欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
历年考研数学真题解析—2004年:无穷级数真题、不等式的证明题空姐梦

历年考研数学真题解析—2004年:无穷级数真题、不等式的证明题

考研数学真题讲解:每日一练152天一、题目题目二、解析题目1解析题目2解析考研路上,你我同行。加油!关注获得完整历年考研数学真题资料!还可以免费享受在线答疑!关注能考140+分哦~

见过不更

考研数学—2004年真题解析:极值和拐点的判别法,变限积分函数

考研数学真题讲解:每日一练150天一、题目二、解析考研路上,你我同行。加油!关注获得完整历年考研数学真题资料!还可以免费享受在线答疑!关注能考140+分哦~

惺惺惜惺

2020考研数学强化复习—2004年真题解析 泰笛牛考研数学名师团队

考研数学真题讲解:每日一练151天一、题目二、解析考研路上,你我同行。加油!关注获得完整历年考研数学真题资料!还可以免费享受在线答疑!关注能考140+分哦~

冬荫功

2020考研数学强化复习:2004年向量组的秩及方程组真题

考研数学真题讲解:每日一练146天一、题目二、解析考研路上,你我同行。加油!关注获得完整历年考研数学真题资料!还可以免费享受在线答疑!关注能考140+分哦~

己独去虚

2020考研!你真的会选择考研数学老师和书籍嘛

亲爱的同学们,马上就要开学了,准备考研的你们准备好了吗?IF你的专业是考数学的话一定要趁早开始,数学这种长线学科所耗费的时间和精力是及其多的。考研数学分为数学一,数学二,数学三,其中的差别你们可能都已经了解。今儿六六就来来唠叨唠叨考研中的数学名师,帮你选择适合自己的老师和书籍!首先你要知道,考研辅导名师中真正在命题组呆过的人只有政治的肖秀荣老爷子和讲概率的大神王式安! 所以政治跟谁你懂得!所以概率论跟谁你懂得!然后你要明白,数学150不是非常好考的,高数有几道压轴题是专门为了那些牛逼的志在冲刺150学生准备的!但是题目也是非常注重基础的,比如19年数二真题第一题,你要问我怎么做,好吧,我选择拒绝回答!汤家凤!如果你数学基础不好(挂科或者勉强及格)严重推荐汤家凤老师的零基础课程和基础课程,汤家凤老师素以基础严谨出名,干货满满,而且全程跟进,有着免费的微博直播课程,是一位非常负责任的愤青老师!!口头禅:这道题我拿到手就会做,清晰的八达鸟 。著有《无师自通复习全书》《高数、线代辅导讲义》《接力题典1800》等等。推荐跟进汤老师的高数全程和线代基础。张宇老师的课非常幽默轻松,素以狗三,tan cot上下位等各种段子出名,但是他课堂举的例子是非常少的,经常一小节讲一两道题就过去了,而近些年张宇老师也认识到这点,在课堂上逐渐提高题目数量。但 张宇老师的基础课一点不基础,只适合有基础乃至非常好的同学。但是你没有基础,千万不要去直接听张宇的课程,不然你会被直接劝退!而且会被坑的很惨!当然了额,《张宇的高数18讲》,销量牛逼,是真的好,但现张宇的线代和概率极其不推荐。武忠祥 两个字!牛13, 课堂上全是干货,不夹杂一点个人情感,基础打好安利其17堂专题课。(唯一让人吐槽他藏着许多东西课上讲,书上没有,嗯,或许可能是书好久没更新了) 李永乐 永乐大帝,线代王! 一定要把老爷子课堂上讲的仔细整理,(老爷子一定不会整理笔记,知识点有点杂乱),基础不好可以先听汤老师的现线代基础再去跟进李老爷子的全程。王式安,命题组出来的,来不及解释了快上车。李林,押题圣手,18年闹得沸沸扬扬的“泄题”押题者,18年“押”中包括数三30多年只考过一次的知识点在内的接近80.90分的考点,(是泄还是押18考生最有资格评价)19年开始出来讲课,出书出卷。19年再次实力压中多道题。 李正元,一个落寞的王者,不讲课许久,其系列书销量也远远不如从前,但是的确经典。(当年的二李全书,指的就是李正元和李永乐,后来不知道什么原因,李永乐声称未参与编写,而后两者分 家,一红一粉,红全书仍然辉煌,无奈粉皮书已然没落,)粉皮书自成体系,有着许多经典的分类及试题,具有非常高的参考价值。 