今天考研已经结束,各位小伙伴的战况如何?反正小编是一把鼻涕一把泪啊!因为小编没有认真复习。相信每个考研人都不容易付出努力总会得到回报。今年的考研人数238万相比于去年又在增加!看看这人山人海的场景是否也有你的影子。2018年考研已经结束,"今年的数学"恐怕是每个考生的心声了。(后面有数二真题解析,大家可以看看)不过不要怕,你不是孤独的,不是你一个人觉得难,而是大家都觉得难。没考好的,不要气馁,再接再厉,我们来年再战。考研就是高考的升级,寒门子弟渴望借此鱼跃龙门,因此牵系着无数家庭,今日考研数学一结束,就迅速登上了热搜榜,因为太难了,数一数二数三这次居然对外一致发难,弄得许多考生纷纷表示,要去天台冷静冷静。今天是2018年全国硕士研究生考试的第二天,针对上午刚刚考完的数学一二三,小编看了一下今年的难度,真的把这一届的考生虐哭了,难度一年比一年上升。朋友圈的女同胞都说回家生孩子去了,哈哈2018年的考研数学试题又一次刷新了考研人的心跳!下考场的时候大家纷纷叹气,难道是因为今年报考人数剧增,又换成备用卷了么?这难度又刷新了2016年的效果。考研数学方面的专家张宇谈考研:开卷的难度较大,这会影响很多同学的答题心情。今年的数学真是不负众望啊,偶数年真的难啊!各位考生,你们考研数学有啥想说的。而第二天,上午的数学考完后,很多考生不淡定了。相比昨天的英语,至少还可以蒙(选择题多),数学就惨了!考研数学考试难度逐年加大,题型变化大,趋向于“竞赛题”,过于讲究技巧。不少教育人士也表示,考研数学难度逐年加大,对考生的要求也逐年增高。很多题目都已经偏离了正常的逻辑层面,开始讲究“技巧化”。网友笑称,这个题目有点像是奥林匹克竞赛,一些知识点明明自己知道,但是放在题目里面就是不会做。前天是2018年全国硕士研究生招生考试的第一天。考完英语和政治两门科目之后,不少考生感慨颇多。网上出现了各种版本的吐槽:有的说“今年的英语试卷,做完就崩溃了”;有的说“英语新题型简直看不懂啊”;有的说“政治的难度超乎了自己的想象”。
2019年全国研究生入学考试在今天大部分专业考试已经结束,在紧张的两天考试中,受外界广泛关注的莫非是数学科目,因为数学历来是被考生称为难度最大的一门考试,尤其是去年,很多考生由于数学成绩无法过国家线而与研究生擦肩而过。因此,今年的数学考试难度怎么样呢?在考试前,很多研究生的教育机构预测今年的数学难度可能会比去年有所下降,理由是去年的数学难度偏大,出题组老师们考试完成后,看到这么样的结果压力也有些大,因此,为了不让这样的局面再次出现,今年数学可能会有所放松。但是,研究生考试作为国家人才的选拔性考试,其目的就是要选拔出具备相应潜力的考生来继续深造,因此相应的标准是不可能会放松的,如何处理这样的难题,这样体现了命题老师的水平。现在考试结束了,我们就来看看2019年研究生数学的考试情况吧。从网上公布的网友情况来看,大家对今年数学题目还是比较满意的,尽管题型都见过,就是不会做。最起码出题老师没有给考生难堪,基本上出题都是中规中矩,只不过灵活性还是有的。就总体难度而言,2019年考研数学一试题与2018年相比,难度相差无几。这与近年来的考研趋势是非常契合的,随着考研人数的增加,试题的难度也在增加,这也体现了考研是选拔性考试的特点,不过从2013年开始试题的难度整体是比较平稳的。另外,2019年的考研数学一高数部分试题体现了考研数学的一贯特点:重基础,综合性强,计算量大。首先,考题重在考查学生对基本概念的理解和运用数学的基本方法来解决基本问题的能力。其实从1990年到2019年以来,重基础这个出题的侧重点从未改变过。与此同时,近几年试题中不断凸显的综合性和灵活性增加了考试的难度,要求考生注重对方法的总结和能力的培养,从而做到活学活用。最后,计算量大的特点要求考生要多做题,只有量的积累才能把计算能力提升上来,在考场上不仅做到会,而且要快,这样才能考取理想的分数。不管考得怎么样,反正都已经过去了,再去纠结也没有多大的意义。现在对很多考生来说,要做的可能是要好好休息一段时间,毕竟在这么漫长的研究生备考中,已经疲惫不堪了。根据往年惯例,成绩将于2月份公布,希望大家都能考上自己心中的大学。
这位应该是考研党的数学大神,满分150分!2021年的考研成绩下来了,这位兄弟报考的是上海大学,其中,数学二得了满分150分!现在经济不景气,就业压力大,许多本科毕业生都会优选考研深造,根据教育部统计数据,2021年,全国研究生报名人数377万,较2020年的341万净增加36万人,创历史新高,这已经是自2017年以来的连续五年增长!2020年,全国研究生招生规模达到111.4万人,报录比为3.1:1。考研总分500分,各科满分如下:政治100分;英语100分;数学或专业基础150分;专业课150分。其中:管理类联考分数是300分(包括英语二100分,管理类综合200分)。尽管这位大神数学满分150,但有点偏科,尤其是政治,总分393分,也只排在第26名!考研数学分数学一、数学二和数学三,其中数学一最难!不过,在考研究生时,能够拿到数学满分,也是相当的不容易,实力满满,鹤立鸡群,值得点赞!
