病的遗传方式时,选择的调查对象都应该包括随机取样的所有个体。错!应该调查患者的家族系谱图,否则无法判断患病类型和遗传方式。调查发病率的确需要随机取样。199.一个家族仅一个人出现的疾病不是遗传病;不携带遗传病基因的个体不会患遗传病。错!一个家族可能就一个人出现遗传病,而没有遗传给他的后代,或他根本没有后代。染色体遗传病的很多类型是不携带致病基因的,如21-三体综合征只是染色体数目异常。200.遗传病往往表现为先天性和家族性,但先天性疾病与家族性疾病并不都是遗传病。对!第 21 组201.一个基因型为AaBbCc 的植物(三对基因可以自由组合),用其花粉离体培养获得aabbCC 的个体占1/8。错!花粉离体培养得到的单倍体的基因型如abc,秋水仙素作用后才得到aabbcc。202.杂交育种与转基因育种依据的遗传学原理是基因重组;诱变育种依据的原理是基因突变和染色体畸变;单倍体育种与多倍体育种依据的原理是染色体变异。对!203.单倍体育种离不开组织培养技术,多倍体育种可以不需要组织培养技术。对!204.自然界中发生的自发突变的突变率非常低,诱发突变的突变率则很高。错!诱发突变的突变率比自发突变高,但绝对值仍旧很低。205.如果隐性纯合子致死,则Aa 连续自交n 次,每代中的杂合子占(2/3)的n 次。错!这种算法是错误的。应该先不要考虑致死效应。Aa=(1/2)n, AA=aa=[1-(1/2)n]/2。Aa=Aa/(AA+Aa)=2/(2n+1)206.四倍体西瓜与二倍体西瓜属于不同的物种;骡因为没有后代,所以不是一个物种。对!207.达尔文自然选择学说不仅能解释生物进化的原因,也能很好地解释生物界的适应性与多样性,但不能解释遗传与变异的本质,且对进化的解释仅限于个体水平。对!208.种群是生物繁殖的基本单位,也是生物进化的基本单位。对!209.一个符合遗传平衡的群体,无论是自交还是相互交配,其基因频率及基因型频率都不再发生改变。错!自交不是随机交配,后代基因型频率会发生改变。210.现代进化理论认为,自然选择决定生物进化的方向,生物进化的实质是种群基因频率的改变。对!第 22 组211.隔离是物种形成的必要条件。生殖隔离的形成必须要有地理隔离,地理隔离必然导致生殖隔离。错!同地的染色体数目加倍后也能与原有物种形成生殖隔离。地理隔离时间短不会导致生殖隔离。212.进化过程一定伴随着基因频率的改变。对!213.自然情况下,突变、基因重组、自然选择都会直接导致基因频率的改变。错!基因重组不会引起基因频率改变。自然选择通过作用于表现性间接地导致基因频率改变214.长期使用农药后,害虫会产生很强的抗药性,这种抗药性的产生是因为农药诱导害虫产生了抗药性突变之故。错!抗药性在使用农药之前,就产生了。215.某校学生(男女各半)中,有红绿色盲患者3.5%(均为男生),色盲携带者占5%,则该校学生中的色盲基因频率为5.67%。.对!216.生物的变异是不定向的,但在自然选择的作用下,种群的基因频率会发生定向的改变,从而使生物向着一定的方向进化。.对!217.生物进化的基本单位是种群,但是自然选择通过作用于个体而影响种群的基因频率。自然选择直接作用于表现型而非基因型。.对!218.生殖隔离一定导致形成新物种,不同物种一定存在生殖隔离;新物种产生一定存在进化,进化一定意味着新物种的产生。错!进化不一定导致新物种的产生,进化相当于量变,新物种形成是质变。219.植物生长素能促进植物生长是通过促进细胞的分裂与生长实现的;生长素的作用具有双重性,即低浓度促进生长,高浓度抑制生长。错!植物生长素不能促进细胞分裂。220.顶端优势现象、根的向地生长、茎的背地生长都说明了生长素作用的双重性。错!茎的背地生长无法表现出高浓度抑制生长的生长素特性。第 23 组221.不同种类的植物对生长素的敏感性不同,同一种植物的不同器官对生长素的敏感性也不同。.对!222.植物生长素在胚芽鞘尖端部位的运输会受光与重力的影响而横向运输,但在尖端下面的一段只能是极性运输,即只能从形态学的上端向形态学的下端运输,这种运输是需要能量的主动运输。.对!223.连续下雨天影响了玉米的传粉,此时可施用适宜浓度的生长素挽救玉米产量。错!玉米收获的是种子,没有传粉就不会有种子。224.两种不同浓度的生长素溶液都不具有促进植物细胞生长的作用,其原因一定是其中的一种溶液浓度过高,另一种溶液浓度过低。错!两种浓度可能都是高浓度抑制。225.生长素、细胞分裂素和赤霉素对植物的生长发育有促进作用,属于植物生长的促进剂;脱落酸与乙烯对植物的生长、发育有抑制作用,属于生长抑制剂。.对!226.内环境中含有多种成分,激素、抗体、淋巴因子、血浆蛋白、葡萄糖、尿素等都是内环境的成分。.对!227.肺泡不属于内环境,所以呼吸系统与内环境稳态的维持没有关系。错!内环境稳态直接需要呼吸、消化、排泄、循环四大系统的作用。228.血糖是血液中的葡萄糖,所以适当摄入果糖对血糖浓度没有显著影响。对!229.红细胞的内环境是血浆;毛细血管壁细胞的内环境是血浆与组织液;毛细淋巴管壁细胞的内环境是淋巴与血浆。错!毛细淋巴管壁细胞的内环境是淋巴与组织液。230.人体局部组织活动增加时,代谢产物增加,组织液增多,淋巴增加。对!第 24 组231.人体内环境的稳态是在神经调节、体液调节与免疫调节下由各器官、系统协调作用下实现的。对!232.甲状腺激素、肾上腺激素、性激素可以口服,下丘脑、垂体、胰岛分泌的激素必须注射才能起作用。对!233.皮肤上的一个温度感受器既能感受热,又能感受冷。错!冷觉感受器和温觉感受器是独立的两种温度感受器。234.某哺乳动物体温为40℃左右,将此动物放于0℃的环境中,耗氧量增加;将此动物的组织细胞放置于0℃下,耗氧量减少。对!235.为了增加母鸡的产蛋量,可以人工延长鸡舍中的光照时间,从而直接通过体液调节提高产蛋量。错!光信息首先被反射弧的感受器接受,是神经-体液调节。236.某人40 度高烧一天,是因为此人在这一天中的产热大于散热。错!温度稳定时,产热=散热。237.人体进入寒冷的环境中,因为酶的活性降低,新陈代谢减弱。错!进入寒冷的环境中,人体散热增加,为了保持体温,代谢加快,产热也增加。人是恒温动物,体内酶活性不受外界温度影响。238.K+主要维持细胞外渗透压的稳定。错!K+主要位于细胞内,主要维持细胞内渗透压。239.反射是神经调节的基本方式,反射的结构基础是反射弧,反射弧是由五个基本环节构成的。对!240.离体情况下,刺激传入神经也能引起效应器的活动,属于反射。错!反射必须经历完整反射弧。第 25 组241.神经信号可以从轴突到树突,也可以从树突到轴突。对!242.一个反射弧中只含有一条传入神经,一条传出神经,则只含有一个突触结构(不考虑神经肌肉接点)。错!上一个神经元的轴突分叉形成众多的神经末梢,从而与下一个神经元形成多个突触结构。243.神经元接受刺激产生兴奋或抑制的生理基础是Na+的内流或阴离子(Cl-)的内流。对!244.增加细胞外K+的浓度可以增加静息电位的值;阻断Na+通道可以降低静息电位的值。错!增加细胞外K+的浓度降低了静息电位的值;阻断Na+通道降低了动作电位的值。245.人体在完成反射活动的过程中,兴奋在神经纤维上的传导方向一定是双向的,而在突触的传递方向是单向的。错!刺激只能刺激在反射弧的感受器上,所以体内的兴奋传导是从感受器向效应器方向。246.神经冲动可以从一个神经元的轴突传递到下一个神经元的胞体、树突或轴突。.对!247.一个神经元兴奋可能会导致下一个神经元抑制。.对!248.在一个反射弧的链条中不可能存在两个中间抑制性神经元,因为抑制作用(超级化状态)是不能被传递的。.对!249.发生动作电位时,膜内的Na+浓度高于膜外。错!去极化时,Na+的内流是易化扩散,所以膜外的Na+浓度始终高于膜内。250.神经递质借助膜的流动性进入下一个神经元。激素则与质膜上的受体细胞结合不进入受体细胞内部。错!神经递质与后膜的受体结合后被分解或被前膜重吸收。性激素是固醇类,能进入细胞内与细胞内的受体结合。第 26 组251.人体饥饿时,血液流经肝脏后,血糖的含量会升高,血液流经胰岛后,血糖的含量会减少。对!252.胰岛素是人体中降低血糖的唯一激素,而胰高血糖素和肾上腺素均能提高血糖浓度。对!253.胰腺中的腺泡组织属于外分泌部,具有导管,能分泌消化酶;胰腺中的胰岛组织属于内分泌部,无导管,能分泌激素。对!254.因为胰高血糖素的靶细胞是肝脏等处的细胞,而非肌细胞。肝糖元可以分解成葡萄糖,肌糖元不能分解成葡萄糖。对!255.胰岛素的增加直接导致胰高血糖素的降低,但是胰高血糖素的增加直接导致胰岛素的增加。对!256.验证雄性激素和甲状腺激素的功能,普遍采用先切除后再移植的方法进行二次对照。错!甲状腺是柔性的器官,很难移植,采用的是摘除-注射法。257.所有的激素只能作用于一种或少数几种靶细胞或靶组织。错!有些激素的靶细胞是全身细胞,如生长激素。258.能合成激素的所有的活细胞都能产生酶,但只有内分泌腺的细胞会合成激素。错!有些内分泌细胞分散分布于肠胃道。259.细胞产生的激素、淋巴因子以及神经递质等都属于信号分子,在细胞间起到传递信息的作用。对!260.在饮水不足、体内失水过多或吃的食物过咸的情况下,人体血液中的抗利尿激素的含量会增加。对!第 27 组261.人体中的抗利尿激素和催产素是下丘脑合成和分泌,经过神经垂体释放的。对!262.促甲状腺激素释放激素的靶细胞是垂体,促甲状腺激素的靶细胞是甲状腺,甲状腺激素的靶细胞是全身各处的组织细胞,包括垂体与下丘脑。对!263.激素间的作用包括协同与拮抗作用,促甲状腺激素与促甲状腺激素释放激素、甲状腺激素间的关系属于协同关系;胰岛素与胰高血糖素间具有拮抗作用。错!协同作用是指作用相似,所以促甲状腺激素与促甲状腺激素释放激素、甲状腺激素间的关系属于分级调控。264.甲状腺激素对下丘脑和垂体分泌促甲状腺激素释放激素和促甲状腺激素具有反馈调节作用;垂体产生的促甲状腺激素对下丘脑分泌促甲状腺激素释放激素具有反馈调节作用。错!促甲状腺激素没有反馈机制。265.下丘脑是内分泌腺调节的枢纽,也是血糖调节、体温调节以及水盐平衡调节的中枢。垂体是最重要的分泌腺,是激素的调节中心。对!266.下丘脑是通过神经系统控制胰岛和肾上腺髓质分泌相应的激素。对!267.无论是植物激素还是动物激素,对生物的影响都不是孤立地起作用的,而是多种激素相互作用、共同调节。对!268.抗体主要分布在血清中,也可以在组织液和外分泌液中。对!269.神经递质与突触后膜受体的结合,各种激素与激素受体的结合,抗体与抗原的作用都发生在内环境中。错!性激素与激素受体的结合发生在细胞内部。270.特异性免疫是人体的第三道防线,是在后天获得的,对特定的病原体起作用。对!第 28 组271.具有对抗原特异性识别的细胞包括T 细胞、B 细胞、效应T 细胞、记忆细胞以及浆细胞(效应B 细胞)等。错!效应B细胞没有直接识别抗原的能力,是它分泌的抗体识别抗原。272.吞噬细胞对抗原没有识别能力。错!吞噬细胞具有非特异性识别能力。273.效应B 细胞不能特异性识别抗原,但其分泌的抗体能特异性识别抗原,并将其直接消灭。错!抗体与抗原结合后,可能需要形成沉淀,然后被吞噬细胞吞噬消化。274.一______________个效应B 细胞产生一种抗体,每个抗体只识别一种抗原,每个抗体与两个抗原结合。对!判断题275.凝集素和抗毒素都是一种抗体,抗体本质上是一种球蛋白。对!276.细胞免疫中,抗原决定簇需要经过吞噬细胞处理;而体液免疫中,抗原决定簇可以直接成递给B 细胞。对!277.抗体在体内存留的时间相对较短,而记忆细胞可长期存在或终身存在。对!278.淋巴因子只在体液免疫中起作用,在细胞免疫中不起作用。错!活化的辅助性T细胞在细胞免疫中也分泌淋巴因子。279.检查血液中的某一种抗体可确定一个人是否曾经受到某种特定的病原体的侵袭。可利用此原理检测血液中的艾滋病病毒。对!280.抗原具有异物性,即抗原都是进入机体的外来物质,自身的物质不可能作为抗原。错!自身的细胞,如癌细胞,也可能称为抗原。第 29 组281.种群密度是种群的最基本的数量特征,出生率与死亡率、迁入与迁出,直接影响种群密度;年龄组成预示着种群未来的发展趋势。对!282.在稳定型年龄结构的种群中,种群出生率约等于零。错!出生率约等于死亡率,而不是约等于零。283.使用样方法调查密度时,对于落入样方边线的样本,一般来说取上边,左边,左上顶点的样本,而不统计下边,右边,和其它三个顶角的样本。对!284.用标志重捕法调查某动物的种群密度时,由于被标记动物经过一次捕捉,被再次重捕的概率减小,由此将会导致被调查的种群的数量较实际值偏小。错!较实际值偏大285.用血球计数板计数某酵母菌样品中的酵母菌数量。血球计数板的计数室由25×16=400 个小室组成,容纳的液体总体积是0.1mm3。某同学操作时将1mL酵母菌样品加入99mL 无菌水中稀释,然后利用血球计数板观察计数。如果该同学观察到血球计数板计数的5 个中格80 个小室中共有酵母菌48 个,则估算1mL 样品中有酵母菌2.4×108 个。对!286.在种群的S 型增长曲线中,达到1/2K 值时种群的增长速率最快,达到K 值时种群的增长速率为0。对!287.J 型增长曲线中增长率常表示为λ,S 型增长曲线的增长率先增大,后减少。错!S型增长曲线的增长率不断减少。288.一座高山从山脚向山顶依次分布着阔叶林、针叶林、灌木林、草甸等群落,这是群落的垂直结构。错!高山中分布的是多个群落,垂直结构是指一个群落内部的结构。289.群落最终都会演替成森林。错!干旱的地方,顶极群落不是森林。290.某片竹林中的竹子长势整齐,没有明显的高株和矮株,因此说明这个群落没有垂直结构。错!群落的垂直结构一定是存在的,没有考虑土壤中的生物。第 30 组291.一个森林中的所有动物与植物构成了这个森林的生物群落。错!群落还应该包括微生物。292.食物链与食物网是生态系统的营养结构,生态系统的物质循环与能量流动就是沿着这种渠道进行的。对!293.在生态系统中,生产者由自养型生物构成,一定位于第一营养级。对!294.在捕食食物链中,食物链的起点总是生产者,占据最高营养级的是不被其他动物捕食的动物。对!295.生物体内能量的去路包括呼吸消耗、流入后一营养级、被微生物分解和随动物的排遗物流失。错!动物的排遗物属于前一营养级中的能量。296.在一条食物链中,由低营养级到高营养级推算,前一营养级比后一营养级含量一定多的指标是“能量”,而“数量”和“干重”可能出现反例。对!297.