或许再过几年粉皮书就会彻底没落,每每念此,默然悲伤,此致敬礼。此外还有文都低调的主讲线代和概率余炳森老师,新东方杨超,张宇团队高昆仑等等。当然老师之间也会有所分歧,也有自己所擅长的领域下面我们再来讲讲书籍全书类 汤老师的《无师自通》 李永乐的红色复习全书 李正元的粉色复习全书 若果你暂时没决定好数几请看 推荐习题集 汤《1800》 张宇《1000》 李老爷子《660》三者各有特点,汤注重基础,张注重发散 ,李注重逻辑,可凭自己喜好购买其中一本。数学练习不要追求数量,而要追求质量,把一个题目做会做懂总比囫囵吞枣做好多道题要强的多!当然一 定数量的练习是比不可少的。当然,最好的习题就是真题,2000年前的真题可以直接拿来当练习题来做。真题 汤家风《真题》 试题和答案按照年份编著,包含全部年份 张 宇《真题》 试题年份分类, 答案按照题型分类汇总。包含全部年份 缺点是答案过于简单。 胜在有高昆仑老师的带你做真题的配套视频李永乐《真题》 试题答案同张宇,但是只有近十几年的题目,前些年的没有纸质版的答案。李正元《真题》 试题答案同张宇,同样只有近十几年的题目,前些年没有纸质版的答案高教版《真题》 试题答案按照年份编著,但是解析真的详细!!!{这个一定要入手}毛纲源《真题》 试题答案同张宇,但主打题型分类,解析也蛮详细 缺点单色印刷,还存在些小瑕疵。属于比较小众让人又爱又恨的真题集大多数的老师都建议大家强化阶段(暑假)结束后开始练习真题,最晚十月份开始。但是六六想说的是。真题一定要趁早!!!可能大多数人会嗤之以鼻,不以为是。但六六觉得历年真题才是最好的练习题,完爆1800,1000,660 30多年的真题 30* 23=690 抛弃那些过时的题型 ,怎么的都有500道题,把这些题吃透了比啥都强。模拟题汤《最后8套卷》 难度适中张宇的8+4 劝退难度李永乐 6+2 经典经典,印刷和纸张被吐槽很久了李正元预测卷+超越135经典经典,小错误瑕疵,冲刺用135搭配武状元忠祥17堂课 ,嘿嘿嘿合工大五套卷 最贴近真题的模拟题,超经典李林6+4 据说很牛,没用过! 李林大神押题圣手,有时候你复习一年都不如他一堂课的存在,最后的押题课是一定要听的。可以预留近三年的真题来当做模拟题用来练手,模拟题根据自己实际情况来选择购买,如果真题吃透了,可以做模拟题。但是没有吃透还是建议不要去碰模拟题。你要明白真题是怎么出出来的,开个玩笑,就是把命题老头关在小黑屋里,每个人出自己擅长科目章节的题目,然后老头们做在一块来审题,从几个老头中出的题中挑出23道来凑成一张试卷。别的老师不清楚, 而合工大正是走的这个流程,你懂得!六六做个推荐如果你现在还不确定考数一、数二还是数三,还是建议先你们入手单本的辅导讲义,毕竟全书是数1.2.3还是有很大区别的。李老爷子的《线代辅导讲义》这是必须入手的 《张宇18讲》《汤高数讲义》《武忠祥高数讲义》三选一 , 强烈安利武忠祥老师的高数17堂专题视频课《王世安概率》《余炳森概率》二选一全书的话 汤的《无师自通》,李永乐的红色复习全书 还是李正元的粉色复习全书 三者有一个就可以了,多了你也看不完系列。真题的话《高教版真题》强烈安利 剩下的真题集可以根据自己喜好来挑选弱弱的推荐李正元和毛纲源《真题》结语: 数学可以选择自己喜欢的老师跟着走下去 选择哪个老师是你自己的事情。但是数学这门学科,一定要多加练习。每天至少抽出2.3个小时来用以练习。 数学一定要通过做题来尽可能认识题型,给出你条件你要明白有哪些知识点在里面。举个简单例子如设A为三阶矩阵,且A的每行元素之和是3 ,你要立马得出A的一个特征值为3,特征向量为(1.1.1)T。 2000年前的真题还是比较简单的,基础阶段强化强化阶段啦就直接当做习题来做,会做就会做,不会做就去翻答案去记住,记的滚瓜烂熟。 2004-2019年的真题可以留在强化完成后来做你就会发现非常顺手!PS。几天后的开学季,6.18,暑假开学季,双11,双12 等等这些节日可以让你省很多钱。买肖秀荣政治的预售也是相当便宜的。数学一定要买正版!切记切记!2019!努力!奋斗!奔向2020!