2020年全国研究生考试,对于众多参考学生而言注定是一个煎熬的过程。先不说今年341万创纪录的报名人数,光是政治、英语、数学就让众多考生纷纷留下了辛酸的眼泪。近几年,研究生参考人数呈大幅上升的趋势,究其根本原因还是因为现在本科学历的贬值,以及就业单位对于学历的高要求。所以大多数参考学生是为了让自己获得更高学历便于找到一份好的工作,获得比较可观的薪资。所以真正想考研走学术道路的人,少之又少。当然这种想法也是无可厚非,毕竟是大势所趋。但是随着研究生参考人数的大幅增加,高校研究生录取名额却没有同步增加,那这就意味着竞争会更加激烈。尽管大家在参加考试之前都做了充足的准备,确实付出了努力与汗水,但是不得不承认肯定会有部分考试发挥并不理想。而且今年无论是政治、英语、数学难度都不低,对于广大考生而言,这次考研经历无疑是煎熬的。政治考完之后,因为后面还有英语、数学、专业课,尽管发挥不是特别理想,但是对于大家而言,至少还有希望,毕竟还剩下3科,可以发挥的空间还很大,还有扳回一城的机会。然而随着英语考试的结束,大家的心态开始崩了。尤其是考一卷的同学,太多的生词,很多不常见的词出现在试卷中,导致众多考生有苦说不出。比如文艺复兴对应的单词Renaissance,很多网友均表示没见过,最后只能猜,结果猜成了一个人名。英语考试结束后,不少考生均表示没有做完试卷。这下可好,政治考完心态渐崩,英语考完,心态到了崩溃的边缘。然后咬着牙硬着头皮来到了第三场,数学考试。对于数学考试,相信大部分学子还是很有信心的。毕竟不像英语有语言上的障碍,至少数学考试能看懂题。再加上大家之前做了大量的模拟题、真题,对于数学的考试套路已经有所研究或者说已经做好了相应的准备工作和应对措施。尽管大家都知道考研数学会有一些难度,但是进了考场之后才明白,还是低估了此次数学的难度。就像网友的一句发自内心地感叹:“我知道它难,但是不知道它这么难!”据网友反馈,进场前他以为考研数学是这样子的:“至少会让你感觉能做,但是做不出来。至少内心还有个念想,还能去思考的欲望。”然后看了卷子以后,事实是这个样子的:“题完全看不懂,压根没有做下去的欲望,更别说思考了,一点考试体验都没有。直接被拒于千里之外。”但是再难的数学,也有硬核学霸。据网友反馈,考试结束后,学霸们开始估分,不少表示保守估计130+(满分150)没问题,但是反观自己不保守估计59分。这差距,不得不说数学的确是超级拉分的一个科目,尤其是难度较大的时候。这个时候学霸和普通考生之间的差距就被明显拉开了。所以考完数学之后,很多考生都是带着崩溃的心态很不情愿地参加了最后的专业课考试。至于最终结果,他们似乎不再关心,只知道这一次的考研体验很不好。每一场考试都无比煎熬。转眼间,考研大战已经结束。但是希望同学没放宽心态,不要过于气馁。水涨船高,水降船低。由于今年的考研试题难度较大,对应的分数线也不会太高。所以要难大家一起难,就别有过多的心理包袱。也别盲目地和学霸去比,不然你的内心会遭受极大的打击。其实近几年全国考研的平均成绩都不是很高。去年也才六十多分。所以,如果此次数学估分能有70分,那么你几乎已经超过一半的人了。也别过于自责。当然,给还未参考的同学们一些建议,以当前考研出题形势来看,想遇见原题的概率越来越小,考试的知识也越来越活,那么就不能单纯地靠刷题来保证获得高分,更重要的是要明白那道题为什么要那样做,要明白题目中的求解原理,而不是单纯地记住了解题步骤。不管题目怎么变,原理是不会变的。深刻理解解题原理,并灵活运用才能做到以不变应万变。不然就算你刷了几十套真题,到头来也起不到让你满意的效果。所以,多看一些有趣味的书,多培养一些数学兴趣,明白里面的原理,而不是单纯刷题就显得更为重要。
随着高校的扩招,社会上的企事业单位在招聘时对学历的要求也普遍提高,在多种原因的作用下,2019年的考研人数再创新高,突破了290万大关。竞争人数的增多,加上高校的研究生招生数量并没有明显的上升,导致今年的考研难度毫无疑问加大了。今年的研究生考试初试也是同样很受关注,对于今年的考试难度的讨论,更是非常多的。不过,从三门全国统考的科目来看。政治、英语的难度都不算小,那考研数学的难度,可以说就直接决定了今年的考研难度了。考研难度虽然不比往年低,但是在微观层面来讲,对于每个考研学子来说,只要选好学校,认真复习,其实都可以考到自己理想的大学。数一数二数三考研数学分为试卷分为数学一、数学二、数学三,三者的区别在于在知识面的要求上,数学一主要针对对数学要求较高的理工类考生,数学二主要针对对数学要求低一些的农、林、地、矿、油等专业,数学三适用于经济、管理类专业。难度上,数一毫无无疑问是比较难的,数二相对简单,数三的考查范围也不小,难度略高于数二。2019考研数学难度系数今年的考研数学在难度上来看,数学一比去年简单,数学二的难度不大,题型比较基础,但是计算量比较大,数三的难度也不大,大题里极限、级数、多元极值等都没有出现。因此有18年考研的考研学子大喊,“今年考研数学的简单,是去年师哥师姐用命换来的啊。”更有不少明年的考研学子担忧,根据考研数学难度每年一变的规律,明年考研岂不是要增大难度了?2019考研数学估分投票结果但是,具体难度的大小,还要看数据说话。网友发起了一个考研数学估分的投票,1小时之内,就有4000人参与了投票。在投票结果中,除去没有参与考研的991人,在考研的3109人中,数量最多的是“60-90”分这个选项,占考研投票总人数的20.6%,另外,“100-110”分,“110-130”分的人数也都不少,分别占考研投票总人数的14.78%和15.3%。有256人投了“满分”这个选项,占考研投票人数的8.2%,总体来说,估分100的人数占到了38.08%。根据大家的乐观评估,看来,今年的考研数学的难度是不大了,不过,也许正是因为今年的考研英语难度不小,甚至很多过了英语六级的人都惊呼怕过不了线,所以,数学难度小一些也是情理之中了。你认为今年数学的难度大不大呢?你估分多少呢?单选|你考研数学估计能考多少分?140以上120-140100-12080-10060-8060以下打开百度APP进行投票
2019年第十六届中国研究生数学建模竞赛赛题公布A题无线智能传播模型01无线信道建模背景随着5G NR技术的发展,5G在全球范围内的应用也在不断地扩大。运营商在部署5G网络的过程中,需要合理地选择覆盖区域内的基站站址,进而通过部署基站来满足用户的通信需求。在整个无线网络规划流程中,高效的网络估算对于精确的5G网络部署有着非常重要的意义。无线传播模型正是通过对目标通信覆盖区域内的无线电波传播特性进行预测,使得小区覆盖范围、小区间网络干扰以及通信速率等指标的估算成为可能。由于无线电波传播环境复杂,会受到传播路径上各种因素的影响,如平原、山体、建筑物、湖泊、海洋、森林、大气、地球自身曲率等,使电磁波不再以单一的方式和路径传播而产生复杂的透射、绕射、散射、反射、折射等,所以建立一个准确的模型是一项非常艰巨的任务。现有的无线传播模型可以按照研究方法进行区分,一般分为:经验模型、理论模型和改进型经验模型。经验模型的获得是从经验数据中获取固定的拟合公式,典型的模型有Cost 231-Hata、Okumura等。理论模型是根据电磁波传播理论,考虑电磁波在空间中的反射、绕射、折射等来进行损耗计算,比较有代表性的是Volcano模型。改进型经验模型是通过在拟合公式中引入更多的参数从而可以为更细的分类场景提供计算模型,典型的有Standard Propagation Model(SPM)。