植物A 属于第一营养级,动物B 属于第二营养级,所以所有植物A 中包含的能量一定多于所有动物B 所包含的能量。错!每个营养级中所有生物所包含的能量构成能量金字塔。第一营养级中的A很稀少,第二营养级中的B可以更多地取食其它生物,维持生存。298.动物吃100g食物,一般只能使体重增加10g,这就是生态系统中的能量传递效率为10%的例证。错!这是食物的利用率,能量传递效率是两个营养级之间的能量的比值。299.对于捕食链来说,第一营养级一定是生产者,分解者一定不占营养级,无机成分也一定不占营养级。对!300.在一个生态系统中,分解有机物的是微生物。错!腐食动物也可以分解有机物。第 31 组301.食物链纵横交错形成的复杂营养关系就是食物网。食物网的复杂程度取决于该生态系统中生物的数量。.错!食物网的复杂程度取决于有食物关系的生物的种类。302.生态系统的能量流动是从生产者固定太阳能开始的,流经生态系统的总能量就是该生态系统生产者所固定的全部太阳能。对!303.发展生态农业,实现物质与能量的循环利用,是实现人与自然和谐发展的一项合理措施。错!能量不能循环利用。304.对任何一个自然生态系统而言,物质可以被生物群落反复利用而不依赖于系统外的供应,但能量是逐级递减的,且是单向流动不循环的,必须从系统外获得。错!物质是在整个生态系统中循环,而不是在群落中循环。305.负反馈在生态系统中普遍存在,它是生态系统自我调节的基础。正反馈则是加速破坏平衡。所以负反馈都是有利的,正反馈都是有害的。错!负反馈和正反馈都有积极和消极的作用。306.全球性生态环境问题主要包括全球气候变暖、水资源短缺、臭氧层破坏、酸雨、土地荒漠化、海洋污染和生物多样性锐减等。对!307.在一个生态系统中,植物不一定是生产者,动物不一定是消费者,微生物不一定是分解者。同样,生产者不一定是植物,消费者不一定是动物,分解者不一定是微生物。对!308.保护生物多样性,必须做到禁止开发和利用,如禁止森林砍伐,保护森林;保护海洋生物,必须禁止乱捕乱捞。错!人类合理开发自然界,有利于保护生态系统的多样性。309.当发生火灾或者火山爆发后的群落演替属于次生演替。湖底的演替属于原生演替。错!火山爆发属于原生演替。310.C 以CO2 的形式在无机环境与生物群落之间循环。对!第 32 组311.根据胰岛素基因制作的基因探针,仅有胰岛B 细胞中的DNA 与RNA 能与之形成杂交分子,而其他细胞中只有DNA 能与之形成杂交分子。对!312.解旋酶、DNA 聚合酶、DNA 连接酶、限制性内切酶都能作用于DNA 分子,它们的作用部位都是相同的。错!解旋酶作用与氢键。313.用限制性核酸内切酶切割烟草花叶病毒的核酸。错!烟草花叶病毒的核酸是RNA,限制酶只能切割DNA,不能切割RNA。314.利用显微注射的方法将目的基因直接导入受体细胞,而不需要DNA 载体。错!目的基因必须与DNA载体结合,否则目的基因无法复制,无法与宿主细胞DNA整合。315.运载体是基因工程中的重要工具,能够自我复制,含有一个或多个限制性内切酶的切点,具有某些标记基因等,是运载体必须具备的基本条件。.对!316.用同个生物的不同细胞构建的cDNA 文库都是相同的。错!不同细胞因为选择性表达,mRNA的种类不同,所以反转录而来的cDNA文库不一定相同。317.如果要将人生长激素基因导入大肠杆菌,应从cDNA 文库中获取目的基因,或用人工化学合成的方法获取。对!318.用限制性内切酶切割得到的人胰岛素原基因,导入大肠杆菌细胞后不能得到有效的表达。对!319.成功导入外源基因就标志着基因工程的成功。错!外源基因是否能够成功表达才是成功的标志。320.检测受体细胞是否导入了目的基因,以及受体细胞中导入的目的基因是否转录出mRNA,可用相同的目的基因探针进行诊断。对!第 33 组321.要获得转基因植物,可选用植物的体细胞作受体细胞,然后通过组织培养技术获得;如果要获得转基因动物,可选用动物的体细胞作受体细胞,然后通过动物细胞培养技术获得。错!动物转基因的受体细胞一般是受精卵,因为普通的动物体细胞没有全能性。322.基因工程的运载体可以采用大肠杆菌的质粒,但是并不是所有的大肠杆菌的质粒都可以用于基因工程。对!323.通过转基因方式获得的抗虫棉的后代具有永久抗虫的能力。错!外源基因可能在繁殖过程中丢失。或者认为转基因植物细胞中一般只有一个外源基因,在减数分裂的过程中,会有一半的生殖细胞不含外源基因。324.用相同的限制性内切酶切割DNA 留下的粘性末端是一定相同的;用不同的限制性内切酶切割DNA 留下的粘性末端一定是不相同的。错!不同的限制酶也可能产生相同的粘性末端。325.采用转基因方法将人的凝血因子基因导入山羊受精卵,培育出了转基因羊。但是人的凝血因子只存在于转基因山羊的乳汁中。这说明,在该转基因山羊中,只有乳腺细胞中存在人凝血因子基因,而其他细胞中不存在。错!外源基因也是选择性表达,所以其它细胞含有这个基因但是没有表达出来。326.基因治疗是指将缺陷基因诱变为正常基因;基因诊断依据的原理是DNA 分子杂交;一种基因探针能够检测水体中的各种病毒。错!基因治疗往往是导入正常的基因。基因诊断还需要利用DNA凝胶电泳技术。基因探针具有特异性,一般只能检测一种病毒。327.通过转基因培育抗虫品种,利用种间关系控制害虫的数量,利用昆虫激素干扰昆虫的繁殖等都属于生物防治的范畴。对!328.DNA 连接酶与DNA 聚合酶都是催化磷酸二酯键的形成,但前者只催化游离脱氧核苷酸连接到已有脱氧核苷酸链上,后者催化两个DNA 片段的连接。错!两种酶的作用说反了。329.限制性核酸内切酶有3000 多种,能识别并切割回文序列,具有较强专一性;DNA 连接酶能连接所有的粘性末端,所以没有专一性。错!DNA连接酶只能连接DNA,不能连接蛋白质,就说明专一性,只是专一性比限制酶弱。330.生物体内DNA 分子的解旋一定需要解旋酶,在体外则只需要高温。错!转录时,DNA的解旋由RNA聚合酶完成,不需要专门的解旋酶。第 34 组331.为检测胰岛素基因转录的mRNA 是否翻译成胰岛素原,常用抗原-抗体杂交技术。对!332.抗生素-卡那霉素可以用来对转基因的植物细胞起到筛选的作用。对!333.在获取植物的原生质体时,使用高浓度的甘露醇溶液可以防止原生质体吸水胀破。对!334.在植物组织培养中,生长素/细胞分裂素比例高时有利于根的分化,比例低时有利于芽的分化,比例适中促进愈伤组织的形成。对!335.离体的植物体细胞与生殖细胞都可以作为植物组织培养的外植体,因为这些细胞都至少含有一个染色体组,具有全能性。对!336.愈伤组织的细胞排列整齐而紧密,且为高度液泡化、无定形状的薄壁细胞。错!愈伤组织排列疏松无规则。337.在植物组织培养的过程中,脱分化阶段不需要光照,再分化阶段需要给予光照的条件。对!338.在植物组织培养过程中,加入适量的蔗糖不仅可以为细胞提供能源物质,而且可以调节培养基的渗透压。对!339.一个四倍体的某植物体细胞与一个二倍体的另一种植物体细胞进行杂交,如果形成的杂交细胞中染色体没有丢失,则该杂交细胞通过组织培养长成的植株属于六倍体,而且是可育的。对!340.制备单克隆抗体所涉及的生物技术包括:动物细胞融合与动物细胞培养;获得番茄—马铃薯种间杂种个体用到的技术包括:植物体细胞杂交与植物组织培养;获得转基因抗虫棉用到的技术只是转基因技术。错!植物转基因技术离不开细胞组织培养。第 35 组341.植物产生的种子能发育成新的个体,是种子细胞全能性的体现。错!种子内部已经形成了各种组织细胞,胚就相当于一个小型的植物,所以这是长大的过程。342.同一株绿色开花植物不同部分的细胞经组织培养获得的愈伤组织细胞基因都是相同的。错!花药组织培养和体细胞组织培养所获得的细胞的基因型不同。343.将愈伤组织包埋在人工种皮中,就形成了人工种子。人工种皮需要具有透气与透水等特点。错!愈伤组织进一步培养成胚状体才能组装成人工种子。344.我国政府不反对治疗性克隆,禁止生殖性克隆。对!345.在细胞克隆培养时,需要滋养细胞;当进行胚胎干细胞培养时需要饲养层细胞。对!346.在动物细胞培养与植物组织培养中,都需要对培养基灭菌,还都需要用到CO2培养箱。错!动物细胞培养时,CO2用来维持PH值。植物培养不需要认为控制CO2,因为环境中的CO2足够进行光合作用。347.动物细胞培养与植物组织培养依据的原理都是细胞的全能性。错!动物细胞培养的原理是细胞增殖。348.动物细胞培养中,细胞具有贴壁生长以及接触抑制的特点,因此在培养中需要用胰蛋白酶处理贴壁的细胞并进行分瓶培养,分瓶后的培养称为传代培养。对!349.动物细胞培养中配制的培养基属于合成培养基与液体培养基,在使用时,该培养基中还需要添加血清等天然成分。对!350.如果要通过动物细胞培养提供动物克隆的供体细胞,一般应选用10 代以内的培养细胞,以保证供体细胞正常的遗传基础。对!第 36 组351.动物细胞培养中绝大多数细胞不能活过10 代。.对!352.诱导动物细胞融合除可以用离心、振荡、电激等物理方法和聚乙二醇处理等化学方法外,还可以采用灭活的病毒进行处理;诱导植物细胞融合则不能使用灭活的病毒。.对!353.将B 淋巴细胞与骨髓瘤细胞进行诱导融合,培养液中融合后的细胞即为杂交瘤细胞。错!诱导产生的细胞也可能是两个淋巴细胞的融合或两个瘤细胞的融合。354.在动物细胞培养中需要进行二次筛选。第一次是用选择性培养基筛选出杂交瘤细胞;第二次是用抗原—抗体结合的原理筛选出能产生特定抗体的杂交瘤细胞。对!355.杂交瘤细胞具有既能产生抗体又能无限增殖的特点;杂交瘤细胞产生的单抗具有特异强、灵敏度高的特点。对!356.通过核移植获得的克隆动物,完全继承了供核个体的遗传性,因此其性状表现只与供核个体相关,与其他个体无关。错!克隆动物的细胞质基因来自提供细胞质的个体。357.胚胎干细胞具有分化成各种组织器官的能力,这说明了胚胎干细胞的发育全能性。诱导胚胎干细胞分化的培养基中不需要加入饲养层细胞。对!358.胚胎移植之前需要对供体和受体进行免疫检查,防止发生免疫排斥反应。错!胚胎移植不会出现免疫排斥。359.动物细胞克隆、转基因工程等只要最后一步涉及胚胎移植,代孕母亲与供体母亲必须进行同期发情处理。对!360.试管婴儿和胚胎移植技术都属于有性生殖。错!胚胎移植技术无所谓有性还是无性,关键看胚胎的来源是受精卵形成的,还是无性繁殖形成的。第 37 组361.试管婴儿技术中,从生物体内取出的精子是成熟的,卵是不成熟的。完成受精后,可以立即进行胚胎移植,最晚不能原肠胚时期。错!需要卵裂到8个细胞,才能移植,否则无法着床。362.卵裂期细胞数目不断增加但卵裂球总体积并不增加,有机物的总量也不断减少。对!363.精子的获能不是获得ATP,而是受到外界环境中某些物质如酶和离子的作用,具备了受精的能力。对!364.我国古代的“无废弃物农业”,从生态学上看是遵循了物质循环再生原理。对!365.生态农业的建立,提高了各营养级之间的能量传递效率。错!人类很难改变能量传递效率,而只能使能量更多地流向对人类有益的部分。
【能源人都在看,点击右上角加'关注'】燃气热脱附技术修复有机污染场地研究与应用进展本文发表于《环境工程学报》土壤热修复技术应用专题 作者:李书鹏,焦文涛,李鸿炫,宋少宇,籍龙杰,刘鹏,詹明秀,王进卿摘 要原位燃气热脱附是目前修复有机污染土壤最具潜力的技术之一。在查阅文献的基础上,结合国内外实 际案例,系统梳理了有机污染土壤原位燃气热脱附修复技术的原理、适用范围、优缺点以及工艺施工流程,对 国内外燃气热脱附技术的研究现状和工程应用情况进行了对比分析,并对该技术的发展趋势和应用前景进行了 展望,以期为我国有机污染土壤原位热修复技术的推广和应用提供参考。 关键词 有机污染场地;土壤修复;原位;燃气热脱附 近年来,随着我国“退二进三”和“退城进园”政策的进一步落实,大批化工企业被迫搬迁、改造或关闭停产,导致大量有机污染场地被遗留在城市及其周边地区。这些污染场地将对人体健 康和生态环境造成严重危害,从而制约城市的建设与发展。原位热脱附技术自20世纪70年代开始应用于有机污染场地的修复,其基本原理是通过加热 提高污染区域的温度,改变污染物的物化性质,增加气相或者液相中污染物的浓度,从而提高液 相抽出或土壤气相抽提对污染物的去除率。根据加热方式不同,原位热脱附技术可分为蒸汽强化 提取技术、电阻加热技术和热传导技术等。其中,热传导技术因热源不同又可分为电加热和燃 气热脱附。原位热脱附技术的优点在于无须挖掘和运输污染土壤,二次污染相对可控,对低渗 透污染区、非均质污染区域具有较强的适用性和较好的修复效果。但原位热脱附技术的修复周期 和修复效果具有一定的不确定性,主要取决于以下几个因素:1)场地污染物类型和浓度、污染 面积或深度等;2)土壤中有机质的含量(土壤有机质会使污染物吸附在土壤上,从而限制其蒸 发);3)场地水文地质条件(如土壤含水率、渗透性、导热性等);4)修复标准的选定(某些地方标准会比国家标准的要求更为严格,如北京市规定氯苯在居住用地的筛选值为41 mg·kg1,而国家在 第一类建设用地规定的筛选值为68 mg·kg1)。燃气热脱附(gas thermal desorption, GTD)是利用燃气燃烧为热源,通过热传导方式使得土壤温 度升高,再将有机污染物解吸处理,以进一步处理废水和废气。其技术优势在于燃气便于运输、 输送方便;相比电加热方式,对于场地基础条件要求较低、启动快速、运行灵活。欧美等发达 国家针对GTD技术已有初步研究和应用,而国内仍处于起步阶段。因此,有必要对国内外有关 GTD技术的研究现状和工程案例进行总结和分析,以期为我国污染土壤原位修复领域的科研及工 程应用提供参考,推动我国GTD技术的工程化应用进程。1燃气热脱附技术原理及工艺1.1 基本原理GTD技术的原理如图1所示。在燃烧器中,通入天然气或液化石油气,同时通过抽风机产生 的负压将清洁空气吸入,在燃烧器内混合,点火燃烧,产生高温气体。高温气体注入加热井中, 通过热传导方式加热目标修复区域,使得土壤温度升高至修复目标温度。在加热过程中,污染物 从土壤中解吸出来或者发生裂解反应,此时借助气相抽提(soil vapor extraction,SVE)将含有污染物 的蒸汽提取至地表,然后进入后续的尾气治理系统,达到污染物去除的目的,最终实现达标排放。1.2 系统组成根据上述工艺原理,整套GTD工艺主要包括4个部分:燃料供应系统、加热和抽提系统、辅 助配套系统(包括地面保温系统、监测系统、数据传输系统、控制系统等)、尾水尾气处理系统。1)燃料系统。