云南大学各专业2021考研资料历年真题

文章转载自:大学考研帮手公众号因篇幅限制,仅保留没目录部分1、云南大学241日语2007、2014考研真题汇编2、云南大学242法语2007、2014考研真题汇编3、云南大学338生物化学2011-2012考研真题汇编4、云南大学440新闻与传播专业基础[专业硕士]2013-2014;2014有答案考研真题汇编5、云南大学601高等数学一(自命题)07、10考研真题汇编6、云南大学606高等代数01、04-09考研真题汇编7、云南大学610基础法语07、09、14考研真题汇编8、云南大学611民族学理论与方法2007、2014考研真题汇编9、云南大学612政治学概论2007-2008、2014考研真题汇编10、云南大学613世界民族与民族问题2007-2008考研真题汇编11、云南大学617普通生物学00-01、04-08、14考研真题汇编12、云南大学619化学(一)2005-2009考研真题汇编13、云南大学621量子力学03、07-08、14考研真题汇编14、云南大学631政治学原理2006-2014考研真题汇编15、云南大学632社会学、人类学理论与方法07-09、14考研真题汇编16、云南大学633行政管理2008-2014考研真题汇编17、云南大学633行政管理2008、2014考研真题汇编18、云南大学635法理学、宪法学、诉讼法学2006-2007、2009考研真题汇编19、云南大学638传播理论02-10、14考研真题汇编20、云南大学639基础英语06-09、14考研真题汇编21、云南大学802西方经济学一(含微观经济学、宏观经济学)07-09、14考研真题汇编22、云南大学803管理学2004-2013年考研真题汇编23、云南大学803管理学2004-2014考研真题汇编24、云南大学804当代中国政府与政治09-10、14考研真题汇编25、云南大学806社会学基础(含社会学和社会工作基础知识)07-09、14考研真题汇编26、云南大学807公共经济学2010-2014、回忆版2015考研真题汇编27、云南大学810管理学原理07-08、10、14考研真题汇编28、云南大学810管理学原理2004-2013年真题;其中2013有答案考研真题汇编29、云南大学810管理学原理2004-2013年;2013有答案考研真题汇编30、云南大学814综合考试(含英美文学、英美文化、语言学)07-08、10、14考研真题汇编31、云南大学818近现代国际关系史2007、2014考研真题汇编32、云南大学823数学分析2004、2007-2009、2014考研真题汇编33、云南大学824统计学2012-2014考研真题汇编34、云南大学826生物化学00-03、05、10-12、14考研真题汇编35、云南大学827信号与系统2003-2008、2014考研真题汇编36、云南大学828自动控制原理2007、2010、2014考研真题汇编37、云南大学829化学(三)2005-2008、2010、2012-2014考研真题汇编38、云南大学830大学物理2008、2010、2014考研真题汇编39、云南大学831数据结构与操作系统2003-2007、2014考研真题汇编40、云南大学834普通物理2007、2014考研真题汇编41、云南大学837材料科学基础2007、2009-2014考研真题汇编42、云南大学837材料科学基础2007、2010、2014考研真题汇编43、云南大学838综合地理学2009、2014考研真题汇编44、云南大学841土地利用规划与管理2010-2012、2014考研真题汇编45、云南大学841土地利用规划与管理2010-2012真题;其中2011-2012考研真题汇编46、云南大学841土地利用规划与管理2010-2012;2011-2012考研真题汇编47、云南大学842数据结构与程序设计2007、2014考研真题汇编48、云南大学848大学物理2007-2008、2010、2014考研真题汇编49、云南大学852电磁场原理2011、2014考研真题汇编50、云南大学904计算机程序设计2007、2010-2011、2014考研真题汇编51、云南大学904计算机程序设计2007、2014考研真题汇编52、云南大学中国语言文学基础历年真题(2007-2013)考研真题汇编53、云南大学中外艺术史2004、2007、2009-2014汇编考研真题考研真题汇编54、云南大学你马克思主义基本原理概论2009-2014考研真题汇编55、云南大学信号与系统2003-2014考研真题汇编56、云南大学化学(三)2011-2014考研真题汇编57、云南大学基础数学历年真题数学分析(2004-2013)考研真题汇编58、云南大学基础数学历年真题高等代数(2001、2004-2013)考研真题汇编59、云南大学政治学原理2006-2011、2013-2014考研真题汇编60、云南大学数学分析2004-2014考研真题汇编61、云南大学文化人类学2007、2009-2010、2012-2014考研真题汇编62、云南大学普通生物学2000-2002、2004-2014考研真题汇编63、云南大学普通生物学2014考研真题汇编64、云南大学毛泽东思想和中国特色社会主义理论体系2009-2014考研真题汇编65、云南大学民法学、经济法学、刑法学历年真题(2006-2013)考研真题汇编66、云南大学民法学经济法学刑法学2006-2013考研真题汇编67、云南大学汉语写作与百科知识2011-2014考研真题汇编68、云南大学法理学、宪法学历年真题(2006-2013)考研真题汇编69、云南大学生态学2010-2014考研真题汇编70、云南大学生物化学2001-2003、2005、2008、2011-2013考研真题汇编71、云南大学磁场原理2010-2011、2014考研真题汇编72、云南大学管理学2004-2014考研真题汇编73、云南大学经济法学、民法学、刑法学2006-2013考研真题汇编74、云南大学综合专业理论2007-2013考研真题汇编75、云南大学综合专业理论2007-2014考研真题汇编76、云南大学综合地理学2009-2013考研真题汇编77、云南大学翻译硕士英语2011-2014考研真题汇编78、云南大学考研真题理论批评(2007-2013)考研真题汇编79、云南大学自动控制原理2007-2013考研真题汇编80、云南大学英语翻译基础2011-2014考研真题汇编81、云南大学西方经济学一(含微观经济学、宏观经济学)历年真题(2006-2013)考研真题汇编82、云南大学量子力学2003、2007-2013考研真题汇编83、云南大学马克思主义哲学原理2006-2013考研真题汇编84、云南大学马克思主义哲学原理2006-2014考研真题汇编85、云南大学高等代数2001、2004-2014考研真题汇编