在实际传播模型建模中,为了获得符合目标地区实际环境的传播模型,需要收集大量额外的实测数据、工程参数以及电子地图用来对传播模型进行校正。此外无线LTE网络已在全球普及,全球几十亿用户,每时每刻都会产生大量数据。如何合理地运用这些数据来辅助无线网络建设就成为了一个重要的课题。近年来,大数据驱动的AI机器学习技术获得了长足的进步,并且在语言、图像处理领域获得了非常成功的运用。伴随着并行计算架构的发展,机器学习技术也具备了在线运算的能力,其高实时性以及低复杂度使得其与无线通信的紧密结合成为了可能。在本届数学建模竞赛中,希望参赛者能够对机器学习的工作方式有一定掌握并站在设备供应商以及无线运营者的角度,通过合理地运用机器学习模型(不限定只使用这种方法)来建立无线传播模型,并利用模型准确预测在新环境下无线信号覆盖强度,从而大大减少网络建设成本,提高网络建设效率。02无线传播模型建模方法简介在传统的无线传播模型的建立过程中,往往首先需要对传播场景进行划分,每一个场景对应一个传播经验模型。然而,经验模型在实际使用中往往不够精确,所以仍然需要通过采集大量的工程参数以及实际平均信号接收功率(Reference Signal Receiving Power,RSRP)测量值进行经验模型公式的修正。从所述过程中可以看到,传播模型建立本质上是一个函数拟合的过程,即通过调整传播模型的系数,使得利用传播模型计算得到的路径损耗值与实测路径损耗值误差最小。所以当工程参数、地理位置信息、特定地理位置测量点的RSRP已知的情况下,该问题可以归类为一个监督学习问题。与传统经验模型需要额外人力物力进行校正相比,是否可以利用采集的历史数据并利用机器学习技术,得到一套合适的机器学习模型用以对不同场景下信道传播路径损耗进行准确预测,成为一个非常有价值的研究方向。本题为参赛队伍提供统一的数据集。各参赛队伍可以自行将数据集拆分为训练集、测试集以及验证集,将其用于AI算法模型的训练及测试。算法的目的在于通过寻找工程参数、地理环境等因素与平均信号接收功率(RSRP)之间的映射模型(理论与实践表明RSRP是工程参数、地理环境等因素的随机函数),从而能够在新的环境中快速预测特定地理位置的RSRP值。赛题提供的训练数据集包含多个小区的工程参数数据、地图数据和RSRP标签数据,其格式为csv格式(Comma-Separated Values, 逗号分隔值格式)。数据集的结构以及对应数据的含义将会在下节中详细阐述。03训练数据集简介训练数据集一共包括了多个文件,每个文件代表一个小区内的数据。文件的命名方式为train_id.csv,其中id为小区的唯一标识,例如train_1003501.csv表示唯一标识为1003501的小区数据。文件的每一行代表小区内固定大小的测试区域的相关数据,行数不定(根据小区大小不同,面积越大的小区行数越多,反之亦然),列数则固定为18列,其中前9列为站点的工程参数数据;中间8列为地图数据;最后1列是用于训练的RSRP标签数据。下表显示了其中一行数据作为样例:Table 1:训练数据样例下面介绍三部分中每一列的具体含义。3.1 工程参数数据工程参数数据记录了某小区内站点的工程参数信息,共有9个字段。各字段对应含义如Table 所示。Table 2:工程参数数据的字段含义为了方便数据处理,地图进行了栅格化处理,每个栅格代表了5m5m的区域(如下图Fig.1 所示),其中(CellX,Cell Y)记录了站点所在栅格的左上角坐标。其他的工程参数(Height, Azimuth, Electrical Downtilt, Mechanical Downtilt)如图Fig.2所示,其中机械下倾角(Mechanical Downtilt)是通过调整天线面板后面的支架来实现的,是一种物理信号下倾;而电下倾角(Electrical Downtilt)是通过调整天线内部的线圈来实现的,是一种电信号下倾。实际的信号线下倾角是机械下倾角和电下倾角之和。Fig. 1:栅格化地图的坐标说明Fig. 2:工程参数数据含义说明3.2 地图数据地图数据记录地形地貌等信息,共有8个字段,各字段对应含义如Table 所示。考虑地图类型的多样性和复杂性,城区、农村、湖泊等实际地物被抽象为数字,这些数字称为地物类型名称编号(Clutter Index),在Table 中可以看到地物类型名称编号所对应的实际地物类型。Table 3:地图数据的字段含义Table 4:地物类型名称的编号含义与工程参数数据一样,地图数据也进行了栅格化处理,每个栅格代表了5m5m的区域,其中(X,Y)记录了地图所在栅格的左上角坐标。在明确了地图存储格式之后,可以针对不同的参数对地图进行可视化处理。如Fig. 3所示,Fig. 3a-c分别根据栅格坐标以及房屋高度、海拔高度和地物类型索引作为特征对地图进行可视化处理。通过可视化处理,可以对地图数据有一个更为直观的了解。a:建筑物高度b:海拔高度c:地物类型索引Fig. 3:电子地图图像化示例3.3 RSRP标签数据平均信号接收功率(RSRP)标签数据作为实际测量结果,在监督学习中用于和机器学习模型预测的结果作比较,共有1个字段,对应含义如Table 所示。Table 5:RSRP标签数据表格的字段含义如Fig. 4所示,结合电子地图数据中的坐标和特征以及标签数据中的RSRP值,可以清晰地对信号功率分布进行可视化处理,从而明确辨识信号强弱覆盖区域Fig. 4:标签数据的可视化处理04无线传播模型建模赛题本赛题除在中国研究生数学建模竞赛网站上上交论文外,问题三需要在华为云平台上提交模型,不提交的队伍将被视为没有完成此题而不计入比赛成绩。4.1 特征工程中的特征设计高效的机器学习模型建立依赖于输入变量与问题目标的强相关性,因此输入变量也称为 “特征”。特征工程的本质是从原始数据中转换得到能够最好表征目标问题的参数,并使得各个参数的动态范围在一个相对稳定的范围内,从而提高机器学习模型训练的效率。一般特征工程的典型技术有:· 剔除失真、低质量数据;数据插值补齐;去除异常点;· 连续数据离散化;数据去均值;幅度限制;方差限制。高阶的特征工程需要充分利用与目标问题相关的专业知识。对于信道传播模型问题,可以如Fig. 5所示根据已知的几何位置来挑选合理的特征。例如,通过发射机相对地面的高度、机械下倾角、垂直电下倾角,发射机所在栅格位置与目标栅格位置,可以得到栅格与发射机的距离以及栅格与信号线的相对高度,而就可以作为一个特征。Fig. 5:根据目标栅格与发射机的地理位置关系提取特征除了几何位置特征,传统经验信道模型中涉及的参数也可以纳入特征工程的考察范围。例如城市中的经典模型Cost 231-Hata,其定义如下:其中PL定义为传播路径损耗(dB)、为载波频率(MHz)、基站天线有效高度(m)、用户天线有效高度(m)、用户天线高度纠正项(dB)、链路距离(km)以及为场景纠正常数(dB)。RSRP与PL的关系为:其中是小区发射机发射功率(dBm)(见Table 2)。问题一请根据Cost 231-Hata模型以及下述数据集信息设计合适的特征,并阐述原因。Table 6:数据集信息4.2 特征工程中的特征选择完成特征设计后,通常需要选择有意义的特征输入机器学习模型进行训练。对于不同方法构造出来的特征,需要从多个层面来判断这个特征是否合适。通常来说,可以从以下两个方面来选择特征:· 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。· 特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优先选择。