GTD技术采用管道输送燃气,燃气管道上安装有调压阀,确保进入燃烧器的燃 气压力满足设备要求。2)加热系统。加热系统的设计关键是加热井点布置,须综合考虑污染物的浓度、工期要求及 现场的平面布置等因素。3)抽提系统。整个原位修复区域外设有防渗阻隔墙,确保区域外的地下水不会流入。抽提 系统一般设计为竖向SVE井和水平SVE管,通过在土壤中形成负压来抽提加热产生的污染气体。抽提管的长度与加热管一致,同时确保抽提范围能覆盖到整个修复区域。4)地面保温系统。井管系统安装完毕后,一般在表面覆盖一层25 mm厚的隔热材料和25 mm 厚的混凝土用作隔热层,然后再安装燃烧器和地面管道等。设置混凝土隔热层一方面可减少热量 散失,并确保现场操作的安全;另一方面还可防止污染物扩散,避免运行时造成二次污染。5)温度监测和传输系统。该系统在整个加热过程中,对单个燃烧器的燃烧状况、压力以及土 壤中关键位置的温度、压力等参数进行实时监测和数据传输,从而实现对整个过程的实时监控。修复区域中的单个燃烧器可以单独控制,也可以组合控制,以达到温度梯度和能量消耗最优化。6)尾水尾气处理系统。在加热过程中,土壤中的污染物从土壤中解吸出来,形成含污染物的 蒸汽。含污染物的蒸汽被抽提井抽取至地表,然后进入后续的尾水及尾气系统处理。尾水统一收 集输送至现场污水处理站进行处理;尾气统一收集输送至现场尾气处理站,经过一级气水分离、 冷凝、二级气水分离后,少量不凝气体进入到蓄热式氧化炉或燃烧室中完成彻底处理,最终达标排放。1.3 施工流程GTD工艺施工流程主要包括:测量放线,施工现场准备及场地平整,场地封闭阻隔及降水, 加热和抽提井建设,设备连接和整装调试,加热修复和尾气治理;修复治理验收完成后,进行管 道和燃烧器等的拆除,最终完成修复施工。施工过程特别注意以下4点。1)加热井的间隔距离会直接影响污染物的去除效果,因此,加热井的间隔距离应合理经济。根据已有工程经验,一般设置为1.5~4 m。确定加热井的间隔距离后,可根据污染区域的面积及 范围进行加热井的布置。为抵消围绕目标处理区周边的边缘效应,加热井通常要沿着划定的目标 处理区的极限横向延伸一定距离。2)为保证燃气热脱附的效果和降低热损失,在GTD原位修复区周边设置闭合的防渗墙,以防 止外界地下水进入GTD修复区;同时,为减少来自处理区顶部的热量损失,需要以表面覆盖物的 形式进行保温,如轻质混凝土等。3)地面硬化阻隔完成后,进行设备及管线连接(主要包括加热井上部燃烧器连接、天然气管线 连接、抽提井管线与设备连接等)时,宜做到设备管线的连接布局尽量合理整齐,避免相互交叉。4)尾水尾气处理系统须定期检查尾气处理设备的运行,防止管道漏气,以保障处理设备末端 排气口的气体质量达标。同时,尾水应及时收集、妥善输送、及时处置,以保证出水达标。1.4 技术优势原位GTD技术主要优势包括3个方面。1) GTD最高加热温度可达到500 ℃,可原位达标去除几乎所有有机污染物和部分挥发性的无 机污染物。因整个污染区域处于高温负压环境,故会增加有机物的流动性并降低其汽化所需的蒸 发温度,使其迅速从土壤中解吸并进入蒸汽。综合上述2点,该技术综合性价比很高。2) GTD技术不受复杂地质及水文地质条件等因素限制,对低渗透性污染场地修复具有很强的 适宜性。同时,GTD的加热深度大,最大加热深度目前可达18 m,并可根据实际工程需要再加大 深度。3) GTD技术使用天然气和石油气等一次能源,单位加热长度内输入功率比电加热过程更高, 可加速土壤升温效果,缩短修复工期。同时,该技术系统安装便捷,设备重复利用率高。另外,当修复现场电力供给紧张时,燃气运输的便利性更能保证修复项目的顺利实施。1.5 技术缺陷相比其他原位热修复技术,GTD技术的主要缺陷包括3个方面。1)加热系统出口的排烟温度一般为200~400 ℃,燃气加热能源利用率仅为30%~60%,其热量 损失达40%~70%,因而造成大量的能量浪费。此外,在燃气加热土壤的过程中,能量损耗更高。2)电加热可以轻易控制不同深度的电能输出,实现定深加热,能量损失可以达到补偿,加热 也就更均匀;而用燃气加热时,其底部加热温度最高,由于在浅层能量输入很低,达到目标温度 会比较困难,故会产生受热不均匀的现象。3)电加热技术的安全保护措施(如漏电保护等)及安全操作规程非常完备,而燃气加热需要管 道供应燃气,现场管道及管线设计尤为关键,会受施工现场的封闭性条件限制,存在较大的安全隐患。2研究进展在原位热脱附技术中,热量可通过热辐射、热传导和热对流等方式在土壤和地下水中进行传 递,使水和有机污染物受热蒸发,并通过抽提工艺进行捕集。究其本质,可将土壤视为多孔介 质,而原位热脱附过程可看成是多孔介质内多组分多相流传热传质过程[25]。然而,由于土壤特性 及污染物类型复杂多变,目前对其内在热质传递过程的认识尚不充分。影响原位热脱附中热质传递过程的因素很多。从传热过程来看,其传热效率主要取决于污染 区域内的温度梯度、土壤及地下水介质的热导率和保温隔热性能。其中,热传导主要发生于固 体之间,适合于低渗透率场地;热对流则依赖于流体间的相对运动,适合于高渗透率场地;而热 辐射主要存在于热源与周边土壤之间的热交换,距离热源较远处则因温差较小基本可以忽略。由此可见,土壤内的传热过程也受诸多因素影响。而相对于传热,传质过程则更为复杂,各相间 的物质输运相互牵连。图2为有机污染土壤内典型的传质过程示意图。在典型有机污染场地中, 大多数有机污染物在水相中的溶解性较差,其 主要吸附于土壤颗粒表面或以独立自由相存 在;而某些难溶性有机污染物往往又具有较强 的迁移性(如三氯乙烯、二氯甲烷和石油烃 等),可以穿过低渗透性土层至深层地下环境 。并且,热脱附过程中土壤温度随时间不断 变化,因此,有机污染物在地下水中的溶解 度、在土壤表面的吸附性以及地下水和污染物 的物性均会发生动态变化。POLING等发 现,当温度由25 ℃升至140 ℃时,萘在水中 溶解度增加45倍。HERON等[29]发现,当温度由 23 ℃升至99 ℃后,三氯乙烯亨利常数增加了 8倍;同时,他们还发现,当有机物和地下水 处于混合状态时,混合物沸点往往会低于100 ℃。对于土壤污染物迁移机理的研究,已有研究者从污染物迁移角度出发建立了关于非水相 液体在地下运移的多相流模型。这些模型分为3类。第1类是解析和半解析模型。该类模型将污 染物的不混溶流动当作活塞流处理,将多相流概化为单相流动,不考虑各相之间的相互影响,也 未引入毛细压力和饱和度之间的函数关系。第2类模型假设多相流体是同时流动的,有机物是不 混溶流动的,并考虑了各相间毛细压力随饱和度的变化。第3类模型考虑各相各组分间的传输和 分配。此外,QUINTARD等在多孔介质的宏观尺度下提出了基于体积平均方法的两相非平衡理 论模型。而BAHAR等在此基础上发展了基于多孔介质微观尺度的污染物迁移模型,能够获得更真实的结果。这些模型理论上支持污染物迁移的预测,但由于各自假定条件不同,导致模型使 用受限。尤其在考虑温度影响时,污染物受热蒸发,其输运方式将会发生很大变化。由于原位热 脱附过程中的传热传质是一个多物理场动态耦合问题,目前尚未有合适的模型能涵盖所有问题, 因此,有必要对其理论模型开展更为深入的研究。此外,现有原位热脱附技术在应用时存在一个很大问题——成本较高,因此,如何提高修复 效率、降低能耗成为推动该技术发展的关键因素。为提高修复效率,部分研究者采用热活化耦合 化学氧化的工艺进行联合修复。KORDKANDI等利用热活化过硫酸盐氧化亚甲基蓝以达到 99.5%的降解率;NIE等利用热活化过硫酸盐氧化氯霉素以达到96.3%的降解率。以上研究均在水溶液中进行。而徐开泰等发现,热活化Na2S2O8降解土壤中菲(PHE)的过程符合准一级动力 学,且受水浴、反应温度、Na2S2O8浓度、菲初始浓度、水土比和共存离子等因素的影响。一般而 言,温度越高,PHE降解率越高;313 K时,PHE基本无降解;333 K时,PHE开始缓慢降解;363 K 时,10 min内PHE的降解率可达65%。杜玉吉等发明了一种利用分布式能源的污染土壤原位热修复系统和方法,通过使用燃气内 燃机所产生的高温烟气和电力对污染土壤进行原位加热修复。其中,高温烟气和电阻加热的结合 使用可同时进行烟气热修复和电阻热修复,形成多能互补机制,具有双重保障。但该系统须同时 配备发电系统等附属设备,从而使系统变得非常复杂。此外,程功弼等发明了一种异位燃气加 热抽提一体式热脱附装置,包括燃气加热装置、多个加热抽提一体化井、尾气处理装置、电控装 置,多个加热抽提一体化井水平平行排列。多个加热抽提一体化井修复土壤区域的外周设有多个 隔热板,隔热板上设有用于感应土壤温度的温度传感器。此工艺的热脱附效率高、可灵活应用, 便于土壤污染处理的工程操作和使用。除上述理论研究外,不少学者针对原位热修复技术进行了不同规模的中试实验,为该技术的 实际应用奠定了基础。HERON等先后利用热传导式原位热脱附技术对有机污染场地进行了中 试实验研究,并对修复周期和1 m3的综合修复成本进行了详细分析。梅志华等在面积为100 m2、 深度为18 m的某退役溶剂厂污染区域开展了GTD中试研究,结果表明:土壤中苯、氯苯和石油类 污染物最高去除率分别为99.8%、99.7%和98.2%;地下水中苯、氯苯和石油类污染物最高去除率 分别为98.8%、97.7%和100%。GTD修复技术主要受管壁温度和停留时间的影响,温度越高,停留时间越长,污染物去除效果越好。另外,在相同的加热温度和停留时间条件下,含水率较小和 孔隙率较大的土壤中污染物去除效果较好。然而,上述研究并未对加热井和抽提井的间距、排布方式以及热脱附周期等影响因素进行详细讨论,往往只凭工程师的经验进行实际操作。此外, 我国污染场地具有污染成因复杂、污染种类繁多、污染程度严重和修复规模大等特点,这也对原 位热脱附技术的实施提出了更高的要求。由此可知,我国GTD修复技术的研究还处于初步阶段, 有必要系统地分析影响原位热脱附过程中热质传递的各种因素,深入研究其热质传递规律,通过 数值方法实现对热脱附过程的有效预测来优化布置以降低修复成本,从而推动该技术的发展和应用,为工程实际方案设计提供理论基础和技术参考。3工程应用案例分析GTD是一种相对高效、成熟的污染土壤修复技术,在全球已有很多成功应用案例,但多靠经 验操作。许多国家自20世纪80年代即开始将原位热处理修复技术应用于污染地块的修复中,已在 上百项污染地块修复工程中使用了原位热处理技术。KINGSTON等统计了1982—2007年的 182个原位修复项目,其中以热传导加热形成的项目数量占14.3%。在我国,原位热处理修复技术 应用起步较晚,但也积累了几个工程案例。下面对国内外有关燃气热脱附修复污染土壤典型案例 进行汇总和分析。调研发现,在国外,使用GTD技术的公司主要包括:美国Georemco环境修复公司、德国旭 普林环境工程有限公司、比利时哈默斯以及法国威立雅等。表1总结了国外若干燃气热脱附修复 实例。GTD技术具有修复期间对场地周边居民生活影响小、污染物处理范围宽、设备可移动、处理 速率快、修复后土壤可再利用等优点。因此,GTD技术在国内的应用案例也在逐渐增多,如广州 油制气厂地块土壤修复、宁波江东甬江东南岸区域JD01-01-10地块、首钢园区焦化厂(绿轴)地块 污染治理等修复项目。目前国内GTD技术仍处于引进消化吸收和自主研发阶段,少数企业依靠引 进国外先进技术初步掌握了核心技术,如江苏大地益源环境修复有限公司、森特士兴集团股份有 限公司等,他们相应地占据了一定的市场份额。目前,GTD技术仍然属于“黑箱操作”,加热温度 的确定和修复终点的确定基本靠经验,加热的精准性及污染物去除的精准性难以控制,造成修复 不足或过度修复。表2总结了国内公司采用GTD修复技术的实例。由表1和表2可知,适用场景、加热温度、修复深度、加热周期和降低能耗是在污染场地实 际修复中必须要考虑的关键问题。3.1 适用场景在国外,GTD技术更多地应用在污染浓度较高的污染源区域,处理的污染物主要包括总石油 烃、苯系物和氯代烃。该类项目具备4个特点:污染土方量较小(单批次<3 000 m3),修复面积较 小(<300 m2),污染浓度较高(最高150 000 mg·kg1,平均浓度约15 000 mg·kg1),修复目标低 (<300 mg·kg1)。实施形式多数采用原位修复的方式,个别案例如案例4(见表1)采用异位建堆的形 式实施加热过程,分6个批次完成了12000 t石油烃污染土壤的修复工作。在我国,实际修复工程大多以工业污染场地为主,如焦化厂、农药厂和化工厂等。处理的污 染物以苯系物、多环芳烃和石油烃等为主。同时,国内修复项目处置土方量和修复面积一般都很 大,导致修复工期较长,因此,对GTD装置的工业化程度要求也更高。另外,修复过程的能耗取 决于土壤含水量、孔隙度、受污染情况以及目标加热温度等。UDELL[48]认为,至少有10%~30%的 水分会被加热至沸腾;HERON等[40-42]进一步计算得出,修复的耗能大体是200~400 kWh·m3,并在 一块污染面积达1.3×104 m2的原位热脱附修复项目中,计算得出平均能耗为249 kWh·m3。因此, 针对国内大型原位修复场地,降低系统能耗,保证装置的运行稳定性,以及研发配套的安全、高 效、集成化的尾水尾气处理系统,是国内原位修复项目中迫切需要解决的实际问题。3.2 加热温度对比国外工程案例可发现,目标污染物基本涵盖了所有典型有机污染物,且目标加热温度均 在220 ℃以下。这可能是由于共沸现象的存在(共沸是指2个组分或多组分的液体混合物以特定比 例组成时,在恒定压力下沸腾,其蒸气组成比例与溶液相同的现象)。一般混合物的沸腾温度会低 于他们各自的沸点,使得目标加热温度无须超过污染物的沸点[14]。因此,我国在开展GTD实施的 过程中,应充分考虑共沸现象,尽量避免设置过高的目标加热温度。案例中介绍目标加热温度为冷点监测处的温度,达到此温度时,需要恒温一段时间。个别案 例无法达到设定温度的原因是由于地下水的持续补充,导致大部分热量损失,无法将修复区域加 热到该目标温度。3.3 修复深度原位热脱附只能是由下层到上层的持续加热,所以对修复深度存在一定的要求。对比国外的 17个案例发现,最深的修复深度在14 m左右,而国内目前修复最深的深度为18 m。这可能是因 为GTD只能自底部开始加热,烟气由下往上温度逐渐降低,当深度达到一定值时,燃气加热过程 会导致修复区域温度场分布变化较大。在原位热修复过程中,如果土壤中温度场分布不均匀将会 导致如下后果: 1) 重质非水相液体重新冷凝,造成不可控的二次污染过程;2) 污染物在抽提井中发 生冷却,堵塞抽提井;3) 监测井发生塌陷,造成修复场地沉降。