爱滋味

继往开来——北京大学2002年数学分析试题及解答

北京大学的这份数学分析试题总分为100分,形式跟前面2001年的数学分析试题一样,难度相对前面2001年那份试题增加了点,但还是算偏简单的题目。紧跟2002之后,接下来的2003,2004年,都没有北京大学数学分析考研试题在网上流传下来,因此在这之后,就只剩下2005年与2006年的数学分析试题我没有写解答了,虽然似乎大家对这些总分100分的试题没有什么兴趣,我还是争取早日把剩下的也写了。第一题是简单的计算题,用下等价量替换。第二题是迭代数列,也算很常规的题目。第三题构造辅助函数即可。第四题纯属送分题,高三的学生应该就能做。第四题考察偏导数中的变量替换,中国科学技术大学经常考这种题,其他学校的考研题如果有时间也可以做做,没有坏处。第六题是重积分计算题。第七题又考了Gauss公式。第八题在2014年又考到了,借助Taylor公式找一个级数与原级数做比较。第九题其实上一份就已经提到了,注意到函数在一点可微是一个局部性质就行了,我这里写的解法是通过求和函数来验证,这是另一种思路,这种手法其实我在2007年的那份解答里就演示过。第十题是关于变上限积分求导的。其实可以说整份试题中全是计算题。写解答不易,各位朋友帮忙点下广告呗,不然我没啥收益啊,赠人玫瑰,手有余香,先谢谢大家了。这么热的天,让我买瓶水喝呗!