问题二基于提供的各小区数据集,设计多个合适的特征,计算这些特征与目标的相关性,并将结果量化、排序,形成如下的表格,并阐明设计这些特征的原因和用于排序的量化数值的计算方法。Table 7:特征名称及其与目标的相关性4.3 RSRP预测问题三在设计和选择了有效的特征之后,就可以通过建立预测模型来进行RSRP的预测了。请各个参赛队根据自己建立的特征集以及赛题提供的训练数据集,建立基于AI的无线传播模型来对不同地理位置的RSRP进行预测。为研究生更明白本问题的目标,下面将分别介绍评审数据集、提交内容和线上代码评分方法。4.3.1 评审数据集简介线上代码评分系统将使用对参赛队保密的评审数据集来对模型进行评分,以便公平地测试各参赛队提交模型的实际泛化能力。评审数据集与训练数据集一样,一共包括了多个文件,每个文件代表一个小区内的数据。文件的命名方式为test_id.csv,其中id为小区的唯一标识,例如test_1003501.csv表示唯一标识为1003501的小区数据。评审数据集的文件中含有除了RSRP之外的前17个字段,与该17个字段对应的RSRP字段需要由研究生提交的模型代码程序预测生成。4.3.2 提交内容论文要以文字形式详细阐述AI模型的建模过程,包括模型的建立方法,参数的设置和训练的结果,特别是第三问要阐述清楚。第三问需要提交完整的模型。针对每一个评审数据集的输入文件,模型输出要求也是一个文件,例如输入数据文件名为test_123456.csv,则输出文件名必须为test_123456.csv_result.txt。另外,输出文件的数量与输入文件必须一致,否则会以全0文件代替输出文件进行评分。例如,参赛队伍如果没有提交针对输入文件名为test_123456.csv的输出文件,系统在评分时会自动产生全零的test_123456.csv_result.txt进行评分。每个输出文件内容的样例如下所示{"RSRP": [[-54.505], [-73.416], [-76.123], [-74.261], [-98.143]]}其中方括号内的数字表示输入文件的每一行数据所对应的RSRP预测值,预测值的数量与输入文件的行数(表头除外)对应,例如上文的输出文件对应的输入文件应该是5行(表头除外)。如果输出文件的预测值少于输入文件的行数,则会以补0的形式将输出文件填满后进行评分;如果输出文件的预测值多余输入文件的行数,则会取输出文件的前N个预测值进行评分,其中N为输入文件的行数。4.3.3 线上代码评分方法对于提交的预测RSRP值,将根据以下条件进行排序。模型在评审数据集的评估下,弱覆盖识别率 (PCRR : Poor coverage recognition rate) 必须大于等于20%。在PCRR精度达标后,再根据预测均方根误差(RMSE : Root mean squared error)大小进行各参赛组的名次排序(RMSE小者排名靠前)。PCRR和RMSE的介绍如下所示:· 弱覆盖识别率 (PCRR : Poor coverage recognition rate)在进行预测的过程中如果可以有效识别弱覆盖区域,能够更好地帮助运营商精准规划和优化网络从而提升客户体验。因此,除RMSE为有效测试目标之外,弱覆盖识别准确率也是作为一项非常有价值的评价指标。在本次建模比赛中,弱覆盖判决门限的值定为-103 dBm。若RSRP预测值或实测值小于则为弱覆盖并标记为1,若大于等于则为非弱覆盖并标记为0。根据比较预测值和实测值得到的弱覆盖以及非弱覆盖的差别,可以对以下参数进行统计:· True Positive(TP):真实值为弱覆盖,预测值也为弱覆盖;· False Positive(FP):真实值为非弱覆盖,预测值为弱覆盖;· False Negative(FN):真实值为弱覆盖,预测值为非弱覆盖;· True Negative(TN):真实值为非弱覆盖,预测值也为非弱覆盖。Table 8:TP、FP、FN和TN的定义PCRR综合考虑Precision(准确率)和Recall(召回率)的目标,其计算公式如下:(3)其中Precision可以理解为预测结果为弱覆盖的栅格实际也是弱覆盖的概率,其定义如下:(4)Recall可以理解为真实结果为弱覆盖的栅格有多少被预测成了弱覆盖的概率,其定义如下:(5)PCRR的计算代码可以参考以下程序Table 9:PCRR计算方法参考· 均方根误差 (RMSE: Root mean squared error)RMSE是评估预测值和实测值整体偏差的指标,其大小直观表现了仿真准确性。直接计算待评估数据的RMSE,计算公式如下:(6)其中为参赛队机器学习模型对于第i组评审数据集的RSRP预测值,为第i组评审数据集的RSRP实际测量值。4.3.4 模型提交与数据获取组委会将为参赛队提供华为云ModelArts作为AI运算平台,训练数据集都存储在该平台上。参赛队伍可以将训练数据下载到本地展开训练,同时竞赛评审也利用华为云大赛平台进行。本次竞赛线上部分的数据集获取、模型提交、评分与排名系统等详细内容请访问本次竞赛的华为云网站:https://developer.huaweicloud.com/competition/competitions/1000013923/introction线上作品提交时间:9月21日早上9:00 - 9月23日中午12:00参赛选手可以多次提交模型,每个队伍每天提交次数上限为5次。最终以其提交中最优成绩为准。B题天文导航中的星图识别天文导航(Celestial Navigation)是基于天体已知的坐标位置和运动规律,应用观测天体的天文坐标值来确定航行体的空间位置等导航参数。与其他导航技术相比,天文导航是一种自主式导航,不需要地面设备,不受人工或自然形成的电磁场的干扰,不向外界辐射能量,隐蔽性好,而且定姿、定向、定位精度高,定位误差与时间无关,已被广泛用于卫星、航天飞机、远程弹道导弹等航天器。天文导航的若干背景知识可参阅附件1。星敏感器是实现航行体自主姿态测量的核心部件,是通过观测太空中的恒星来实现高精度姿态测量。恒星是用于天文导航最重要的一类天体。对天文导航而言,恒星可以看成是位于无穷远处的,近似静止不动的,具有一定光谱特性的理想点光源。借助天球坐标系,可用赤经与赤纬来描述恒星在某一时刻位置信息(相关定义和概念可参考附件1)。恒星在天球球面上的投影点称为恒星的位置。将星空中恒星的相关数据,按不同的需求编制而成的表册,称为星表。星表是星图识别的主要依据,也是姿态确定的基准。常用的星表中通常列有恒星的位置、自行、星等(亮度)、颜色和距离等丰富的信息。对于天文导航而言,感兴趣的信息主要是恒星的位置和星等。附件2提供了一个简易的星表,提供了部分恒星在天球坐标系下的位置(以赤经、赤纬来标记,单位:角度)和星等信息。全天自主的星图识别是星敏感器技术中的一项关键技术。星图识别是将星敏感器当前视场中的恒星(星图)与导航星库中的参考星进行对应匹配,以完成视场中恒星的识别。星图识别一般包括图像采集及预处理、特征提取、匹配识别等过程。图像预处理包括去除噪声和星点质心提取。为简化,本赛题暂不考虑具体的去除噪声和质心提取等问题,认为所讨论的星图图像已经完成了图像预处理。导航数据库一般包括两部分:导航星表和导航星特征数据库。导航星表是从基本星表中挑选一定亮度范围的导航星,利用其位置(赤经、赤纬)和亮度信息编制而成的简易星表。星敏感器除了需要构建导航星表外,还需要按照特征提取算法,构造导航星的特征向量,存储由特征向量构成的导航星特征数据库。