因此,应尽量降低不同深度土 壤之间的温度差异。3.4 加热周期虽然加热周期取决于污染物性质及污染浓度、修复方量、加热井点数量等因素,但从国外案 例来看,一般加热周期都只在30~40 d。如果仅从国外17个案例分析来看,GTD技术修复周期短 的优势是成立的,即针对点源污染,可在较短时间内完成修复过程;但大型污染场地若采用 GTD技术,再加上分批次处理,修复工期则存在较大的不确定性。3.5 降低能耗由于GTD过程存在大量的能量损失,因此,需要采取一定的节能手段。对比国内外的工程案 例,总结了3种降低能耗的方式。1)分批次处理。从一个批次加热井(运行中)出来的尾气进到另一批次的加热井(未开始运 行)中,提前预热另一个批次的污染土壤。如表1中的案例11,分成2个批次分别完成了2 400 m3 和3 857 m3石油烃污染土壤修复,从而达到修复目标值(<100 mg·kg1)。2)耦合原位化学氧化技术。如表1中的案例8,先将污染区域进行GTD,将污染物降低到较 低浓度(此时未达到修复目标值),然后停止加热,将加热管拔出。再利用原位化学氧化技术,向 加热井内注入氧化药剂,氧化药剂利用余热的催化作用,发挥最大的活性,实现污染物的彻底氧 化降解。此种利用耦合多种修复技术的方式,可以有效降低单种修复技术的能耗,同时,防范 GTD修复后期出现的“拖尾”现象。3)设置伴热抽提管道。如表2中的案例6,在加热管外装一个小型抽提管道,将抽提气回注到 加热管内燃烧区域,完成彻底燃烧。可利用有机污染物燃烧放热,节省一部分能量;亦可实现污 染物的协同处理,降低尾气处理负荷。设置伴热抽提管道的方式在国外早期的案例中并未出现, 而在最近几年的修复案例中,均设置伴热抽提管道,实现污染物的“再燃”。4问题与展望经过30年的发展,国际上许多国家在热脱附修复有机污染场地方面形成了完整的成套技术和 装备,广泛应用于高浓度有机污染土壤的异位或原位修复。我国在这方面尚处于起步阶段,存在的主要问题包括2个方面:1)基础理论与国外存在差距,如有机污染物在不同升温阶段的迁移转 化规律,土壤水分含量、质地等理化性质对热修复的影响机制尚不清晰。2)核心技术靠进口、国 产化程度低。国外设备引进费用较高,需要研发我国具有独立自主知识产权的热脱附技术装备。未来,研发具有热回用单元的能量高效利用、智能化、污染物排放可控的原位热脱附成套技术与 装备,提升我国原位热脱附成套技术与装备的修复能力与能效水平将成为主流趋势。目前,由于国内在原位热脱附技术、设备及工程实施等方面缺乏经验,为了更好更高效地应 用于有机污染场地的修复过程,可重点从以下3个方面开展深入研究。1)原位热脱附技术能量高效利用和节能减排技术的研发。开展原位热脱附过程的关键影响参 数研究,如热脱附温度、处理时间、土壤质地、热导率及热扩散率、土壤含水率以及加热井间距 等对污染物脱除效率影响规律,优化工程设计,精准化施工避免能量浪费;开展修复区域表层阻 隔材料和竖向止水帷幕材料保温性能的研发,减少热量向周围扩散,提升能量利用效率;探索有 机污染物的再利用方法,如抽提出的有机污染蒸汽可考虑送入燃气热传导加热系统的燃烧器中作 为能源使用;利用可再生能源产热、高效燃烧器及电热设备、高温烟气循环换热、高温抽提混合 液换热、地下水力阻隔与隔热实施等手段提高热利用及转换效率,节能降耗;开展污染物的去除 机理以及迁移转化机制方面的研究,通过模型模拟以及数值模拟等方法得出修复过程中污染物浓 度与加热时间、能量消耗等的定量数学关系,构建解吸动力学模型,严控修复施工节点。2)原位热脱附全过程热传导数值模拟及应用软件的开发。开展原位热脱附修复污染土壤全过 程热传导数值模拟,掌握热量在非均质土壤中的热传导规律;探明水分在不断析出过程中土壤动 态热物性变化规律,特别是土壤导热系数的变化特性;建立包括土壤、水蒸气、目标污染物等物 质在内的能量平衡和物质平衡模型;借助小型和中试实验对模拟结果进行对比修正,掌握土工参 数和加热温度等参数对热量在土壤中传导速率的影响作用机理;给出多种典型目标污染物在不同 修复周期以及不同地质条件下的热传导速率,并基于修正后的全过程热传导数值模拟进行软件开 发,最终获得输入目标污染物沸点和溶解度、修复周期、加热温度、土工参数等现场条件即可得 到加热井间距、加热井温度及升温速率等推荐值的工程化应用软件。3)多种修复技术耦合工艺、应用设备的研发和二次污染的防控。一是组合工艺研发。探索原 位热脱附技术与其他修复技术在实际应用中的联合应用,如利用热脱附后的余热促进微生物对有 机污染物降解活动;利用热脱附过程增加地下水有机质含量,为微生物修复活动提供碳源,充分 发挥微生物的活性,使微生物的修复效果达到最佳;利用余热激活过硫酸盐等氧化剂的方式促进 原位化学氧化修复过程等。二是应用设备研发。我国原位热脱附修复技术研究和工程应用起步较 晚,大多停留在设计研发阶段,距离设备商业化应用还具有较大差距。急需结合我国污染地块实际情况,发展快速高效、成本低廉、实施便捷以及环境友好的本土化原位热处理修复技术及配套 修复设备。三是二次污染防控。加强原位热脱附过程抽提出的地下污染物的处理与处置,严格控 制二次污染,加强高浓度抽提气体的高效冷凝回收等;建立原位热脱附全修复效果和环境全过程 的检测方法。同时,开展原位热脱附过程中修复场地内的大气和废水有组织和无组织排放检测, 严格控制二次污染物排放。参考文献略(本文作者单位:北京建工环境修复股份有限公司,污染场地安全修复技术国家工程实验室,中国科学院生态环境研究中心城市与区域国家重点实验室,中国计量大学计量测试工程学院)免责声明:以上内容转载自生态修复网,所发内容不代表本平台立场。全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
【能源人都在看,点击右上角加'关注'】郑文棠 | 南方能源建设【编者按】对于浅层有岩层的海域,嵌岩桩费用较高。筒型基础为底端开口,顶端闭口的大直径筒形结构,其特点是利用浅层土承载,利用负压进行安装,无需大型打桩锤,海上施工简便,是近年来我国海上风机基础实践的一个方向。近日广东省阳江市阳西沙扒二、三、四、五期海上风电项目38台(暂定台数)6.45MW及以上容量单柱复合筒及8台(暂定台数)6.45MW及以上容量吸力筒导管架基础制作和施工招标公示,标志着吸力式筒型基础开始在广东海上风电落地应用。《南方能源建设》总结报道了这一吸力式筒型基础的技术特点和应用现状,后继将进一步报道该技术的应用案例和经验总结。海上风电吸力式筒型基础应用研究张浦阳,黄宣旭,(1. 天津大学 建筑工程学院;2. 江苏道达风电设备科技有限公司)【摘要】[目的]筒型基础是一种极具潜力的环境友好型海上风电基础,如何有效的实现筒型基础顺利下沉到设计深度和下沉过程结构垂直度的精准控制,避免筒内土塞隆起或筒裙及分舱板变形甚至屈曲带来的安装风险是筒型基础应用层面的关键问题。[方法]通过总结吸力式筒型基础在国内外风电工程中的应用,分析了筒型基础施工过程中下沉和调平两个关键问题涉及的相关机理和方法。[结果]研究表明:准确预测复杂土质条件下筒型基础施工过程下沉阻力及施工临界吸力和施工过程可能发生的结构变形等不稳定性态分析将有效规避单筒型、多筒型和单筒多舱复合型筒型基础吸力下沉调平过程中的施工风险。[结论]海上风电吸力式筒型基础应用总结分析,可以为实际工程提供筒型基础下沉和调平施工方案的相关参考。【关键词】海上浮式风机;稳性校核;一体化技术;动态海缆【基金】国家自然科学基金资助项目“近海风电筒型基础层状土中吸力下沉调平技术”(51779171)【引用】张浦阳, 黄宣旭. 海上风电吸力式筒型基础应用研究[J]. 南方能源建设, 2018, 5(4):1-11.引言筒型基础作为一种锚泊和基础型式在海洋及港口工程中具有很大的应用价值,例如:(1)海上结构系泊系统,如单点系泊、牵引平台的牵拉、船系泊、管线的固定与牵引;(2)吸力锚;(3)牵引式沉垫平台的阻滑桩;(4)防波堤;(5)平台基础,如导管架平台和张力腿平台的基础;(6)海上风电基础,这是一种新的应用。与其他海洋基础相比,筒型基础主要利用从筒内泵出气/水产生压力差形成吸力(低于一个大气压时也称负压)下沉,具有安装简便无嗓音污染、抗倾覆承载力高、节约钢材并可重复利用等优点,有望成为今后海上风机主要基础型式之一。1 海上风电工程应用情况筒型基础在海上风电场建设中主要应用于测风塔和海上风机结构基础,大致分为三种型式:单筒型,多筒型(三筒或四筒)和天津大学(练继建教授和丁红岩教授研发团队)与道达公司研发的单筒多舱复合型。典型应用工程案例如表1、图1~图 5所示。表1 海上风电筒型基础分类和典型应用情况图1 海上风电筒型基础图2 单筒多舱型复合筒型基础图3 海上风电复合筒型基础-塔筒-风机一步式安装技术思路单筒多舱型复合筒型基础是一种大尺度的混凝土-钢板-钢筋-预应力钢绞线组合体系的宽浅型基础结构型式(直径25~40 m,高度6~15 m),将弧形过渡段和筒型基础部分有机的结合成复合筒型基础(重量2 000~4 000 t)。整个结构体系通过预应力混凝土过渡段将风机塔筒的巨大弯矩有效的转化为基础结构内有限的拉压应力,多种材料的复合结构有效解决了钢-混凝土结构的变形协调和开裂控制,充分发挥了钢-混凝土结构的材料优势,提高了结构的安全性、耐久性。基础筒壁可分为混凝土和钢质,筒内蜂窝状分舱结构可以实现基础自浮拖航和下沉精细调平功能,如图2所示。该基础结构型式可实现陆上批量预制、海上一体化安装,从而大大节省海上作业时间,大幅度降低生产、运输和安装成本,使海上风电场高效、低成本、规模化开发成为可能,其技术创新思路如图3所示。图中所示基础、塔筒和3 MW风机一步式整机运输及安装完成(整体拖航72 h、281 n mile、整机下沉施工 8 h、水平度万分之三)。目前,正在建造的11台3.3 MW和2台6.45 MW复合筒型基础风电机组将于今年采用一步式安装方式用于三峡公司江苏大丰海上风电场。作为吸力锚还可以应用在浮式风机平台的锚泊系统,例如:2017年7月挪威国家石油公司英国建成世界上第一个海上浮式风电场Hywind Scotland Pilot Park,由5台6 MW风机组成,每个风机采用三个吸力基础提供锚泊力,如图4所示。图4 英国海上浮式风电场Hywind Scotland吸力基础应用[7]天津大学和道达公司联合开发的新型一体化海上风电测风塔也利用吸力式基础进行辅助下沉和调平施工,如图5所示。测风塔架-浮体结构-吸力式裙板基础结构为一体的海上测风塔组合结构体系已应用于江苏和海南等8个海上风电场的测风工程,资源节约、环境友好,经济社会效益显著,最远拖航距离为350 n mile(启东—连云港)。图5 海上风电一体化测风塔总之,海上风电筒型基础可大幅度提高海上风电建设效率和环境友好程度,尤其单筒多舱型海上风电复合筒型基础实现了基础-塔筒-风机的一体化运输和安装,将显著降低海上风电建造安装成本,提升我国海上风能利用领域的科技水平和自主创新能力。然而,我国近海风电场的土质条件十分复杂,表层软弱土、粉土、砂土及粘土或分层土呈现复杂多样性,如何有效的实现筒型基础顺利下沉到设计深度和下沉过程结构垂直度的精准控制,避免筒内土塞隆起或筒裙及分舱板变形甚至屈曲带来的安装风险势必是筒型基础应用层面的关键问题。2 筒型基础下沉施工问题自筒型基础应用开始,下沉阻力的准确预测和吸力施加的合理控制就一直是核心问题。筒型基础下沉过程一般分为自重下沉和吸力下沉两部分。由于砂土中吸力引起渗流效应会影响下沉阻力,计算变得相对复杂。目前常见的筒裙内外侧摩阻力和筒裙端阻力的计算方法如表2所示。API和HB方法是基于有效应力理论或BETA法推导[8-9]。API方法计算基础静力压入或自重下沉阻力,HB法则考虑了吸力下沉过程筒裙端阻力和筒壁内部摩阻力减少及筒外壁摩阻力增加的效应。其中筒内外土体竖向有效应力与API方法显著不同,HB方法考虑了筒裙端部应力分布的不对称性(1999年安装过程筒内外有效应力差异由Erbrich & Tjelta[10]提出,Senders[11-12]针对Draupner E安装数据和模型实验贡献了比较研究),及对裙端应力不均匀性的影响。同时考虑了筒内外土体渗透系数之比kfac体现吸力作用后土体密实的变化程度。另外,DNV、SR、NGI方法则是基于CPT贯入阻力qc的计算方法,核心问题是确定计算系数kf和kp。其中,DNV方法只关注了吸力施加前的下沉过程(基于北海砂土条件最大可能kf=0.001 & kp=0.3和最高预期kf =0.003 & kp=0.6)。SR方法考虑了吸力下沉筒内及裙端阻力的线性减少,调整Lehane方法,建议对于kf=0.002 & kp=0.2或采用kf=C[1-(Di/Do)2]0.3tanδ计算。NGI方法(Andersen等[13])给出了自重下沉阶段kf=0.001 5(0.01<kp<0.55)或kf=0.001(0.3<kp <0.6);吸力下沉阻力减少阶段,通过和临界吸力scrit、施加吸力s、自重W、下沉深度z和筒壁厚度t相关的经验系数(Ratio)来考虑下沉阻力变化,其中临界吸力(临界吸力数SN,cr)取决于下沉深度与直径比(z/D),筒内外土体渗透系数比kfac_thin(thin代表只考虑了与筒壁接触的土体,区别于HB法),为了确定有渗流和无渗流条件阻力比,NGI采用图解法对于每个下沉深度确定SN,cr图解确定下沉阻力。但下沉深度与壁厚比z/t组数有限且大于100的情况都归于一线(都对应SN/SN,cr为常数0.9)。Feld[14]方法综合了有效应力法和CPT法。不同的是自重阻力计算中侧摩阻力未采用承载力参数(K & δ),而是粗糙系数r(0.8)和摩擦角φ′。吸力沉贯阶段减阻效应通过施加吸力和临界吸力值比(s/scrit,scrit同Clausen & Tjelta方法[15])和三个经验系数ri,ro和rt分别确定筒内外侧摩阻力和端部阻力变化。应用层面上,HB法虽然很好的预测了Luce Bay安装实验,但1.5 m和 3 m 直径的筒内部摩擦力,在贯入一定深度后(0.37 m和0.67 m,0.25 D和0.22 D)出现了负值,进一步的贯入计算需要判断液化现象。HB法参数准确输入是有效预测的前提,对非常密实的超固结土还需特别确定系数Nq和K0。CPT圆锥贯入虽与基础筒裙相似(宽度和速度),但圆锥和筒裙土体分别是轴对称失效和准平面应变失效。