魂魄将往

2022北京师范大学基础数学考研专业目录等综合备考指导

一、专业介绍数学科学学院成立于2004年,其前身是1915年创建的北京高等师范学校数理部,1922年成立数学系,1983年成立数学与数学教育研究所。学院现有教职工96人,其中教授39人,副教授31人;专任教师中有博士学位的教师占98%。特别地,有中国科学院院士2人,第三世界科学院院士1人,全国高校教学名师奖1人,国家杰出青年基金获得者3人、国家优秀青年基金获得者2人,入选新世纪百千万人才工程国家级人选2人。现有全日制在校生1290人,其中本科生964人,硕士研究生228人,博士研究生98人。1988年,基础数学、概率论与数理统计被评为国家重点学科。1990年建立了北京师范大学第一个博士后流动站。1996年,数学学科成为国家211工程重点建设的学科。1997年成为国家基础科学人才培养基金基地。1998年获数学一级学科博士学位授予权。2001年概率论方向被评为国家自然科学基金创新群体。2005年进入“985工程”科技创新基础建设平台。二、专业目录三、参考书《数学分析》第二版上、下, 陈纪修等, 高等教育出版社, 2004. 《简明数学分析》 第二版, 郇中丹等, 高等教育出版社, 2009. 《数学分析》数学分析第3版(1-3册), 郑学安等编著, 北京师范大学出版社。《代数学基础》(上),张英伯,王恺顺,北京师范大学出版社《高等代数学》第三版,姚慕生,吴泉水,谢启鸿。《空间解析几何》(第四版),高红铸,王敬庚,傅若男,北京师范大学出版社《解析几何》尤承业,北京大学出版社《解析几何》(第三版),丘维声,北京大学出版社《新祥旭714考研辅导班内部讲义》四、分数线学校名称:北京师范大学学院名称:数学科学学院年份:2019专业代码:070101专业名称:基础数学总分:305.00政治:48.0外语:48.0专业课一:85.0专业课二:90.0五、714大纲1、实数集与函数考试内容:实数概念及性质,确界原理,闭区间套定理,函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立.2、数列与一元函数的极限考试内容:数列极限和函数极限(简称极限)的定义,数列的上、下极限,函数的单侧极限(自变量趋于单点时函数的左极限与右极限,自变量趋于正或负无限大时函数的极限),函数的单侧上、下极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的性质,极限存在的两个判别准则: 柯西(Cauchy)准则和单调有界准则, 两个重要极限,致密性定理,聚点定理,数列极限的施托尔茨(Stolz)定理,函数极限的海涅(Heine)定理,开集、闭集和紧集,有限覆盖定理.3、一元函数的连续考试内容:函数连续的概念和性质,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质. 4、一元函数微分学考试内容:导数和微分的概念和关系,导数的几何意义和物理意义,微分的几何意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数,莱布尼兹求导公式,一阶微分形式的不变性,微分中值定理,泰勒(Taylor)公式,洛必达(L'Hospital)法则,函数单调性的判别,函数的极值,函数的最大值和最小值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,插值多项式和方程近似求根.5、一元函数积分学考试内容:原函数和不定积分的概念,不定积分的基本性质,基本函数的积分公式,定积分(指黎曼积分)的概念和基本性质,定积分中值定理,积分上、下限函数及其导数,黎曼可积的判别准则,牛顿一莱布尼茨(Newton-Leibniz)公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式和简单无理函数的积分,反常(广义)积分,定积分的应用.6、无穷级数考试内容:(一)常数项级数:收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件,几何级数与,p级数及其收敛性,正项级数收敛性的判别法,交错级数与莱布尼茨定理,任意项级数的绝对收敛与条件收敛.