提取出观测星的特征后,就可以寻找特征类似的导航星。如果找到特征惟一接近的导航星,即可认为二者匹配。匹配识别过程和提取特征的方法紧密相关。本赛题暂不考虑后续的航行体定姿定位问题。在星图识别的相关工作中需要用到天球坐标系、星敏感器坐标系、星敏感器图像坐标系等。其简单定义为:(1)天球坐标系。以天赤道为基圈,过春分点的时圈为主圈,春分点为主点。天球坐标系采用赤经、赤纬作为坐标量。参见附件1相关叙述。图1 星敏感器坐标系、图像坐标系及前视投影成像示意图(2)星敏感器坐标系。以投影中心(光轴上与感光面距离为的点,即光心,参见图1)为坐标原点,以光轴为轴(后面的讨论中,光轴与天球面的交点记为点),过点平行于感光面两边的直线作为轴和轴。图1为星敏感器坐标系、图像坐标系及前视投影成像示意图。(3)图像坐标系。以感光面的中心(点在该平面上的投影点)为坐标原点,平行于感光面两边的直线为轴和轴的平面坐标系,参见图1。请你们团队利用附件提供的相关背景材料和数据,建模分析下面问题:问题1 、、是3颗已知位置的恒星,即它们在天球坐标系下的赤经和赤纬已知;、、是来自恒星、、的平行光经过星敏感器光学系统成像在感光面上的星像点质心中心位置(参见图1);记,,,。(1)建立由,,等参数解算点在天球坐标系的位置信息的数学模型,并给出具体的求解算法;(2)若不利用值的信息,试建立由,等参数求解点在天球坐标系中的位置信息的数学模型,并给出具体的求解算法;(3)一般来说,星敏感器视场内的恒星数量多于3颗,请讨论如何选择不同几何位置的三颗星,提高解算点在天球坐标系中的位置信息的精度,并分析相应的误差。问题2 传统的星图识别方法主要是以角距(即星与星之间的球心角,可直观理解为两颗恒星分别与地心连线之间的夹角)或其衍生的形式为特征,这类方法比较简单,但一般需要较大的存储空间,识别算法实时性不好,且识别率普遍不高。通过对星图中的星点信息进行更为精细的特征提取,构建更高层次的特征,可能会提高星图识别算法的实时性和降低误匹配率。基于附件2提供的简易星表信息,请构建相应的特征提取模型,设计对应的星图识别算法,确定出附件3给出的8幅星图中每一个星像点所对应的恒星编号(对应附件2简易星表的恒星编号),并对算法的性能进行评估。附件1 相关背景知识(含对附件2、附件3的说明,请注意!)附件2 简易星表附件3 8幅星图相关数据C题视觉情报信息分析研究表明,一般人所获取的信息大约有80%来自视觉。视觉信息的主要载体是图像和视频,视觉情报指的是通过图像或者视频获取的情报。从图像或视频中提取物体的大小、距离、速度等信息是视觉情报分析工作的重要内容之一,如在新中国最著名的“照片泄密案”中,日本情报专家就是通过《中国画报》的一幅封面照片解开了大庆油田的秘密[1]。在当前很热门的移动机器人、无人驾驶、计算机视觉、无人机侦察等领域,更是存在着大量的应用需求。尽管在对未来智能交通系统的设计等工作中,科研人员正在研究使用双目[2]或多目视觉系统或者特殊配置的单目视觉系统[3]获取相关信息,但在某些特定条件下,分析人员所能利用的,只能是普通的图像或视频[4,5],其中的信息需要综合考虑各种因素,通过合适的数学模型来提取。本题从实际需求出发,选择单幅图像距离信息分析、平面视频距离信息分析和立体视频距离信息分析几个典型场景,提出如下四项任务:任务1:测算图1中红色车辆A车头和白色车辆B车头之间的距离、拍照者距马路左侧边界的距离;图2中黑色车辆A车头和灰色车辆C车尾之间的距离以及拍照者距白色车辆B车头的距离;图3中拍照者距岗亭A的距离以及拍照者距离地面的高度;图4中塔体正面(图中四边形ABCD)的尺寸,即AB和CD的长度以及AB和CD之间的距离 (已知地砖尺寸为80cm80cm)。任务2:附件“车辆.mp4”(右键点击后选择“保存到文件”可导出视频文件)是别克英朗2016款车上乘客通过后视镜拍摄的视频。(1)估算该车和后方红色车辆之间的距离;(2)估算该车超越第一辆白色车辆时两车的速度差异。任务3:附件“水面.mp4”是高铁乘客拍摄的一块水面,测算高铁行驶方向左侧第一座桥桥面距水面的高度、距高铁轨道的距离以及水面宽度,估算拍摄时高铁的行驶速度。任务4: 附件“无人机拍庄园.mp4”记录了某老宅的全景。(1)估算其中环绕老宅道路的长度、宽度、各建筑物的高度、后花园中树木的最大高度;(2)估算该老宅的占地面积;(3)测算无人机的飞行高度和速度1.建模过程中,除题中明确限定的条件外,你们可以作任何合理的假设或者补充真实的数据;2.对题中你们认为有歧义的表述,可以按照你们明确说明的理解解题而不会影响你们的最终成绩;3.论文中用到的非通用程序必须以附录形式附在文末,所有引用的文献资料(含计算机程序)都必须明确注明出处。4.论文主体(含摘要、目录、正文、参考文献,不含附录)不要超过40页。参考文献1.https://ke..com/item/%E4%B8%AD%E5%9B%BD%E6%9C%80%E8%91%97%E5%90%8D%E2%80%9C%E7%85%A7%E7%89%87%E6%B3%84%E5%AF%86%E6%A1%88%E2%80%9D/13870540?fr=aladdin2.https://ke..com/item/双目定位/60878103. 来佳伟,何玉青,李霄鹏 等:基于单目视觉的机械臂目标定位系统设计[J],《光学技术》,2019.014. 刘军, 后士浩, 张凯,晏晓娟:基于单目视觉车辆姿态角估计和逆透视变换的车距测量[J],《农业工程学报》,Jul. 2018(pp70-76)5. 刘学军,王美珍,甄艳等:单幅图像几何量测研究进展[J],《武汉大学学报》(信息科学版),36( 8) : pp941 - 947.D题汽车行驶工况构建01问题背景汽车行驶工况(Driving Cycle)又称车辆测试循环,是描述汽车行驶的速度-时间曲线(如图1、2,一般总时间在1800秒以内,但没有限制标准,图1总时间为1180秒,图2总时间为1800秒),体现汽车道路行驶的运动学特征,是汽车行业的一项重要的、共性基础技术,是车辆能耗/排放测试方法和限值标准的基础,也是汽车各项性能指标标定优化时的主要基准。目前,欧、美、日等汽车发达国家,均采用适应于各自的汽车行驶工况标准进行车辆性能标定优化和能耗/排放认证。本世纪初,我国直接采用欧洲的NEDC行驶工况(如图1)对汽车产品能耗/排放的认证,有效促进了汽车节能减排和技术的发展。近年来,随着汽车保有量的快速增长,我国道路交通状况发生很大变化,政府、企业和民众日渐发现以NEDC工况为基准所优化标定的汽车,实际油耗与法规认证结果偏差越来越大,影响了政府的公信力(譬如对某型号汽车,该车标注的工信部油耗6.5升/100公里,用户体验实际油耗可能是8.5-10升/100公里)。另外,欧洲在多年的实践中也发现NEDC工况的诸多不足,转而采用世界轻型车测试循环(WLTC,如图2)。但该工况怠速时间比和平均速度这两个最主要的工况特征,与我国实际汽车行驶工况的差异更大。作为车辆开发、评价的最为基础的依据,开展深入研究,制定反映我国实际道路行驶状况的测试工况,显得越来越重要。另一方面,我国地域辽广,各个城市的发展程度、气候条件及交通状况的不同,使得各个城市的汽车行驶工况特征存在明显的不同。因此,基于城市自身的汽车行驶数据进行城市汽车行驶工况的构建研究也越来越迫切,希望所构建的汽车行驶工况与该市汽车的行驶情况尽量吻合,理想情况下是完全代表该市汽车的行驶情况(也可以理解为对实际行驶情况的浓缩),目前北京、上海、合肥等都已经构建了各城市的汽车行驶工况。