Chatzivasileiou[16-17]对各种方法开展的对比研究成果,问题主要体现在:HB方法土压力比K和筒内外土体渗透系数比kfac并未体现渗流引起土体应力的渐变过程;基于CPT方法中s/scrit及其引起渗流减阻特性的kf和kp等参数定量评估理论模型也未有定论,如SPT公司砂土沉放阻力计算公式某些工况甚至将筒内摩阻力折减为0,端阻折减50%,部分原型工程数据也显示了端阻更大的折减案例。表2 砂土中筒型基础下沉阻力公式因此,筒型基础砂土贯入计算核心要解决的问题是筒壁内外附近的土体竖向有效应力随着吸力影响将改变基础侧摩阻力和端阻力。目前,筒内壁摩阻力和筒裙端阻力随吸力增加而减少这种变化规律还没有十分完善的理论模型。对于筒外壁摩阻力,Erbich & Tjelta[10]和HB理论上认为随着渗流增加了土体有效应力会稍微提高。Tran[17]在吸力小于临界值的实验中却发现了相反的现象,即筒外摩阻力在吸力安装阶段也会减少。一般认为当吸力到临界值,向筒内运动的土颗粒才很可能会引起筒外部摩阻力减少。Erbrich & Tjelta[10]和HB离心机实验也发现土体吸力下渗透性变化过程中筒内砂性土塞渗透性会轻微增长。Cotter[18]发现kfac随下沉深度从1到2呈现线性增长的趋势,Tran[19]等实验也显示筒内外土体渗透系数之比kfac可以达到2。事实上,土塞渗透性变大可以导致临界吸力小幅度增长,这意味着安装后期可以施加更大的吸力值。一般认为过大吸力渗流作用下筒内管涌通道形成会导致筒内密封条件破坏结束基础下沉,或者砂土液化造成筒内土塞快速隆起导致安装停止。但值得注意的是许多安装实例(尤其现场工程),当贯入压力达到甚至超过临界条件时,过大的土塞隆起或管涌通道并没有预期出现。理论上,临界条件下土体会变松导致土塞隆起。假设吸力稳定,由于土塞内部土体渗透性的增高,筒内的临界梯度会下降到临界条件以下,土体进一步变松的趋势被抑制。但砂土不能无限变松,这种安全机制是一种不稳定变化状态,当筒体继续贯入,未扰动土层进入筒体,它们分担扰动效应,甚至没有土塞隆起现象。基于模型实验,Senders & Randolph[11]发现砂土中筒内土塞临界水力梯度靠近筒壁内侧;Harireche[20]发现管涌在安装中控制着失效模式,对更深的贯入剪力破坏机制起主导作用。常见的筒型基础临界吸力公式如表3所示。表中公式都假设了内部土塞渗透性的均匀性;当渗透系数比kfac>1时,筒体端阻力和内部摩阻力退化(HB方法考虑为非线性和SR方法考虑为线性),外部摩阻力提高(HB方法考虑为非线性,SR方法认为不受影响)。Panagoulias[21]通过总结前人诸多案例分析研究认为kfac在2和3计算公式吻合度最高,kfac为1和3大致是表3方法的上下限值,并定义了筒基砂土吸力下沉操作临界水利梯度(土塞失效条件下沿筒内壁水力梯度平均值)及对应吸力为临界操作吸力值,即筒内土塞可以承受临界吸力scrit或更大吸力时筒内安全机制的发展状态。Tran[19]也发现kfac由1变化到3,临界吸力scrit提高30%~50%,但kfac=2时,临界吸力仅提高15%~25%。Chatzivasileiou[16]研究诸多工程案例发现筒型基础贯入深度为筒裙70%~80%时,kfac由1变化到2,甚至3(Feld方法)。值得注意的是,有些案例表现为在砂土/粉土/砂土中顶盖下沉到接触土体表面并继续下沉(L/Skirt,Length>1)并有所承载的情况(虽然接近泥面时kfac为3,并未出现土塞上隆)。表3 筒型基础临界吸力公式对于更为复杂的粘土/砂土层状土中,筒内土塞失效主要有薄粘土层开裂模式I和粘土层上移模式II(如图6和表4所示)。Senders[12]称模式I为土塞扰动(Disturbale)响应,模式II为土塞侧裂(Gapping)响应和土塞层间渗透(Intermediate Permeability)响应。模式I顶层薄粘土层发生折裂后,筒内土塞出现类砂土吸力渗流特性。模式II中筒内土塞上移不完全依赖土体分层特性,也会出现在砂土/粘土/砂土等情况。对于粉土/砂土层状土中,还可能出现土塞液化(Liquifiable)响应,即吸力安装时在顶层之下引起的压力下降引起临界水力梯度出现导致土层液化扰动,类似机理I出现。顶层土下压力下降将会轻度影响砂土层渗流减阻效果,但较高的吸力值也会引起显著的下沉阻力下降趋势。Tran[19]对粉土渗透系数小于砂土两个数量级条件的研究发现非塑性粉土夹层的存在会显著降低吸力,并且出现在表层厚度0.8 m和2.0 m两种情况,呈现了一定的非厚度依赖规律。Cotter[18]对砂土/倾斜粘土层的研究反映了渐变渗流约束条件下的响应模式:渗透性很小甚至基本非渗透性的粘土层土塞会有上移趋势,与土层厚度、渗透性等有关,而渗流约束层的厚度似乎影响不大。对于贯入速度的影响,Senders[12]认为土塞上移是安装时间的函数,快速吸力安装虽筒内外的压力差比较大,但安装时间短土塞上隆小。Vardoulakis[23]实验也发现即使在超高吸力作用下,快速安装中并没有管涌现象;Cotter[18]也发现较慢的安装压力实验总伴随筒内土塞上隆。Watson[24]等发现在吸力贯入后期筒内土塞加速上移。工程中缩短安装时间意味着降低风险,可考虑采用大流量泵。表4 筒内土塞失效模式[12]图1 海上风电筒型基础粘土/砂土中吸力安装过程水力梯度开始在筒顶盖底下吸力和筒外土体的静水压力之间发展,渗透性小粘土层会产生相对较高的水头损失,避开了筒外小渗透性土层的影响(不论筒外面粘土层渗透系数kclay高或低,不会影响砂土层压力梯度的预测),所以土塞渗透性通过系数fperm=(kplug/ksand)×(D/Lplug)确定(未考虑土塞上移影响的力的平衡变化)。渗透参数为0.01时,粘土塞下的压力只有吸力的2.5%,下层渗流在这种情况下会非常小,基本不会导致下沉阻力的减少。然而,当土塞向上移动时,层间压力变化引起渗流有效减少安装阻力,即层间渗流(Intermediate Permeability)响应模式。当安装吸力高于内摩擦力和土塞重量,即当土塞水头损失超过阻力发生土塞上升现象。极端的,砂土中出现临界压力梯度值,即在粘土-砂土层间达到土塞的临界吸力值,砂土在粘土下不能承担水力隆起(hydraulic heave)直到足够的吸力抬升粘土塞引起压力减少。Senders[12]提出克服自重和侧壁摩擦力的临界压力值为pplug=(γ′+4α·su/Di)Lplug,但没有考虑类似反向底部土体承载力(Reverse End Bearing,REB)的压力卸载或反向吸力效应(粘土中的临界吸力通常取决于REB、侧壁摩阻力和有效重力)。Cotter[22]认为土塞上升还依赖于未扰动的粘土层的剪切抗力,提出了筒基还未完全贯穿上部粘土层时土塞上升的压力值时同Senders表达式)。对于理想边界条件下土塞上升厚度Lplug_lift ≈ [ksand·p2/(γw·save)- kplug·pplug/(γw·Hplug)] Δt (p2≤p1-pplug),在压力不变、ksandkplug和Δt较大时会增加土塞移动厚度。同时,Watson[24]等在离心机实验中观察到对粘土层还存在土塞稳定性与下沉速度关系。当然,筒内还可能会发生渗流沿着筒壁引起管涌或粘土层开裂情形。Senders提出土塞开裂现象是否发生可以通过假设线弹性土塞和固支或铰支边界板抗弯理论计算粘土塞的抗弯强度来估算。Romp[25]研究发现顶层粘土开裂或上移的发生主要取决于基础几何尺寸和粘土层厚度zclay相对关系。粘土层较薄时,更倾向于发生开裂,6<D/zclay<10是二者都可能发生的过渡区域。此外,筒内土塞响应模式由于其边界条件的复杂性,其他学者还发现了一些特别的现象。如Heuvel & Riemers[26]在砂土/粉质砂土条件下吸力安装Calder Platform时并没有明显的砂土塞隆起现象。Tran在砂土/粉土条件下的离心机实验发现了显著的土塞运动,所需吸力比纯砂土情况更大,但下沉阻力仍比静力压入安装小。Watson[24]等在砂土/粘土/砂土条件下的离心机实验发现:比起静力压入沉放,吸力下沉阻力有显著降低,但出现了土塞上移接触筒顶板等下沉停止情况。虽然筒内渗流随着吸力增加而增加,但土塞上移并未总是出现。因为多层土质条件及土塞响应模式及其影响的复杂性,准确预测多层土中筒型基础下沉阻力通常是比较困难的,尤其在筒裙在不同土质交界面附近变化更加多样。综上所述,在复杂多层土质条件下,不同结构特征的筒型基础沉贯施工会体现出极其复杂的性态。如何准确预测筒型基础下沉阻力和合理施加控制下沉力仍然是筒型基础应用问题的研究热点,尤其筒型基础结构型式、尺寸效应和多层复杂土质条件下,筒内外土体渗透率变化规律、吸力施加对筒内土塞响应模式及土塞运动对临界吸力的提高机理等研究对于筒型基础施工安全性态控制起着核心作用。3 筒型基础调平技术问题随着海上风电机组结构大型化(8.8 MW或更大),对于筒型基础的承载能力及稳定性要求也相应提高,大尺度筒型基础用来抵抗大弯矩荷载也成为一种趋势。因此,除了如何避免不稳定土塞响应的施工技术,大尺度薄壁钢筒型基础结构吸力施工过程如何避免压力差引起的结构变形及屈曲风险,如何下沉调平实现风电机组严格的水平度要求,如何通过筒端/壁减阻装置、筒顶结构优化设计及灌浆等措施等实现筒顶盖与土体均匀接触,进而实现筒顶参与承载的力学模式等基于海上风电特点的筒型基础应用技术日益成为研究热点。筒型基础调平技术应用可分为三种典型情形:(1)四筒Sleipner T和Draupner平台(Bye等,Ersen & Jostad)安装的水平度通过位置高的筒型基础更多贯入实现结构调平;Universal Foundation公司海上风电单筒型基础通过筒裙高压水喷射装置局部选择性控制实现结构调平;天津大学和道达公司研制的单筒7舱钢制复合风电筒型基础通过各舱室之间施加不同的吸力实现结构调平;(2)Colliat等工程中遇到倾斜海床的结构安装调平过程;(3)筒基结构有附加结构偏心荷载条件下水平度的调平控制(Sparrevik,Houlsby等,复合风电筒型基础一体化整机下沉技术等)。实践中,Senepere & Auvergne[27]采用高压水喷射装置解决吸力桩下沉问题。Tjelta[15]等采用筒裙端部喷射装置(Skit Tip Injection)减少端部减阻,通过选择性控制水喷区域实现调平功能。Cotter[22]通过筒型基础外部设置8~16个喷水管,研究了高压水喷基础下沉减阻和调平过程。如前所述,筒型基础吸力下沉过程,水流在筒裙端部从筒外进入筒内,集中的水力梯度贡献了减阻效应,而高压喷射可以制造更大的水力梯度减少端阻。对于筒裙外侧土体阻力,吸力安装时筒裙外侧水流向下竖向有效应力增加安装摩擦阻力。筒裙端部喷射水体可以降低外侧筒壁水力梯度来减少侧摩阻力。对于筒内土体阻力,吸力安装筒内部水流主要向上,特别是在较深的贯入时,吸力安装达到临界,可能导致管涌。水喷装置设计关键问题是最小化筒内水力梯度增加。否则,临界水力梯度在更浅的贯入深度提前出现。高压喷射装置在海上风电基础的应用情况如图7所示。对于钢制多筒或多舱型筒型基础的下沉调平技术,结构体系可调平角度、深度和屈曲风险是核心问题。德国Wilhelmshaven风电场单筒型基础吸力下沉屈曲失效案例和多弧形筒裙改进设计如图8所示。图7 海上风电基础高压喷射装置注:德国Wilhelmshaven筒型基础(直径16 m,裙高15 m,贯入6.8 m负压屈曲)及多弧形改进基础型式[1-2]。图8 德国Wilhelmshaven风电场单筒型基础吸力下沉屈曲失效案例和多弧形筒裙改进设计对于多筒型基础(如图9所示),天津大学等研究发现下沉调平时筒体之间的相互约束以及调平后筒裙周围土体与筒体之间的边界条件变化(如图中调平后筒土间裂缝、土压力分布等)同时影响着下沉安全和可调深度及角度。更大功率风电风机需求的大尺度筒型基础,直径和筒壁厚度之比势必增加。薄壁结构和克服下沉阻力需要的吸力组合必将增加结构变形甚至屈曲的施工风险。图9 多筒型基础天津大学针对多舱单筒型基础研究发现(如图10所示),内部多舱结构虽然一定程度降低了屈曲风险,也可以实现下沉调平功能,但随着水深及基础筒裙高度增加,土质复杂多样性等引发的多舱室不同高压力差调平状态还会导致不同舱室间的横向压力,整体一步式安装时还要考虑附加风机系统偏心荷载,进一步加大了结构变形/屈曲与调平控制策略选择的复杂性。同时,随着贯入深度增加,周围土体的侧向约束将增强筒裙的固定度(Fixation),有利的是可以施加更大的吸力,不利的是土体约束影响了筒体的可调平程度以及屈曲风险,这也是亟待深入研究的问题。图10 钢制筒型基础吸力下沉屈曲案例及多筒或多舱型基础调平控制技术4 结论对于海上风电工程,当筒型基础下沉到位后应用过程的核心问题是如何最有效抵抗大弯矩承载力和沉降控制问题。筒型基础吸力下沉后,由于吸力扰动或土体表层平坦度低等原因,安装结束后筒内土塞表层土和筒顶之间存在难以避免的不均匀水膜空隙,故承载力设计通常只考虑筒裙摩擦力和裙端抗力。由于应用于海上风电机组大型化趋势,如何利用筒顶承载势必大幅提高筒基的承载能力和竞争优势。灌浆筒型基础(Grouted Caisson)是一种技术尝试,通过灌浆水膜替换空隙实现基础顶盖和土体产生均匀度接触压力(Hjelde等,Cotter),基础的刚度及承载力和沉降都得到相应改善。单筒多舱复合筒型基础,通过宽浅结构型式、与预应力混凝土过渡段合为一体的高自重(2 000~4 000 t)水平、多种形式的筒壁减阻环或内刃脚设计、多舱体优化设计和筒内土体快速加固等综合手段力争实现筒顶联合筒裙承载模式,最大程度提高筒型基础适用性和降低后期沉降水平。但归根到底,海上风电筒型基础功能性的实现还要取决于有效的安装贯入施工。如何规避单筒型、多筒型和单筒多舱型筒型基础吸力下沉过程中的施工风险分析,系统分析筒型基础施工过程可能发生的不稳定性态发生机理,提出施工安全边界条件,完善多筒/多舱型筒型基础下沉阻力计算公式,提出下沉调平吸力施加和结构变形/屈曲控制方法,是海上风电筒型基础规模化应用中需要控制的关键问题。参考文献略,详见《南方能源建设》2018年第5卷第4期原文。张浦阳 第一作者、通讯作者:张浦阳,1978-,男,河南濮阳人,天津大学建筑工程学院副教授,建筑工程技术与管理专业博士学位,一直从事海上风电工程和施工管理创新等方面的研究工作。承担及参与国家级863子课题、国家自然基金、省部级等科研项目近20项。面向海上风电工程和施工管理创新等领域,发表SCI/EI论文20余篇,发明专利15项,多项技术已在相关领域得到转化并推广应用。编辑发布:《南方能源建设》编辑部 郑文棠、李辉期刊网站:http://energy.gedi.com.cn/本文已在《南方能源建设》2018年第5卷第4期发表,未经允许不得擅改、套用或已其他方式使用,转载文章请联系告知并标明出处。《南方能源建设》(CN44-1715/TK,ISSN 2095-8676)为南方电网传媒有限公司主管,中国能源建设集团广东省电力设计研究院有限公司主办的能源行业科技期刊,2014年12月创刊,目前为全国电力优秀期刊、广东省特色科技期刊、中国核心期刊(遴选)数据库收录期刊、国家科技学术期刊开放平台收录期刊。免责声明:以上内容转载自南方能源建设,所发内容不代表本平台立场。全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
