欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
数学篇|历年考研数学真题及答案解析登山侠

数学篇|历年考研数学真题及答案解析

无论是第几遍做真题,做错的题目,都要做记号,并找出错因。如果下一次还犯类似错误(尤其是计算失误),一定要好好反思反思。

得焉者失

「2012年」考研数学真题解析:概率论与数理统计真题讲解

考研数学真题讲解:每日一练202天一、题目2012年考研数学真题二、解析2012年 随机变量的分布真题2012年 概率论与数理统计真题考研路上,你我同行。加油!

推而强之

「2012年」考研数学经典真题解析:微分方程真题、综合题讲解

考研数学真题讲解:每日一练198天一、题目2012年考研数学真题二、解析微分方程真题解析综合题真题解析考研路上,你我同行。加油!泰笛牛考研数学

雌节

2021考研全国硕士研究生招生考试数学一真题+答案

2021考研数学一真题解析文档 可私信小编免费领取,请联系:

裹以四时

考研数学|真题一题多解系列,精选001

考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!

跟屁虫

2012年考研数学真题解析:线性代数 二次型、概率分布题目讲解

考研数学真题讲解:每日一练201天一、题目2012年考研数学 线性代数真题解析二、解析2012年考研数学 二次型真题讲解2012年考研数学 概率分布真题讲解考研路上,你我同行。加油!泰笛牛考研数学

接力棒

2020数学一真题答案解析(完整版)

声明即日起,博林考研正式并入文都教育,加入文都考研大家庭!燕郊文都考研来到你身边啦!优秀的人总是互相吸引,博林考研全心全意为学生服务,不断提高服务质量。期待以全新的身份服务每一位新同学。文都考研,大家早已耳熟能详。但小编有必要隆重介绍一下:文都集团在考研、四六级、教资、中小学、留学、医考、建考、公考等领域多元化发展。文都考研积累了丰富的教学管理经验,并建立了优秀的管理团队。以数学汤家凤老师、英语何凯文老师、谭剑波老师、政治蒋中挺、万磊老师,为核心的教师团队,深受全国各地学生喜爱。并出版了大量优质考研用书。(比如今年考研数学多数证明题是汤老师的《接力题典1800》书中原题)回归到今天的主题,给大家分享下考研真题及答案解析。回忆版真题,仅供参考,如有错误欢迎各位考生留言:2020数学一真题答案解析

格拉德

历年考研数学真题解析(1987-2019年)按年份讲解:2011年真题

考研数学真题讲解:每日一练192天一、题目2011年考研数学真题二、解析考查:方程的根考查:含抽象函数记号的多元函数求偏导考研路上,你我同行。加油!

缝衣浅带

2020考研:数学一真题及答案解析,高清完整版

初试定资格,复试定结果,虽然初试考试已经结束了,但是复试是第二关卡,不要掉以轻心哦,好好准备复试,等一切尘埃落定后,再去欢呼,再去放肆也不迟,现在还是要以大局为重,即便不知道成绩的情况下,积极准备复试也是一种经验的积累,万一过了复试线就用到了,加油吧。下面是2020考研数学一真题及答案解析,一起来看看吧。来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)

新大陆

19年考研数一真题+答案详解

2019年考研的成绩已经出来了,下面让我们一起回顾一下数一真题