为了更好地理解构建汽车行驶工况曲线的重要性,以某型号汽车油耗为例,简单说明标注的工信部油耗是如何测试出来?标注的工信部油耗并不是该型号汽车在实际道路上的实测油耗,而是基于国家标准(如《GB27840-2011重型商用车辆燃料消耗量测量方法》),在实验室里根据汽车行驶工况曲线,按照一定的标准,经检测、计算得出。由此可见,标注的工信部油耗是否与实际油耗相吻合,与汽车行驶工况曲线有密切关系。图1 欧洲NEDC工况图2. 世界WLTC工况02目标的提出在上述背景下,请根据附件(3个数据文件,每个数据文件为同一辆车在不同时间段内所采集的数据)所提供的某城市轻型汽车实际道路行驶采集的数据(采样频率1Hz),构建一条能体现参与数据采集汽车行驶特征的汽车行驶工况曲线(1200-1300秒),该曲线所体现的汽车运动特征(如平均速度、平均加速度等)能代表所采集数据源的相应特征,两者间的误差越小,说明所构建的汽车行驶工况的代表性越好。03解决的问题1.数据预处理由汽车行驶数据的采集设备直接记录的原始采集数据往往会包含一些不良数据值,不良数据主要包括几个类型:(1) 由于高层建筑覆盖或过隧道等,GPS信号丢失,造成所提供数据中的时间不连续;(2) 汽车加、减速度异常的数据(普通轿车一般情况下:0至100km/h的加速时间大于7秒,紧急刹车最大减速度在7.5~8 m/s2);(3) 长期停车(如停车不熄火等候人、停车熄火了但采集设备仍在运行等)所采集的异常数据。(4) 长时间堵车、断断续续低速行驶情况(最高车速小于10km/h),通常可按怠速情况处理。(5) 一般认为怠速时间超过180秒为异常情况,怠速最长时间可按180秒处理。请设计合理的方法将上述不良数据进行预处理,并给出各文件数据经处理后的记录数。2.运动学片段的提取运动学片段是指汽车从怠速状态开始至下一个怠速状态开始之间的车速区间,如图3所示(基于运动学片段构建汽车行驶工况曲线是日前最常用的方法之一,但并不是必须的步骤,有些构建汽车行驶工况曲线的方法并不需要进行运动学片段划分和提取)。请设计合理的方法,将上述经处理后的数据划分为多个运动学片段,并给出各数据文件最终得到的运动学片段数量。图3 运动学片段的定义3.汽车行驶工况的构建请根据上述经处理后的数据,构建一条能体现参与数据采集汽车行驶特征的汽车行驶工况曲线(1200-1300秒),该曲线的汽车运动特征能代表所采集数据源(经处理后的数据)的相应特征,两者间的误差越小,说明所构建的汽车行驶工况的代表性越好。要求:(1)科学、有效的构建方法(数学模型或算法,特别鼓励创新方法,如果采用已有的方法,必须注明来源);(2)合理的汽车运动特征评估体系(至少包含但不限于以下指标:平均速度(km/h)、平均行驶速度(km/h)、平均加速度(m/)、平均减速度(m/)、怠速时间比(%)、加速时间比(%)、减速时间比(%)、速度标准差(km/h)、加速度标准差(m/)等);(3)按照你们所构建的汽车行驶工况及汽车运动特征评估体系,分别计算出汽车行驶工况与该城市所采集数据源(经处理后的数据)的各指标(运动特征)值,并说明你们所构建的汽车行驶工况的合理性。04名词解释与参考文献1. 部分名词解释怠速:汽车停止运动,但发动机保持最低转速运转的连续过程。加速:汽车加速度大于0.1m/s2的连续过程。减速:汽车加速度小于-0.1m/s2的连续过程。巡航/匀速:汽车加速度的绝对值小于0.1m/s2非怠速的连续过程。平均速度:一段时间周期内,汽车速度的算术平均值。平均行驶速度:汽车在行驶状态下汽车速度的算术平均值,即不包含汽车怠速状态。怠速时间比:一段时间周期内,怠速状态的累计时间长度占该时间周期总时间长度的百分比。平均加速度:汽车在加速状态下各单位时间(秒)加速度的算术平均值。平均减速度:汽车在减速状态下各单位时间(秒)减速度的算术平均值。加速时间比:一段时间周期内,处在加速状态的累计时间长度占该时间周期总时间长度的百分比。减速时间比:一段时间周期内,处在减速状态的累计时间长度占该时间周期总时间长度的百分比。速度标准差:一段时间周期内,汽车速度的标准差,即包括怠速状态。加速度标准差:一段时间周期内,处在加速状态的汽车加速度的标准差。2. 参考文献【1】 Lin J, Niemeier D A. Exploratory analysis comparing a stochastic driving cycle to California's regulatory cycle[J]. Atmospheric Environment, 2002, 36(38):5759-5770.【2】 Karande, S., Olson, M., and Saha, B. Development of Representative Vehicle Drive Cycles for Hybrid Applications[J]. SAE Technical Paper 2014-01-1900, 2014, doi:10.4271/2014-01-1900.【3】 姜平,石琴,陈无畏,黄志鹏. 基于小波分析的城市道路行驶工况构建的研究[J]. 汽车工程, 2011(1):70-73.【4】 Knez M, Muneer T, Jereb B, et al. The estimation of a driving cycle for Celje and a comparison to other European cities[J]. Sustainable Cities and Society, 2014, 11:56-60.【5】 Ho, Sze-Hwee, Wong, Yiik-Diew, Chang, Victor Wei-Chung. Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions [J]. Atmospheric Environment,2014,97:353-362. F题多约束条件下智能飞行器航迹快速规划复杂环境下航迹快速规划是智能飞行器控制的一个重要课题。由于系统结构限制,这类飞行器的定位系统无法对自身进行精准定位,一旦定位误差积累到一定程度可能导致任务失败。因此,在飞行过程中对定位误差进行校正是智能飞行器航迹规划中一项重要任务。本题目研究智能飞行器在系统定位精度限制下的航迹快速规划问题。假设飞行器的飞行区域如图1所示,出发点为A点,目的地为B点。其航迹约束如下:(1) 飞行器在空间飞行过程中需要实时定位,其定位误差包括垂直误差和水平误差。飞行器每飞行1m,垂直误差和水平误差将各增加个专用单位,,以下简称单位。到达终点时垂直误差和水平误差均应小于个单位,并且为简化问题,假设当垂直误差和水平误差均小于个单位时,飞行器仍能够按照规划路径飞行。(2) 飞行器在飞行过程中需要对定位误差进行校正。飞行区域中存在一些安全位置(称之为校正点)可用于误差校正,当飞行器到达校正点即能够根据该位置的误差校正类型进行误差校正。校正垂直和水平误差的位置可根据地形在航迹规划前确定(如图1为某条航迹的示意图,黄色的点为水平误差校正点,蓝色的点为垂直误差校正点,出发点为A点,目的地为B点,黑色曲线代表一条航迹)。可校正的飞行区域分布位置依赖于地形,无统一规律。若垂直误差、水平误差都能得到及时校正,则飞行器可以按照预定航线飞行,通过若干个校正点进行误差校正后最终到达目的地。