【能源人都在看,点击右上角加'关注'】北极星环境修复网讯:摘要:我国地下水污染已呈现从点状污染向带状和面状污染发展的态势,原位钻进注入方法无需开挖、扰动小、成本低,已成为地下水修复的发展热点和方向。本文对国内外功能修复材料原位钻进注入工艺方法和设备进行了调研,重点介绍了直推式钻进注入、喷射注入、压裂注入等工艺方法,总结了各种工艺方法的特点、适用性和局限性,并分析了原位功能材料钻进注入的难点与关键技术,可为该项技术的进一步开发利用提供参考。关键词地下水;原位功能修复材料;钻进;注入技术;发展地下水资源是水资源的重要组成部分,我国地下水污染已经非常严重[1],不仅使原本紧张的水资源短缺问题更加严重,而且给人居健康、食品安全、饮用水安全、区域生态环境、经济社会可持续发展甚至社会稳定构成严重威胁与挑战,地下水修复已成为当前备受公众和社会关注的环境问题[2-3]。按照修复方式将地下水污染修复技术主要分为原位和异位修复技术[4]。常见的原位地下水修复技术包括抽出处理、空气/臭氧喷射、冲洗、渗透性反应屏障、固定、化学氧化和生物修复[5-6];常用的异位处理技术有两项抽提技术和抽出处理修复技术[7-8]。异位修复技术需要对地下水进行抽提和回灌,对当地生态环境影响较大,故使用比例已逐渐降低[9]。相比而言,原位修复技术具有去除效率高、修复周期短、二次污染易于控制等优点[10-13],近年来取得了较多的成果[14]。药剂的注入技术是原位修复技术的核心,因此对原位功能材料钻进注入技术研究就至关重要。地下水原位修复材料投加方式主要有两种:搅拌和注入/注射。其中搅拌分为浅层搅拌和深层搅拌;原位注入有Geoprobe直压式高压注射、注入井、ChemGrout化学注浆[15]、高压旋喷技术[16-17]等。1 注入井注入工艺1.1 注入井注入工艺简介注入井法是在地下水监测技术上发展起来的一种高压压裂的氧化剂投加方式。采用聚氯乙烯或金属材料在污染区域范围内建立注射井,氧化剂在常压或高压下被加入注射井中,在横向和纵向的扩散作用下逐渐覆盖整个污染区域,与污染物接触反应后达到修复效果[18]。注入井法点位固定,药剂通常以自由扩散的方式进行横向以及纵向迁移。采用注入井与循环井或者抽提井联用,可以增加修复药剂在低渗透地区的迁移距离,以此达到更好的修复效果,注入井与抽提井联用示意图见图1[19]。图1 注入井与抽提井联用示意图1.2 注入井注入工艺分析注入井工艺施工简单,操作方便,适用于所有的气态或者液态氧化剂,技术成熟,目前应用广泛。注入井原位注入,需要构建大量注入井,基建费用高,施工周期长,修复完成后,会在修复地块残留注入井,影响后续的开发利用。注入过程采用自然流动或者低压注入时,地层条件对注入效果影响较大,如遇粘土层或者地层性质不均一,影响药剂扩散甚至影响修复完成程度[18]。注入药剂与污染土壤的混合效果一般,不利于污染物的去除;而采用多次注药的手段则既增加修复成本,又存在二次污染的危险[20-21]。总体来说,注入井局限性较多,但因为其施工简单、操作方便、技术要求低,在国内被大量使用。要想克服注入井的多种局限性,可以合理的选择联合注入的方式,来提高药剂扩散能力,以此来提高修复效果。2 直推式注入工艺2.1 直推式注入工艺简介直接推进钻探技术(Direct Push Technology, DPT)作为一种新兴的场地调查技术,以其快速、精确及节约资金等优点在发达国家污染场地调查中得到了广泛的应用[22],近年来已将直推式钻探技术应用到污染地下水的修复中。传统的直推式注入修复技术对地下裂缝的发展不能控制,而直推式喷射注入技术(DPT Jet Injection )克服了这一限制。DPT喷射技术是采用高压喷射的方式,其工艺是首先将顶端带注射孔的注射杆直接推进至地下指定深度[23],然后再将修复材料通过高压泵灌注到注药管中,再通过钻头四周的孔洞进入到地下水中[24]。修复过程中,注射管道随钻探机械下钻过程进入污染土壤,在其长度方向上,根据土壤污染深度分层设置氧化剂扩散孔。氧化剂在注射泵的压力作用下经扩散孔进入每层污染土壤,在水平方向形成稀薄的氧化剂层,再进行纵向渗透扩散迁移,互相交汇,进而覆盖整个污染区域[18]。DPT分层喷射注入示意图见图2。图2 DPT分层喷射注入示意图DPT喷射注入技术,主要使用的是直推式钻机、高压泵等设备。目前,国内市场上存在有美国Geoprobe公司研发的Geoprobe 7822DT、南京贻润环境科技有限公司自主研发的EPROBE 2000土壤污染调查与修复一体机、江苏盖亚环境科技股份有限公司、浙江清阳环境工程有限公司分别研制了GY -SR600 型和 QY -100L 型具有无原位扰动能力的环境取样修复一体机[25]。技术参数见表1[26]。其中,Geoprobe 7822DT型(见图3)专门为土壤地下水污染调查领域研发,该设备结构紧凑,功能多样。EPROBE 2000型(见图4)是南京贻润自主研发生产的土壤地下水环境取样修复一体机,是专门针对土壤修复行业的高度集成化钻机,配合土壤采样、地下水建井、土壤取气等工具,构成一套完整的土壤与地下水环境取样修复智能系统,可实现远距离无线遥控,行走时可以高、低速切换,三角形行走履带装置,场地通过性更强[26]。图3 Geoprobe 7822DT型钻机图4 EPROBE 2000型钻机国内外所研制的直推式环境取样与修复一体式钻机,在智能化以及方便程度上差距不大,但是国产直推式一体机适用能力较差,并且功能参差不齐,直接导致了国内的修复市场大量被国外钻机所占有的情况。2.2 直推式注入工艺分析DPT喷射注入具有以下优点:(1)对地下水平裂隙的发展具有较强的控制力;(2)与标准直推式注入技术相比,注射时间更短,修复半径更大;(3)钻机轻便、推进迅速、灵活方便、对地层干扰小[27]。该钻进注入技术适用于大部分的非固结地层,包括紧密淤泥、软粘土、膨胀粘土、粉土及细砂等,对于一般第四系地层取样深度最大可达30m左右[22]。然而,直推式注入工艺本身存在一定的局限性,当钻进深度较大时,钻杆与孔壁会产生较大的摩擦力,直接导致了推进深度较小的问题。由于国内直推式钻机性能与国外相比还有不小的差距,国内进行环境修复多用美国Geoprobe公司研发的环境取样修复一体钻机,该钻机性能好、实用性强,但进口价格过高,直接限制了直推式注入技术在我国的发展。因此,我们需要加大研制力度,发展适用性强、钻进深度大、修复半径大的DPT钻机,与此同时,绿色、安全也是我们要追求的目标。3 高压旋喷工艺3.1 高压旋喷工艺简介高压旋喷施工技术是在静压注浆的理论与实践基础上引入高压水流技术而发展起来的新技术,已形成了成熟的注浆劈裂理论[28]。原理是利用射流作用切割掺搅地层,改变原地层的结构和组成,同时灌入水泥浆或复合浆形成凝结体,形成连续搭接的水泥加固体,借以达到加固地基和防渗的目的[29]。将高压旋喷技术应用于土壤以及地下水修复,利用钻机将带有喷嘴的钻头钻至预定深度,以高压将修复试剂喷出,土壤在喷射流的冲击力、离心力和重力等作用下,与药剂搅拌混合,并起化学反应,从而达到清除或减少污染物的目的[30]。高压旋喷法基本种类有单管法、双管法、三管法和多管法。新的旋喷工法包括双高压旋喷、超级旋喷以及交叉喷射技术等[31]。单管法( Chemical Churning Pile,CCP),其工作原理是在钻探造孔后,把高喷管下入孔内相应部位,使用20~40 MPa的高压水射流破坏清除桩底沉渣、混入桩体内的杂土以及胶结差、强度不高的桩体;然后再把高喷管下入孔内相应部位旋喷高强度等级的水泥浆液,使之与桩体中残留的砂粒、碎石等混合凝固,并与桩体紧密结合,达到提高基身强度和桩基承载力的目的[32-33]。该工法直接以单管在转动和提升过程中注入高压水泥浆,边切割土体边混合形成加固柱体[34]。二重管法( Jambo Special Pile,JSP),施工原理是利用钻机的钻具将带有喷嘴的钻头钻进至设计深度后,在高压泵高压的作用下,将一定水灰比的水泥浆液,通过高压管泵送至钻头,使所注入的高压水泥浆液经过喷嘴喷射出来,冲击、切割周围土体;同时钻具又以一定的速度旋转并进行提升,这样水泥浆液强制搅拌周围土体形成圆柱体的桩体[35]。二重管喷射修复示意图如图5所示。图5 二重管喷射技术修复示意图三重管法(Column Jet Pile,CJP),双高压旋喷技术 (Rodin Jet Pile ,RJP)就是三重管法,与普通三重管不同的是RJP工法中固化材料喷射流也是高压介质。RJP是一种水、气、浆液喷射法,使用的是分别输送水、气以及浆液的三重管。RJP的工作流程是在施工场地先进行钻探,使孔深达到预定深度,再使用旋喷管注浆的方法。将RJP应用到地下水以及土壤的修复中,使用水、气、修复药剂进行喷射,其工作原理(见图6)是利用两股超高压喷射流——超高压水喷射流和超高压修复材料喷射流,外套压缩空气,分阶段对土体进行切割。把注浆管放到孔底,先利用超高压水射流外套空气对土体进行切割,随后利用超高压修复材料对土体进行加固,采取一边喷射一边提管的方式,直到旋喷管提离钻孔开口处,随后进行钻孔封堵[31]。图6 双高压旋喷技术修复示意图MJS工法 (Metro Jet System),又称全方位高压喷射工法,是在传统高压喷射注浆工艺的基础上,采用了独特的多孔管和前端造成装置 (习惯称之为Monitor) ,多孔管由排泥管、高压水泥浆管、倒吸水管(2个)、主空气管、倒吸空气管、排泥阀传感器控制线路管(2个)、削孔喷水管、多孔管连接螺栓孔、备用管路等组成。前端造成装置上分布有压力传感器、排泥口、喷浆口等。实现了孔内强制排浆和地内压力监测,并通过调整强制排浆量来控制地内压力,以防止地内压力过大对地面造成隆起,大幅度减少对环境的影响,而地内压力的降低也进一步保证了成桩直径,确保地基加固的效果[36]。MJS工法原理图见图7[37]。图7 MJS工法原理图3.2 高压旋喷工艺分析旋喷注浆法在原位修复施工中具有以下特点:(1)适用地层较广;(2)施工简便、灵活、设备较轻便、机动性强、施工效率较高,且注入的液体可以准确计量和控制;(3)喷射深度限制小,可多角度注入,且注入深度较深[38];(4)旋喷注浆修复污染物成本(不超过500元/m3),传统注药方式(800~900元/m3)[39],成本更低。高压旋喷工艺适用地层,从淤泥、淤泥质土、粉质粘土、粘土、砂到砾石类土,均有良好的注入效果,适用性较广。高压旋喷注浆单管法具有一定局限性,虽然施工管理方便、施工速度快、工程造价低,但是其作用半径较小,用于污染物修复的效率就低。目前国内采用双管法和三管法的旋喷注浆的桩径直径在2 m左右,用于污染场地修复时,修复半径仍然较小,药剂注入点需求就会增多,注入点之间的搭接就会变多,会造成很大的浪费。而日本的MJS工法相比于传统的高压旋喷注浆修复所使用经费更低、工期更短;搅拌效果好,排泥量少;工艺简单,成桩直径大,效果好。因此我们应该研究MJS工法,推广此工法在国内的使用,以此来满足国内污染地下水修复的技术需求。4 压裂注入工艺4.1压裂注入工艺简介水力压裂是采用较大压力向井筒附近的初始裂缝中注入大量压裂液,将岩石逐渐撑开并形成水力主裂缝并在地层中延伸,压裂过程中裂尖的应力场会改变周围的地应力,影响天然微裂缝的开裂,改变地层渗透率[40]。水力压裂技术是最有前途的石油等能源的增产技术之一,而将水力压裂技术应用到污染场地地下水的修复中,其实质就是将利用到能源的各种压裂液用砂浆和修复药剂混合来取代。施工原理是在污染场地进行布井,布井完成后,通过压裂在井道周围的土层中形成砂层,在形成砂层的之后或者形成砂层的同时,往砂层内注入修复试剂[41],重复上述过程,即可在井中形成不同的砂层,也就是实现了修复药剂的分层注入。施工工序为:(1)进行场地调查,确定污染地下水的分布;(2)注入井的优化布置;(3)安装所需要的工程设备,分别为混合装置,注入装置;(4)将砂浆与药剂进行混合;(5)钻井钻到预定深度,下PVC管作为护管,护管要在预定砂层的深度开孔,护管与井壁间隙用砂浆混凝土封井;(6)下入注浆管进行喷射;(7)砂层形成的同时,喷射修复药剂修复污染的地下水。4.2压裂注入工艺分析高压压裂注入的特点是将砂石通过高压泵入土壤形成土层裂隙,进而形成砂层,增大了土壤的渗透性,更有利于修复药剂的迁移,修复效果更好;可以实现定点、定深、定量的注入修复药剂,增大了修复药剂的利用率;修复半径可达4~7m,效率更高。高压压裂可以广泛适用于渗透性较低的粘土含量较高的土壤以及固有建筑物覆盖范围内的地下土壤。虽然高压压裂修复半径大、技术简单易于操作,但是最大的局限性是建井周期长,将会导致施工周期长、人工费增加。相比于不用建井的直推式注入和高压旋喷注入,在施工周期上就缺少了一定的优势。5 注入关键技术污染场地修复中往往存在污染类型多样化、污染物分布不均匀、水文地质条件复杂、地层非均质等难点,决定了土壤以及地下水修复的注入关键技术包括:(1)注入井分布优化:环境修复的最终目标是将污染区域内污染物的浓度降低到目标要求的范围之内,这就要求注入井的选择一定要能使修复材料在横向上充分覆盖所有污染区域。注入井优化布置,目的是从宏观上符合污染羽分布,并且搭接区域的选择一定要合理,这样不仅可以节约成本,还能够保证施工的效率,因此对注入井分布进行优化将具有重要意义。(2)精准钻进技术:注入井优化布置保证了修复材料在横向上能够覆盖所有污染区域,对注入点进行精确定位可以保证修复药剂在污染介质中的纵向渗透效果,使修复药剂在纵向上满足修复要求。这样就能做到精准注入,提高修复效率。(3)浆液的扩散效果:研究地下水原位修复的钻进注入技术对地下水的修复具有重要的意义,目前,地下水原位修复钻进注入技术的评价主要考虑修复半径这一因素,随着修复半径扩大,所需要的注入井数量就会减少,这将会大大降低污染物修复的成本。