(二)函数项级数:收敛域、和函数、一致收敛概念,函数项级数的一致收敛判别法、和函数的分析性质(连续性、可微性和可积性;逐项求极限、求微分和逐项求积分),(三)幂级数:幂级数及其收敛半径、收敛区间(指开区间)和收敛域,幂级数的和函数,幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法,初等函数的幂级数展开式.(四)三角级数与函数的傅里叶(Fourier)级数:2л-周期函数的傅里叶系数与傅里叶级数,黎曼引理,贝塞尔不等式,傅里叶级数收敛的狄尼(Dini)判别法、狄利克雷(Dirichlet)判别法,傅里叶级数的收敛定理,2l(l>0)-周期函数函数的傅里叶级数,正弦级数和余弦级数.7、多元函数微分学考试内容:多元函数的概念,二元函数的几何意义,多元函数的极限与连续的概念,多元函数极限存在与否的判断,二元函数的累次极限,有界闭区域上多元连续函数的性质,多元函数的偏导数和全微分、二阶乃至更高阶偏导数,全微分存在的必要条件和充分条件,隐函数存在定理,反函数存在定理,多元复合函数、隐函数的求导法、二阶导数,方向导数和梯度,空间曲线的切线和法平面,曲面的切平面和法线,二元函数的二阶泰勒公式,多元函数的极值和条件极值,多元函数的最大值、最小值及其简单应用.8、含参变量的广义积分考试内容:含参变量的广义积分的概念,含参变量的广义积分一致收敛的概念,含参变量的广义积分的分析性质,一些含参变量的广义积分的计算.伽玛(Gamma)函数,贝塔(Beta)函数.9、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用,两类曲线积分的概念、性质及计算,两类曲线积分的关系,格林(Green)公式,平面曲线积分与路径无关的条件,二元函数全微分的原函数,两类曲面积分的概念、性质及计算,两类曲面积分的关系,高斯(Gauss)公式,斯托克斯(Stokes)公式,散度、旋度的概念及计算,曲线积分和曲面积分的应用.六、专业课经验专业课前期先打好基础,后期的巩固与提高才有效果,大概用了2个月的时间先看华东师范大学的《数学分析》,和北大的《高等代数》。主要是看内容,课后习题(两套教材都是有配套习题解答书,用起来很方便)。关于教材的内容,不留死角,在课本上的内容都要弄清楚,课后习题先自己独立思考,不会的话借助习题解答书。暑假6月到9月在看李傅山的《数学分析中的问题与方法》和王利广的《高等代数中的典型问题与方法》,两本书是分类综合的复习书,相比教材难度要稍大,把教材的内容重新归类,提炼出常考点,难点重点,也保证了每个题都有解答,我经常会有想不通的地方,会提出一些问题与新祥旭一对一的学长沟通,暑期认真读透了这两本书,感觉收获很大。过完暑假自己开始作华东师范大学的考研真题(因为华东师范大学的考研真题比较全,网上有卖一套解答与解析),每天白天查漏补缺并学习英语和政治,晚上抽出3小时的时间,模拟考试,时间持续了一个多月,进步很大。知道了考试的大致范围,常考点和套路,这个时候再去看其他学校的考研真题,大部分都有了思路。进入11月及12月,我开始钻研琢磨北师大的考研真题,因为北师大的考研真题在网上没有成体系的解答,基本上都是我和新祥旭学长一道一道商讨解决的。与此同时我开始着手解析几何的备考(北师大的专业课2是65分的解析几何和85分的高等代数,虽然解析几何的难度比较低,但是11月开始着手备考有点不妥)进入12月份,自己的心态有些变化,每天会心慌(尽管自己前期做了很多努力,看书与刷题,也许到这个时间段心态的变化都是正常的。