图1:飞行器航迹规划区域示意图(3) 在出发地A点,飞行器的垂直和水平误差均为0。(4) 飞行器在垂直误差校正点进行垂直误差校正后,其垂直误差将变为0,水平误差保持不变。(5) 飞行器在水平误差校正点进行水平误差校正后,其水平误差将变为0,垂直误差保持不变。(6) 当飞行器的垂直误差不大于个单位,水平误差不大于个单位时才能进行垂直误差校正。(7) 当飞行器的垂直误差不大于个单位,水平误差不大于个单位时才能进行水平误差校正。(8) 飞行器在转弯时受到结构和控制系统的限制,无法完成即时转弯(飞行器前进方向无法突然改变),假设飞行器的最小转弯半径为200m。请你们团队为上述智能飞行器建立从A点飞到B点的航迹规划一般模型和算法并完成以下问题:问题1. 针对附件1和附件2中的数据分别规划满足条件(1)~(7)时飞行器的航迹,并且综合考虑以下优化目标:(A)航迹长度尽可能小;(B)经过校正区域进行校正的次数尽可能少。并讨论算法的有效性和复杂度。其中附件1数据的参数为:附件2中数据的参数为:请绘出两个数据集的航迹规划路径,并将结果(即飞行器从起点出发经过的误差校正点编号及校正前误差)依次填入航迹规划结果表,放于正文中,同时将两个数据集的结果填入附件3的Sheet1和Sheet2中。问题2.针对附件1和附件2中的数据(参数与第一问相同)分别规划满足条件(1)~(8)时飞行器的航迹,并且综合考虑以下优化目标:(A)航迹长度尽可能小;(B)经过校正区域进行校正的次数尽可能少。并讨论算法的有效性和复杂度。请绘出两个数据集的航迹规划路径(直线用黑色,圆弧用红色),并将结果(即飞行器从起点出发经过的误差校正点编号及校正前误差)依次填入航迹规划结果表,放于正文中,同时将两个数据集的结果填入附件3的Sheet3和Sheet4中。问题3.飞行器的飞行环境可能随时间动态变化,虽然校正点在飞行前已经确定,但飞行器在部分校正点进行误差校正时存在无法达到理想校正的情况(即将某个误差精确校正为0),例如天气等不可控因素导致飞行器到达校正点也无法进行理想的误差校正。现假设飞行器在部分校正点(附件1和附件2中F列标记为“1”的数据)能够成功将某个误差校正为0的概率是80%,如果校正失败,则校正后的剩余误差为min(error,5)个单位(其中error为校正前误差,min为取小函数),并且假设飞行器到达该校正点时即可知道在该点处是否能够校正成功,但不论校正成功与否,均不能改变规划路径。请针对此情况重新规划问题1所要求的航迹,并要求成功到达终点的概率尽可能大。请绘出两个数据集的航迹规划路径,并将结果(即飞行器从起点出发经过的误差校正点编号及校正前误差)依次填入航迹规划结果表,放于正文中,同时将两个数据集的结果填入附件3的Sheet5和Sheet6中。再次提醒:问题1,问题2和问题3中的结果表格除了需要放在正文中,还需要汇总到附件3的Excel表格文件的6个不同Sheet中,表x的结果放入Sheet x中,最后将汇总的Excel表格命名为:参赛队号-结果表.xlsx,以附件形式提交。附录:航迹规划结果表(样式)航迹规划结果表x文章来源:网络
19考研到底有多难?看最新全国研究生报考数据分析报告!一 、研究生报名人数持续增长研究生招生人数每年都创历史新高,我们都已经见怪不怪了,18考研(238万)较17考研(201万)直增37万考生,增长率达到18.4%,有人预计说19考研有可能达到270万。为什么越来越多的人选择考研呢?根据中国青年报社社会调查中心针对考研的一项问卷调查显示,选择考研的原因有:提升就业竞争力、通过考研进入名校、通过考研更换专业、完成自己的学术理想、暂时逃避就业压力、寻找备考过程中的独特体验等,其中占绝大多数的为以下三个方面:1. 本科就业压力大,考研可提升就业竞争力;2. 名校情结;3. 在职研究生纳入统考,往届生考研人数增加。(你考研的原因是哪一个呢?欢迎留言哦~)二 、多省市研究生考试报名持续增长1、山东:山东作为生源大省,2018年考研人数达213803人,同比增长14.54%,为历年最多。其中,2018全国报考山东大学的考生共23018人,突破两万,创下历史新高。2、四川:2018年,四川省研究生招生考试报名人数再度飙升,有效报名人数达到了119523人,较2017年增加了37583人,增幅为45.87%。去年四川报考点一度爆满,导致一部分考生无法在本地报名,最后增加考点才得以解决。小编也在这里提醒大家,到报名时,尽量不要往后拖,每个报考点所能容纳考生数量有限,确定了之后就尽早提交,以防带来不便。3、黑龙江:2018年硕士研究生招生考试共计报名79242人,比2017年增加了12053人,增幅为17.9%,这是该省研究生报考人数连续第三年增长。4、河北:2018年河北省共报考120580人,比2017年增加17525人,增幅为17.0%。报名人数和增幅均创历史新高。除以上地区外,安徽、湖北、江苏、内蒙古、重庆、辽宁、河南、天津等多地,报考人数均创下新高。三 、往届生报名增幅明显根据教育部公布2018年硕士研究生报考数据显示:238万考生中,应届考生131万,比17年增加18万,往届考生107万,比去年增加19万人。以湖北和河北地区为例,从图表中可以看出,往届生报考人数逐年增长。原因是因为从2016年起,在职研究生考试纳入统考,不少在职人员为提升自身竞争力或工作需要,也加入考研大军。湖北河北四、部分省市专业硕士报名人数超过学术硕士随着专硕培养规模壮大及认可度提升,瞄准专硕的考生比例逐年提升。以北京为例,北京2015年为43%,2016年为46.3%,2017则首次超过50%,达到52.2%,到了2018年,这个比例则高达54.7%。其中,多地甚至出现专硕报考人数超过学硕的现象,以湖北和河北为例:河 北湖 北2019年考研的人数将继续增加的同时,报考专业硕士的比例也会保持持续增长。在2016年全国考研报考人数中,专业学位考取概率为0.27,学术学位考取概率为0.35。从这分析来看,同学术硕士相比,专业硕士考取难度更大,且随着专硕越来越火,其考取难度有持续增长的态势。五 、女生读研占比超过半数硕士研究生招生规模不断增长的同时,女生考取研究生的比例不断提高,女生成考研群体主流。六 、全日制和非全日制统一招生自2016年9月起,在职研究生纳入非全日制研究生,与全日制研究生实行并轨统考。这对于在职考研人来说,无疑增加了考试难度。相应的,非全日制研究生的含金量也必然提高,非全日制研究生顺利毕业后,将拥有“双证”(学历证书和研究生学位证书),和全日制研究生相同。因此,非全日制研究生成为了众多在职考生的首选。全日制和非全日制统一招生两年以来,报考非全日制的考生占比逐年增多。以北京、河北为例:七 、MBA、会计、法律硕士等依然是报考的热门专业以北京为例:2018年,工商管理专业报考人数居首,为19749人,随后为会计专业的13124人和法律硕士(非法学)专业的12957人,报考人数居第四至十位的专业依次为金融、公共管理、计算机技术、法律硕士(法学)、广播电视、软件工程、计算机科学与技术。八 、热门高校各专业报录比报录比指的是报考人数和录取人数之比,报录比越大说明该专业考研难度越大。近几年研究生招生规模扩大,使硕士研究生报考的竞争度变小 ,录取率提高。但是,一些热门专业,如经济类、管理类等专业的报录比相对较高,考研难度依然很大。研招网给出了4所热门高校(人大、复旦、南开、浙大)报录比排名前10的专业:中国人民大学复旦大学南开大学浙江大学