因此,我们在施工时,应把浆液的扩散效果作为一个重要考虑因素,尽可能扩大注入扩散半径,提高注入效果,降低修复成本。(4)防止地下水交叉污染:污染场地往往存在污染物分布不均、水文地质条件复杂等难题,很有可能会造成不同层位地下水的交叉污染,这给污染场地原位修复造成了巨大的困难。因此,我们在施工时要注意不同层位水修复的封隔,防止地下水交叉污染。(5)药剂智能注入技术:地下水原位修复中修复药剂的选择直接影响到污染物的修复程度,而如何根据污染程度,将药剂智能化的注入到污染区域,对于地下水原位修复的研究具有重大意义。在进行施工时,应根据勘察所确定的污染程度、污染范围,实时探测修复效果并及时反馈,做到动态调节,从而确保施工的效率、降低施工成本。6 结论随着人们生活水平的提高,对生存的环境要求也越来越高,原位修复材料钻进注入技术将是地下水修复的重要技术,未来必将得到较大的发展。目前我国主要应用于地下水修复的技术为传统的注入井注入修复。与传统技术相比,直推式注入和高压旋喷技术这两种新兴技术具有更大的适应性,只要克服直推式修复钻机的成本问题以及高压旋喷技术修复直径小的问题,可以预见这两种技术将会成为我国环境修复的主流方式。我国原位修复材料钻进注入修复技术,与国外先进技术还缺少一定的灵活性和先进性,可以在赶超国外技术的同时,在地下水修复中采用综合修复技术,以此来降低修复成本、提高修复效率。参考文献:[1]刘志阳.地下水污染修复技术综述[J].环境与发展,2016,28(2):1-4.[2]赵勇胜.地下水污染场地污染的控制与修复[J].吉林大学学报(地球科学版),2007,37(2): 303-310.[3]陈梦舫.我国工业污染场地土壤与地下水重金属修复技术综述[J].中国科学院院刊,2014,29(3):327-335.[4]孟庆玲.地下水污染的修复技术[J].科学与信息化,2016(28):71+73.[5]Reddy KR, Chinthamreddy S . Enhanced electro kinetic remediation of heavy metals in glacialtill soils using different electrolyte solutions [J]. Environmental Engineering,2004,130(4):442–455.[6]Krishna R. Reddy. Technical challenges to In-situ remediation of polluted sites[J]. Geotechnical and Geological Engineering,2010,28(3):211–221.[7]赵勇胜.地下水污染场地风险管理与修复技术筛选[J].吉林大学学报(地球科学版),2012,42(5):1426-1433.[8]孙磊.浅谈地下水污染及修复[J].科技创新导报,2015,12(19):125-127.[9]刘芮彤.地下水污染修复技术的研究综述[J].城市地理,2016,(14):96-96.[10]赵研.强化电容去离子脱盐的实验与机理研究[D].辽宁沈阳:东北大学,2015.[11]Kim J S,Rhim J W. Comparison of CDI and MCDI Applied with Sulfonated and Aminatedpolysulfone Polymers[J]. Membrane Water Treatment,2016,7(1):39-53.[12]Lee J Y,Seo S J,Yun S H,et al. Preparation of Ion Exchanger Layered Electrodesfor Advanced Membrane Capacitive Deionization ( MCDI)[J].Water Research,2011,45(17) :5375-5380.[13]Zhao R,Satpradit O,Rijnaarts H H,et al.Optimization of Salt Adsorption Rate in Membrane Capacitive Deionization[J.Water Research,2013,47(5):1941.[14]王锦淮,祝可成,殷俊.岩土施工技术修复有机物污染土壤的中试研究[J].环境与可持续发展,2017,42(6):77-80.[15]杨乐巍,张晓斌,李书鹏,等.土壤及地下水原位注入-高压旋喷注射修复技术工程应用案例分析[J].环境工程,2018,36(12):48-53+118.[16]董学志.分析高压旋喷桩施工技术及其应用[J].低碳世界,2016,(14) :175-176.[17]刘景瑞.高压旋喷灌浆施工方法浅析[J].吉林水利,2016,(7):59-60.[18]唐小龙,吴俊锋,王文超,等.有机污染土壤原位化学氧化药剂投加方式的综述[J].化工环保,2015,35(04):376-380.[19]Scott G. Huling,Bruce E.Pivetz.In-Situ chemical oxidation[R]. Engineering Issue,EPA,2006.8.[20]刘甜甜.湘江流域污染土壤修复技术选择与优化应用分析[D].湖北武汉:华中师范大学, 2015.[21]刘书源,陈晨,宛召,等.污染场地修复药剂对高压旋喷装置的腐蚀及注入工艺的试验研究[J].探矿工程(岩土钻掘工程),2018,45(10):119-122.[22]赵龙,韩占涛,孔祥科,等.直接推进钻探技术在污染场地调查中的应用进展[J].南水北调与水利科技,2014,12(2):107-110.[23]张峰.原位化学还原技术在氯代烃污染场地修复中的应用[J].上海化工,2015,40(10):16-18.[24]王棣,魏文侠,王琳玲,等.纳米铁原位注入技术对六价铬污染地下水的修复[J].环境工程学报,2018,12(2):521–526.[25]程功弼,田英,许孟一,等.一种用于土壤地下水取样修复的新型设备的研究[J].环境工程,2017,(S1):200-205.[26]http://www.eprobe.cn/yr/proctlist/list-150-1.html[EB/OL].[27]孔祥科,马骏,韩占涛,等.直接推进技术在有机污染场地调查中的应用研究[J].水文地质工程地质,2014,41(3):115-119.[28]李影辉.高压旋喷技术在地下水修复项目中的应用实例[J].广东化工,2018,45(6):181-182.[29]徐平,张敏霞,丁亚红.高压旋喷注浆加固设计及应用[J].山西建筑,2009,35(13):94-95.[30]吴金红,吴志鹏. 高压旋喷注射法在城市石油烃污染场地修复中的实践应用[J].绿色科技,2018(12):93-96+100.[31]王军辉.国产化设备双高压旋喷技术的工程应用[J].地下隧道与工程,2010(3):29-34.[32]钟志均. 高压旋喷桩的单管分喷施工法[J].西部探矿工程.1994,6(4) .[33]陈杰平.高压旋喷和静压注浆技术在灌注桩质量缺陷处理中的应用[J].工程建设,2015,47(5):50-52.[34]余暄平. 国内外高压旋喷技术的发展现状与趋势[J].城市道桥与防洪,2006,7(4):185-189.[35]郭文胜.高压旋喷桩在基础处理中的应用[J].福建建材,2009(03):50-51.[36]张志勇,李淑海,孙浩.MJS工法及其在上海某地铁工程超深地基加固中的应用[J].探矿工程(岩土钻掘工程),2012,39(7):41-45.[37]梁利,李恩璞,王庆国,等.MJS工法在轻轨车站换乘通道中的工程实践[J].地下空间与工程学报,2012,8(1):135-139.[38]宋刚练,牌卫卫,江建斌,等. 应用于污染场地原位修复的旋喷工艺研究[J].探矿工程( 岩土钻掘工程),2017,44(7):85-89.[39]高骏.岩土施工技术在污染场地治理中的应用研究[J].探矿工程(岩土钻掘工程),2016,43(3):75-79.[40]申永宽.油气藏注水及压裂过程中地层物性演化规律和机理研究[D].安徽合肥:中国科学技术大学,2016.[41]浙江博世华环保科技有限公司.一种污染场地原位注药修复方法:中国,201510050539.2[P].2015-05-20.作者简介冯超,男,汉族,1995年生,中国地质大学(北京)在读硕士研究生,地质工程专业,主要从事环境钻探修复技术方面的研究,北京市海淀区学院路29号,354018041@qq.com。原标题:论文精选 ▏地下水原位修复材料钻进注入技术现状调研免责声明:以上内容转载自北极星环保网,所发内容不代表本平台立场。全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
正向渗透又称渗透,是指水或其它溶剂透过天然或人造的半透膜,由低溶质浓度侧传递到高溶质浓度侧的过程,是自然界中广泛存在的一种物理现象。正向渗透技术(Forward osmosis, FO)是近年来发展起来的一种浓度驱动的新型膜分离技术,它是依靠选择性渗透膜两侧的渗透压差为驱动力自发实现水传递的膜分离过程,是目前世界膜分离领域研究的热点之一。正向渗透过程无需外加压力,通过具有高渗透压的汲取液,可以透过半渗透膜将水分子自发的由低渗透压的原水侧汲取出来,而且将原水中的其他溶质截留,然后再采用其他工艺将水从被稀释的汲取液中分离出来,最终获得纯净的水,汲取液可以循环利用。驱动水分子由低浓度侧向高浓度侧流动的动力是半渗透膜两侧的渗透压差值。正向渗透膜通常由活化层和支撑层组成,当原水流过活化层一侧,渗透压远高于原水的汲取液同时流过正向渗透膜的支撑层一侧,水分子自发的由原水侧向汲取液侧不断流动,由于正向渗透膜对原水中的盐分和其他污染物具有截留作用,因此原水中的溶质被浓缩,同时汲取液则被透过正向渗透膜的水分子稀释。汲取液对于正向渗透应用极为关键,直接影响着水处理效率,及汲取液再生过程的能量消耗。好的汲取液应具有以下几个特点: 能产生较高的渗透压驱动力、具有较低的粘度、具有极低的反向透过正向渗透膜的速度、较高的扩散系数、无毒、物理化学性质稳定、不与膜发生化学反应、不改变膜材料的性能和结构、能够通过简单经济的方法与水分离、能够重复使用。目前的汲取液主要可以分为五类(如图),针对不同的渗透压,汲取液再生过程可以辅以不同的技术, 包括反渗透,膜蒸馏,电渗析等等。正向渗透技术的优点非常明显:(1)可低压甚至无压操作,因而能耗较低;(2)对许多污染物几乎可完全截留,分离效果好;(3)抗污染能力强,而且由于低压操作,即使形成了污染层也会比较疏松,非常容易清洗,对比反渗透工艺,可以大大降低对于进水水质的要求,从而能够处理一些反渗透无法处理的高污染类废水,或者大大减少预处理工艺,做到工艺的集成整合。(4)正向渗透采用特殊的溶质配制汲取驱动液,可以通过配制高浓度的汲取液,从而得到更高的渗透驱动压力,以实现传统反渗透无法应用的高压运行效果,达到更高的水回收率;正向渗透的缺点也同样非常明显:(1) 单独FO过程不能取得纯水,只能实现低渗透压原液的浓缩和高渗透压汲取液的稀释。而且当预处理能耗不高的情况下,FO+RO的能耗会比RO系统能耗更高。(2) 目前汲取液及其回用技术选择有限,主要为NH3-CO2体系和NaCl体系。(3) 在选用NaCl等盐类做汲取液时,回用方式一般为反渗透。由于汲取液一侧的渗透压需要高于原液的渗透压,通常汲取液的回用过程需要更高的驱动压力。综合考虑FO技术的优缺点,正向渗透技术的应用可包括三类:a. 针对于高难(高污染)废水,利用正向渗透过程中原液浓缩的相关应用,如垃圾渗滤液浓缩,各类污水浓缩、厌氧消化液浓缩及高盐度废水浓缩(如反渗透浓水、煤化工盐水等);b. 利用正向渗透过程中汲取液被稀释的相关应用。如使用肥料汲取液稀释后用于农业当中;渗透稀释海水用于海水淡化;使用糖浆汲取液,用于军队、远征探险过程中直接处理雨水、污水为可饮用的高能量水;c, 在热敏(如食品饮料行业)物质浓缩、贵重物资回收和(痕量)污染物去除领域中的相关应用。简单来说,当所选应用符合以下几个条件之一的时候,正向渗透技术可能会很好地发挥其优势。一,所处理水质具有高度污染倾向;二,需要更高的截留率;三,需要更高倍数的浓缩;四,需要超低压甚至无压运行;五,需要低温浓缩;六,同时具备需要浓缩的原液及需要稀释的汲取液。正向渗透应用场景中最能够发挥其优势的一类应用是独立正向渗透过程,不需要辅以汲取液再生,该过程充分利用渗透压驱动,以最低的能耗完成对高渗透压流体的稀释或低渗透压流体的浓缩。目前该类应用场景包括:户外应急正向渗透应急净水包; 用化肥浓缩液作为汲取液回用工业或生活废水; 利用海水或海淡过程的浓盐水作为汲取液对石化生产废水等进行浓缩减排。此外在传统生产制造过程中存在大量的浓缩及稀释过程可以通过FO技术进行工艺升级,进一步简化过程并降低能耗。其它应用则需要正向渗透与汲取液回用技术结合。此时汲取液的选择非常重要,需要考虑到汲取液的反向渗透,回收技术,渗透压差,稳定性,溶质扩散性,粘度等因素。其中汲取液的反向渗透太高,会直接影响产水水质与汲取液的补加成本。目前正向渗透技术研究在海水淡化与垃圾渗滤液处理上取得了不少积极的成果,未来应用前景逐渐明朗。应急净水包应急净水包是利用正向渗透膜技术针对极端恶劣条件开发的民、军用产品,目前已经装备于美国海军陆战队等。在使用时净水包内的营养液(包括糖份,矿物质,无机盐等)会从周围受损水体或海水中吸取纯水,得到可以直接引用的水体。该发明为驴友户外探索和战斗部队作训等提供了良好的饮水保障。肥料灌溉正向渗透应用农业用水是目前世界上淡水资源消耗的主要领域之一,FO技术完美的发挥了正向渗透的特点,选择生活污水或工业污水为原液,高浓度的肥料母液为汲取液,稀释后的汲取液(不需要再生)用于灌溉,所以整体工艺合理,将原来的先过滤再使用的两步过程简化为一步完成,以更低的能耗实现污水的过滤回用。垃圾渗滤液处理垃圾渗滤液水质复杂, COD普遍很高,有很强的污染倾向,传统处理方式为调节池+生化+NF+RO等工艺,投资成本和远营成本均很高。正向渗透技术可以在该领域很好的发挥抗污染的优势,处理效果显著,简化处理工艺,实现更高的回收率,运行稳定,管理方便,工艺简单,建设及运行费用低,无废气。垃圾渗滤液(高难废水)正向渗透工艺过程国初科技正不遗余力地投入正向渗透技术的应用开发,随着正向渗透技术在国初科技开发的各种应用中的工艺路线逐渐成熟,相信在不远的未来,国初科技的正向渗透技术将在更多的领域帮助企业节能降耗,提高产品品质,提升水资源的使用效率,并实现大范围的商业化应用。国初科技(厦门)有限公司是一家是以膜分离技术为核心,致力于新型分离技术推广的高科技企业,在医药、化工、食品、饮料、石油、石化、核能等行业有丰富特种膜应用经验,可根据客户的工艺要求研究开发适合其特定分离要求的膜分离的技术与设备,目前国初科技可以提供正向渗透膜及膜组件,提供从正向渗透小试、中试到大型装置。还擅长从前期技术评估、工艺技术确认、实验研发验证、工业系统集成等全流程服务。