奚若

这两位老师都因此事出名,学生提起都害怕,家长也很无奈

这两位老师都因此事出名,学生提起都害怕,家长也很无奈考试是学生们学业生涯中最重要的时刻,尤其是一些把控着升学关口的大型考试,比如说高考、考研等。要想把考试考好,就得把试卷做好,因此很多学生认为,能够决定自己考试结果的就是试卷的难度了!但是也有人认为,试卷是人出的,准确的说是命题人!提到命题人,有这样两位老师,广大学生可能印象深刻!那就是葛军和吴一安老师!两位老师都是以命题难度大而出名,学生们提起他们都害怕,家长表示也无奈!“数学帝”葛军葛军老师是南京师范大学的教授,现在担任南京师范大学附属中学校长。此外葛军老师还有两个重要的头衔,一个是新课标高中数学(苏教版)教材编写组核心成员,中国数学奥林匹克高级教练!葛军老师多年潜心数学研究,在数学领域颇有造诣,也正是因为此,他先后于2004年,2007年,2008年,2010年多次参与江苏省高考数学试卷的命题工作!但是葛军老师的命题试卷往往很有特色,重视考核学生的逻辑思维能力,难度颇大,所以他被高考生们称为“数学帝”!网上曾经流传着这样的段子,凡是参加葛军老师命题的高考数学试卷后,90%以上的女生都是哭着走出考场的,男生则是撕书砸东西!但是葛军老师的真正走红是在2019年,这一年江苏省的高考数学试卷,考生反映普遍难度偏大!因为葛军老师名声在外,他无辜躺枪,很多考生认为这是葛军出的题,纷纷进行吐槽。葛军老师也很无奈呀,怎么受伤的总是我!于是在网上发表声明,称自己并没有参加2019年高考数学试卷的命题工作!这份声明迅速登上热搜榜,葛军老师真正走红!“灭绝师太”吴一安第二位让学生们提起都害怕的命题老师就是吴一安老师!吴一安老师早年曾就读于北京外国语大学的前身北京外国语学院英语语言专业,毕业后留校任教至今!此后又前往英国剑桥大学等世界名校深造过,正是凭借着在英语方面的颇高造诣,她被推荐担任2010年考研英语命题组组长!但是吴一安老师在2010年出的那张考研试卷,难度非常之高,直接把当年的140万考生考得痛哭绝望。很多考生,其他考研科目分数都还不错,就是因为英语这门科目没有考好,导致最终没有能成功考上研究生!广大考生对2010年的考研英语反响也比较大,得知是吴一安老师出的试卷后,考生们戏称她是“灭绝师太”!由于当年的考生们反响比较大,吴一安老师在事后也做出了一番解释:“英语考的是能力,如果一个人花了几个月的时间,做了几套真题就能得高分,那是我们英语命题组的罪过,对不起国家,对不起21世纪真正的人才,研究生需要的是对未知领域的探索能力,正如今年的考研英语一样,不管你复习了没复习,对大家都是一样的,我相信大家看了卷子都很迷茫,要的就是这个效果,在这种迷茫状态下,人才才会脱颖而出,如果你英语没考好,我只能说你不是人才,不适合读研究生,希望大家能够理解我们命题组的良苦用心!”吴一安老师的这番话语再一次引起了大家的争议,但是不管如何考试已经考了,已经过去了,考生们也是很无奈!家长也很无奈其实不光学生们很无奈,家长也很无奈!孩子没有考好,升学遇挫,他们心里面也不是滋味,毕竟自己也不能要求两位老师把试卷出得简单一点!只能不时地责怪孩子,平时不努力,现在好了,题不会做!小研想说的是,两位老师把试卷出得这么难,或许有他们自己的考虑,但是确实会对学生们的学习兴趣有很大的打击!爱因斯坦曾经说过,兴趣是最大的老师!而我们知道的很多名人大师,他们之所以能取得很大的成就,就是因为有很大的兴趣,比如发明家爱迪生!数学和英语这两门科目确实非常重要,家长们在督促孩子努力刻苦学习的同时,也要重视孩子对这两门课兴趣的培养,只有孩子感兴趣了,他才愿意去学,才会更加努力地学习。鉴于此,小研这里诚心地向各位家长朋友推荐两本有关这两门课的学习书籍!感兴趣的各位家长朋友可以点击小卡片链接购买!《跟着美剧学英语》这本书就是从孩子学习英语的兴趣出发,让孩子走进英语交流环境,学会常用的表达,可以让孩子们感受到地道的美语,快速提升英语口语水平。《学数学原来这么简单》这本书是现在卖得很火爆的书,深受各位家长朋友的欢迎。它是中小学数学教材之父刘薰宇老师编写的一本数学科普经典,本书也受到了杨振宁,谷超豪,陈景润,华罗庚等多位名人大师的推荐,谷超豪院士曾经就这样说:我看了不少课外书,记得看了刘薰宇的书,于是对数学越发的感兴趣了!你认识葛军老师和吴一安老师吗?你觉得试卷难度出得过高合适吗?欢迎留言交流

竞技场

北京大学2005数学分析试题及解答

又是一年高考时,但今年这个时候似乎还不是很热,也算天公作美了,祝高三学子高考顺利。同时,祝大家端午节快乐。各位要考研的同学也要有紧迫感了,大约半年后就是你们上考场了。前面就已经说了,2003年与2004年的数学分析我在网上没有找到,所以我就直接跳到2005年的这份数学分析试题了。如果你们能找到那两年的试题分享给我,我再考虑把那两年的也补上。但其实2005年的这份试题看起来不像是北京大学的数学分析试题,按道理说应该是10道题,而这里只有6道题,考虑到网上流传的版本都说这就是北京大学2005年的数学分析题,我也就假设它就是吧,无非是多做了几道简单题。我再多说几句,第一题涉及的函数的上下极限我只在裴礼文的书上见到过,不过学过数列极限与数列的上下极限就能猜到函数的上下极限的定义。第二题是关于一致连续的,导函数有界是常用的一个判别方法。第三题是求Taylor级数的题,最好的方法是利用已知的级数。第四题关于多元函数。第五题很常见,比如可以在裴礼文的《数学分析中的典型问题与方法》第二版第922页例7.3.2找到,用对称性简化计算。第六题是教材上的Dini定理,最核心的一点是:有界闭区间是紧集。