这两天,全国大多数省市的考研初试成绩都已经公布了,只有北京大学和中国科学院大学预计22日公布成绩,另外,西藏目前还没动静,估计还要过几天才会公布。成绩公布,照例有一些同学会晒分,当然往往都是高分。考生考了高分,在喜悦之余,拿出来晒晒,分享分享,是很好的事情。当然,也有人把这理解为炫耀。不管如何,那些考了高分的同学晒分的行为,是值得肯定的,一方面让大家知道原来学霸可以考那么高的分啊,另一方面也是对其他考生的考研成绩增加一些了解。考研初试,因为不同院校不同专业,专业课试卷不同,难度也不同,所以同样的分数,含义是不一样的,高分的标准也往往有差异。但总分能上400分的,不管哪个专业,都是绝对的高分了。在晒分的人里面,很多都是400+的成绩,所以当事人觉得值得拿出来晒。目前所知道的今年最高的初试分数是442分,不过专业是文学类的,并不考数学。其实,文史哲等文科类专业,是不需要考数学的,相对而言,比较容易获得高分;而理工科、农林类、经济管理类等则需要考数学。其中,理工科考数一,农林类(包括农业、林业、纺织、食品等)则考数学二,经管类考数学三。其中,数学一是难度最大的试卷,年年如此。我有个高中同学,一直擅长数学,本科学的工科,后来考研,成功考入一所著名的985工科院校,而且专业是该大学的王牌型专业,全国排名三甲。他当时数学一也仅仅获得了110多分的成绩,比较而言,这个成绩已经算高分了。今年的数学一延续了这个传统,难度依然是比较大的。初试结束,就有不少考生反馈,数学一难度太大,题都没有做完。现在成绩公布,印证了当时的判断,很多人都分数不高,100分以下的比比皆是,能考上110分的,就是成绩很不错的了,120分以上的算很高的分数了。这位考生报考的是工科类专业,考数学一,考了122分,总分是419分。从这个成绩单,我们可以得到两点:1、我们知道,工科的国家线只有260-270分,显然419分已经是超级高分了;2、即便是总分能获得超级高分的学霸,考数学一也仅仅只有122分,这可以在一定程度上说明今年的数学一难度极大,即便学霸也不能获得太高的分数。当然,三套考研数学试卷难度都比较大,但数学一难度尤其大,这是公认的。因而,如果你是考数学一的,分数不太高,是正常的,因为难度确实大,大家分数都不高。不过,话说回来,对于那些报考需要考数学的专业的考生而言,数学这个科目是复习备考的重中之重,是考研能否成功的的关键要素之一,很多考生考研失利,都是因为数学没有考好造成。所以,复习备考,一定要高度重视数学的复习,注意在知识、题型、熟练度等方面反复训练,全面提升,才能最大程度提高考研成功的概率。
2021考研数学考试12月27日上午结束,收到很多同学反馈今年考研数学题目不难相对比较简单,为了方便考研人在考研结束之后核对以及2022考研人了解考情,下面和郑州启航考研一起来看下2021考研数学二真题及答案解析(完整版)。由于数学试题的特殊性,一些计算符号和数学单位无法直接在发布,只能以图片版的形式发表。如果看不清楚的话,大家可以给我留言。我单独给你发题。数学二真题解析:#考研数学#
“2015-2018全国考研大数据”来了!教育部全国硕士研究生招生考试网上报名和网上调剂唯一指定网站——研招网发布《2015-2018硕士研究生报考数据分析报告》!一起来看看!硕士研究生报名人数持续增长!女生为主力硕士研究生报名人数持续增长据教育部数据统计,2018年考研报考人数达到238万,增加人数和增长率均为近年来最高。△近4年硕士研究生报名人数(单位:万人)△近3年硕士研究生报名人数增长率女生读研占比超半数报考人数不断增长的同时,女生成考研群体主流。△男女生人数对比图(单位:人)为何考研?超半数受访者觉得考研是为了提升就业竞争力据中国青年报社社会调查中心数据,对于自己或身边的人选择考研的原因,调查显示,有以下几点:提升就业竞争力(58.8%)通过考研进入名校(41.4%)通过考研更换专业(37.1%)完成自己的学术理想(33.3%)工作晋升需要(30.9%)暂时逃避就业压力(24.9%)因身边朋友都在考而“随大流”(19.6%)寻找备考过程中的独特体验(10.5%)完善自己的大学生活(8.2%)据中国青年报报道,河北石家庄某高校的吴硕表示,由于学校一般,不论就业还是申请出国都没有太大优势,所以全班近一半同学选择了考研。胡杨本科读的是电气工程专业,他表示自己考研的主要目的是换专业,“4年读下来,觉得自己不太喜欢与机床、传送带打交道。希望研究生能学个‘和人打交道’的管理类专业”。对吴硕而言,选择考研更多是出于自己读名校的执念。本科就读于一所普通一本院校的他,考研志愿填报了北京某985高校。不过,深究自己渴望读名校的原因,吴硕坦言,主要还是考虑到未来对就业的影响。“身边非985、211毕业的同学找工作,简历投出去,得到的回应特别少”。山东济南某高校的研一学生李潇妍认为,读研能让自己在职场上“少走弯路”。“比如很多公司针对本科生和研究生的起薪和起始职位都是不一样的”。这些专业太抢手!最热门的是。。。哪些专业报考人数最多?以北京为例:2018年,工商管理专业报考人数居首,为19749人,随后为会计专业的13124人和法律硕士(非法学)专业的12957人,报考人数居第四至十位的专业依次为金融、公共管理、计算机技术、法律硕士(法学)、广播电视、软件工程、计算机科学与技术。2016年,报考“工商管理”的人数为13395名,居各专业报考人数之首,报考会计的人数为9369名,报考“法律硕士(非法学)”的人数为7608名(不含推免生),分别居第二位和第三位。报考人数居第4至10位的专业依次为金融、公共管理、计算机科学与技术、金融学、材料科学与工程、汉语国际教育、计算机技术。由此可见,工商管理、会计、法律硕士(非法学)连续数年成为报考专业的前三甲,依然是最热门的专业。热门高校专业考研难度排名报录比指的是报考人数和录取人数之比,报录比越大说明该专业考研难度越大。下面,我们就通过4所热门高校报录比排名前10的专业来看一下那些相对难考的专业有哪些:中国人民大学学术型学位难度排名↓↓↓△2017年全国统考硕士研究生报名录取统计(学术型学位)注:1。表中“报名人数”和“录取人数”不包含推荐免试、单独考试、援藏计划、退役大学生士兵和少数民族骨干专项计划的考生;2。录取人数包含调剂录取的考生。专业学位难度排名↓↓↓△2017年全国统考硕士研究生报名录取统计(专业学位)注:1。表中“报名人数”和“录取人数”不包含推荐免试、单独考试、援藏计划、退役大学生士兵和少数民族骨干专项计划的考生;2。录取人数包含调剂录取的考生。复旦大学学术型专业难度排名↓↓↓△2017年招收学历教育硕士研究生分专业报考、录取人数统计(学术型)专业型专业难度排名↓↓↓△2017年招收学历教育硕士研究生分专业报考、录取人数统计(专业型)南开大学难度排名↓↓↓↓↓↓浙江大学难度排名↓↓↓↓↓↓注:以上统计中不含非全日制、推免生、单独考试、强军计划、退役士兵计划以及少民骨干计划考生;录取人数中包括了由本校其他相近专业调剂到该专业录取的考生。往届生比例增幅明显 部分省市专硕超学硕应届生考研比例涨幅平稳,往届生读研比例增幅明显对在职人员来讲,考取双证不必脱产学习,充分满足了工作、学习两不误的需求。2017年在职研究生纳入统考后,在职考生的积极性空前高涨。部分省市专业硕士报名人数超过学术硕士近年来,由于招生计划增加的影响,除了总体报名人数呈上涨趋势之外,专硕的报考人数增长明显,多地甚至出现专硕报考人数超过学硕的现象。比如:湖北↓↓↓△湖北学硕和专硕(蓝色)人数对比图(单位:人)河北↓↓↓△河北报考学硕和专硕(蓝色)人数对比图(单位:人)