利用填充法将 SPBI-ZrP 电解质填充于 ePTFE 多孔基底中,制备 SPBI-ZrP/ePTFE 质子交换复合膜。分别采用FESEM、FT-IR、干湿称重法、拉伸测试和交流阻抗法对膜的微观结构和性能表征。实验结果表明,SPBI-ZrP 电解质已成功填充于 ePTFE 基底中,膜表面光滑。SPBI-ZrP-2.5 膜在厚度方向的溶胀度是 SPBI-ZrP-2.5/ePTFE 膜的 7.3 倍,归因于 ePTFE 基底能够有效地抑制膜溶胀,提高膜尺寸稳定性;由于 ePTFE 基底的增强效应,SPBI-ZrP-2.5/ePTFE 膜的拉伸强度比 SPBI-ZrP-2.5 膜提高 19.86%;SPBI-ZrP-2.5/ePTFE 膜的质子电导率在 160 和 80℃、相对湿度 100% 下分别达到 0.222 和 0.071 S·cm-1,而 Nafion 膜(EW=1100)在 80℃ 的质子电导率为 0.077 S·cm-1,在温度>100℃ 时质子电导率急剧下降,说明 SPBI-ZrP-2.5/ePTFE 膜在高温下具有良好的质子传导性能,能应用于高温质子交换膜燃料电池中。一、前言质子交换膜燃料电池(PEMFCs)将贮存在燃料和氧化剂中的化学能直接转化为电能,因具有能源转化效率高、环境友好等优点而受到广泛关注。质子交换膜(PEM)是PEMFCs的关键组成部分,商业化的Nafion膜具有良好的化学稳定性、较高的质子电导率,但其价格昂贵,且在温度>100 ℃时,膜失水引起质子电导率显著降低限制其大规模使用。而高温 PEMFC(HT-PEMFC)具有更快的化学反应动力学;能简化和改善水管理系统;能获得更高效的热管理和环境耐受性,这些优点使 HT-PEMFC 被认为是下一代燃料电池的有力竞争者。因此,许多研究者致力于适用于高温(≥100 ℃)下使用的 PEM 的开发。目前,非氟碳氢聚合物膜因成本低且化学稳定性好在 HT-PEMFC 研究中受到广泛重视,如磺化聚醚醚酮(SPEEK),磺化聚醚酮(SPEK),磺化聚苯并咪唑(SPBI)等。在这些膜中 SPBI 因具有良好的热稳定性和化学稳定性而被应用于 HT-PEMFC,但是高磺化度的 SPBI 提高了与水分子间的亲和力,导致 SPBI膜溶胀而使机械性能下降。为了解决上述问题,Yamaguchi提出以化学性质稳定、机械强度高的多孔膜为基底,往膜孔中填充具有质子传导力的电解质,制备填孔型质子交换膜。基底材料主要有多孔增强聚四氟乙烯(ePTFE),聚酰亚胺(PI),聚乙烯(PE),聚偏氟乙烯(PVDF)等,其中 ePTFE 基底因具有良好的机械强度和化学稳定性被广泛应用。Tan 等将全氟磺酸树脂(PFSI)填充于 ePTFE 基底中制备PFSI/ePTFE 质子交换膜,结果表明:PFSI/ePTFE 膜气体渗透率低、在干湿循环操作中具有良好的耐久性,且 PFSI/ePTFE 膜的燃料电池性能比 Nafion112 膜好。然而,ePTFE 基底是一种表面能低、极其疏水的材料,难以将亲水性电解质填充于疏水基底中制备复合膜,需对 ePTFE 基底进行表面改性。萘钠溶液能大大降低 ePTFE 疏水性能,改善 ePTFE 基底与 SPBI 电解质间的相容性。ZrP 具有良好的质子传导性能,可以通过磷酸基团解离提供质子,并通过氢键将水分子固定在材料表面。在 SPBI 基质中掺杂具有良好质子传导性能、热稳定性和保水性能的 ZrP,能较好地解决高温下膜脱水影响燃料电池性能的问题。目前,往 ePTFE 基底中填充 SPBI-ZrP 电解质在本领域鲜有应用。本文通过萘钠溶液对 ePTFE 基底进行改性,通过水接触角和 FT-IR 对改性前后的基底进行表征。采用填充法将 SPBI-ZrP 电解质填充于改性的 ePTFE 基底中,制备 SPBI-ZrP/ePTFE 质子交换复合膜。通过FESEM、FT-IR 观察复合膜的微观形貌和化学结构,采用干湿称重法、气体渗透率、拉伸测试、交流阻抗法考察 SPBI-ZrP 填充于 ePTFE 前后对 PEM 的溶胀度、致密性、机械性能和质子电导率的影响。二、实验部分1、实验原料和试剂ePTFE(厚度 15 μm,平均孔径 0.1 μm,孔隙率 85%)购于上海大宫新材料有限公司,萘钠溶液购于广东佛山化学试剂有限公司。3,3’-二氨基联苯二胺(DAB),间苯二甲酸-5-磺酸钠(5-SIPA),4,4’-二羧基二苯醚(SIPN)和氧氯化锆(ZrOCl2·8H2O)购于阿拉丁试剂有限公司。多聚磷酸(PPA),五氧化二磷(P2O5),二甲基亚砜(DMSO)等均为分析纯,由上海凌峰试剂有限公司提供。盐酸和无水碳酸钠等均为分析纯,购于国药集团化学试剂有限公司。2、ePTFE 基底的改性将预洗好的 ePTFE 基底放在萘钠溶液中 5 s 迅速取出,分别用无水乙醇和蒸馏水洗涤并于 60℃中干燥。ePTFE 基底改性机理如图 1 所示:3、SPBI 的合成采用直接缩聚法合成 SPBI,详细合成步骤见参考文献。调节5-SIPA 单体与 SIPN 单体的摩尔比,合成磺化度为 62.3%(wt) SPBI,合成路线如图 2 所示:4、SPBI-ZrP/ePTFE 质子交换复 合膜的制备采用成核 / 晶化隔离法制备 ZrP,ZrP 的 XRD 表征本课题组已有报道。秤取定量 ZrP 于 DMSO 溶剂中超声 30 min,加入 SPBI 颗粒,在 60 ℃下搅拌形成 SPBI-ZrP-2.5 溶液。将改性好的 ePTFE 基底放在真空抽滤装置中,往其表面 滴加 SPBI-ZrP-2.5 溶液,直至无溶液渗透后将复合膜放在烘箱中干燥数小时,为避免复合膜中有孔生成 须多次重复上述步骤。然后将 SPBI-ZrP-2.5/ePTFE 膜放在去离子水中多次洗涤除去表面残留的溶剂,并 放在 70%(wt) H3PO4 中质子化,取出用去离子水洗涤多次,烘干待表征。5、表征方法采用 TENSOR27 FT-IR 对样品结构表征,量程范围为 400~4000 cm-1 ;采用德国 Kruss Gmbh 公司生 产的 DSA25 型水接触角仪,在基底表面滴加 5 μL 蒸馏水,对样品测试 4 次接触角值取其平均值;通过 FESEM(SUPRA55)观察膜的微观形貌;拉伸测试在室温下利用 Instron5560 型拉力试验机测试,以 10 mm·min-1 对膜测量 3 次取其平均值。使用干湿称重法测试膜的吸水率和溶胀度,具体测试步骤参考文献 ,使用 O2 渗透率测试膜的致密性。通过上海华辰仪器公司的 CHI600C 电化学工作站,采用四电极交流阻抗在 1~105 Hz 测定膜的质子电 导率,用式(1)计算质子电导率:式中,σ:质子电导率 / S·cm-1 ;L:电极间的距离 / cm;ts 和 Ws:膜厚度和宽度 / cm;R:膜阻抗 / Ω。三、结果与讨论1、ePTFE 基底改性表征ePTFE 基底改性前后的接触角如图 3 所示。未改性的 ePTFE 接触角为 150.0°,改性后的 ePTFE 接触角变为 75.9°,因 ePTFE 表面经萘钠溶液改性后处理液中Na+能破坏C-F键,使F原子被亲水基团取代,ePTFE基底由疏水性变为亲水性。ePTFE 改性前后的 FT-IR 如图 4 所示。由图可知,改性后 ePTFE 基底的 FT-IR 出现了新官能团的振动峰,如 1580 cm-1 处羰基的伸缩振动吸收峰,2898 cm-1 处异丙基的伸缩振动吸收峰,3370 cm-1 处羟基的伸缩振动吸收峰,表明改性后的 ePTFE 基底结构中生成了-OH、C=O 等亲水官能团,能有效地改善 ePTFE 基底与 SPBI-ZrP 电解质的相容性问题2、SPBI-ZrP/ePTFE 复合膜的微观形貌分析ePTFE 的表面电镜如图 5(a)、SPBI-ZrP-2.5/ePTFE复合膜的表面和断面 SEM 如图 5(b)、5(c)所示。由图可知,ePTFE 基底由多孔结构组成,经多次抽滤和热处理,SPBI-ZrP-2.5/ePTFE 膜表面光滑且致密,且在膜表面有许多白色 ZrP 颗粒。在多次真空抽滤过程中,重力作用使 SPBI-ZrP 溶液填充于 ePTFE 基底孔中,经溶剂挥发后,SPBI-ZrP 紧紧附着于 ePTFE 基底中。3、SPBI-ZrP/ePTFE 复合膜的红外光谱图分析图 6 是 SPBI、SPBI-ZrP-2.5 和 SPBIZrP-2.5/ePTFE 复合膜的 FT-IR 图,620~640cm-1是ePTFE中-CF2的弯曲振动峰,1160、1230 cm-1是 ePTFE 中-CF2、-CF3 基团的伸缩振动峰。1599 cm-1是 SPBI 咪唑环上C=C/C=N 双键的伸缩振动峰,809、1043cm-1分别是-SO3H 基团上对称 S-O 和非对称 S=O 伸缩振动峰,552 cm-1是 ZrP 中PO2基团的伸缩振动峰。SPBI-ZrP-2.5 膜中仅有 SPBI 和 ZrP 的特征峰,而 SPBIZrP-2.5/ePTFE 膜不仅含有 SPBI 和 ZrP 的特征峰,还含有 ePTFE 特征峰。上述结果表明,SPBI-ZrP 电解质成功地填充于ePTFE 中。4、SPBI-ZrP/ePTFE 复合膜的 O2 渗透率、吸水率和溶胀度表 1 是 SPBI-ZrP-2.5 和 SPBI-ZrP-2.5/ ePTFE 复合膜在室温下的 O2 渗透率 (PO2)、吸水率 (WU) 和溶胀 度(厚度方向:Δt,长度方向:Δl)测试结果。由表可知,SPBI-ZrP-2.5/ePTFE 膜的 O2 渗透率比 SPBI-ZrP-2.5 大,因为 SPBI-ZrP-2.5/ePTFE 膜中具有较大的 ePTFE 含量;而 SPBI-ZrP-2.5/ePTFE 膜的 O2 渗透率比 Nafion112 膜( 2.16×10-9 / cm3 ·cm·cm-2 ·s -1 ·cmHg-1 )小,这是由于 SPBI-ZrP 较低的渗透性,上述结果表 明 ePTFE 基底孔中填满 SPBI-ZrP 电解质且复合膜具有良好的致密性。SPBI-ZrP-2.5 的 WU 比 SPBI-ZrP-2.5/ePTFE 膜高,这是因为 ePTFE 疏水基底的存在导致 SPBI-ZrP-2.5/ePTFE 膜的 WU 变少。膜 在厚度方向的溶胀度大于水平方向,SPBI-ZrP-2.5/ePTFE 膜在厚度和水平方向的溶胀度分别为 2.1%和 1.9%,表明该复合膜具有良好的尺寸稳定性。SPBI-ZrP-2.5 在厚度方向的溶胀度是 SPBI-ZrP-2.5/ePTFE 膜的 7.3 倍,因后者 ePTFE 基底的存在,能有效地抑制膜的溶胀。5、SPBI-ZrP/ePTFE 复合膜的机械性能SPBI-ZrP-2.5 和 SPBI-ZrP-2.5/ePTFE 复合膜的机械性能如表 2 所示,SPBI-ZrP-2.5/ePTFE 膜的拉伸强度为 25.95 MPa,断裂伸长率为 28.21%, 比 Nafion112 膜(19.1 MPa)高,说明 SPBI-ZrP-2.5/ePTFE 膜具有良好的机械稳定 性。SPBI-ZrP-2.5/ePTFE 膜的拉伸强度比 SPBI-ZrP-2.5 高 19.86%,是因为 ePTFE 基底 具有增强作用,能提高 SPBI-ZrP/ePTFE 膜的机械性能。6、SPBI-ZrP/ePTFE 复合膜的质子电导率图 7 为 SPBI-ZrP-2.5、SPBI-ZrP-2.5/ePTFE 复合膜在相对湿度 100%、40~160℃ 下质子电导率随温 度的变化关系及其阿伦尼乌斯曲线。从图中可以看出复合膜的质子电导率随温度升高而增加,因为温度 升高能促进质子迁移速率增加质子数量。SPBI-ZrP-2.5/ePTFE 膜在 160℃和 80℃时电导率达到 0.222 和 0.071 S·cm-1 ,而 Nafion 膜(EW=1100)在 80℃时的质子电导率约 0.077 S·cm-1 ,在>100℃ 时其质子电 导率急剧下降,说明 SPBI-ZrP/ePTFE 膜在高温下具有良好的质子传导性能,能应用于 HT-PEMFC 中。SPBI-ZrP-2.5/ePTFE 膜的质子电导率比 SPBI-ZrP-2.5 膜高,这是因为质子电导率与膜的厚度、电阻成负 相关,SPBI-ZrP-2.5/ePTFE 膜的厚度(30 μm)比 SPBI-ZrP-2.5 膜(60 μm)薄,前者的电阻比后者小。由 Arrhenius 图中的斜率计算出 SPBI-ZrP-2.5/ePTFE 和 SPBI-ZrP-2.5 复合膜的活化能分别为 13.99、14.06 kJ·mol-1 ,说明前者需较低的活化能就能在邻近的分子或质子缺位间跳跃。四、结 论本文通过填充法将 SPBI-ZrP 电解质填充于 ePTFE 基底中,成功制备了 SPBI-ZrP/ePTFE 质子交换复合膜。为改善 ePTFE 与 SPBI-ZrP 的界面相容性,利用萘钠溶液对 ePTFE 亲水化改性。通过多次真空抽滤使 SPBI-ZrP 成功地填充于 ePTFE 基底中,形成表面光滑的 SPBI-ZrP/ePTFE 复合膜。因 ePTFE 能有效地抑制膜的溶胀,使得 SPBI-ZrP-2.5 膜在厚度方向的溶胀度是 SPBI-ZrP-2.5/ePTFE 膜的 7.3 倍;因 ePTFE的增强效应,SPBI-ZrP-2.5/ePTFE 膜的拉伸强度比 SPBI-ZrP-2.5 膜高 19.86%;同时 SPBI-ZrP-2.5/ePTFE膜的质子电导率在相对湿度 100%、160℃和 80℃下达到 0.222 和 0.071 S·cm-1。上述结果表明,SPBI-ZrP/ePTFE 复合膜具有良好的尺寸稳定性、机械性能和质子传导性能,具有应用于 HT-PEMFC 的广阔前景。