欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
数学篇|历年考研数学真题及答案解析黄金雨

数学篇|历年考研数学真题及答案解析

无论是第几遍做真题,做错的题目,都要做记号,并找出错因。如果下一次还犯类似错误(尤其是计算失误),一定要好好反思反思。

堀司

历年考研数学真题解析(1987-2019年)按年份讲解:2011年真题

考研数学真题讲解:每日一练192天一、题目2011年考研数学真题二、解析考查:方程的根考查:含抽象函数记号的多元函数求偏导考研路上,你我同行。加油!

不纯于德

历年(1987-2019年)考研数学真题解析:2011年真题解析

考研数学真题讲解:每日一练191天一、题目2011年考研数学真题二、解析考查知识点:含变限积分极限的计算考查知识点:不等式的证明、数列收敛证考研路上,你我同行。加油!

至富

历年(1987-2019)考研数学真题解析:2013年线性代数真题讲解

1987-2019年 历年考研数学真题解析 视频+PDF文档 无偿分享考研数学真题讲解:每日一练206天一、题目2013年线性代数真题二、解析题目1解析题目2解析考研路上,你我同行。加油!泰笛牛考研数学

自私自利

30年考研数学真题分类解析|专题三:极限基本理论

大家好,我是老梁!今天继续推出《30年考研数学真题分类解析》专题三:极限基本理论。极限理论是考研高等数学最不容易掌握的内容,定理繁多,扩展性较强,出题点基本上是理论的扩展部分,如四则运算、复合函数法则的扩展,极限性质的扩展等。由于这部分真题题目较多,篇幅过长,因此知识链接部分只列出了与题目相关的部分,其它部分可参考老梁的其他文章。知识点链接一、极限的性质1、收敛函数(数列)的有唯一极限。2、极限保序性:二、极限四则运算一些扩展三、归结原则四、连续函数极限复合运算五、夹逼准则六、单调有界原理单调有界数列必收敛;数列收敛必有界;收敛数列不一定单调.真题及解析【评注】极限理论是高等数学的基础,后续所有部分,如连续、导数、积分及级数等都建立在极限的基础之上。极限理论知识点掌握的牢固与否直接影响后续知识的掌。而且极限理论在考研数学中是高频考点,既以选择题的形式单独出现,又常常和其它知识点结合起来,因此同学们一定要重视极限理论的复习。下期预告:30年考研数学真题分类解析|专题四:函数极限计算(一)

嚎者

30年考研数学真题分类解析|专题一:反函数与复合函数

真题及解析【分析】分段函数的复合函数。主要注意函数复合过程中,内层函数的值域与外层函数的定义域的交集非空。【分析】本题主要是要弄清楚反函数和原函数的定义域、值域之间的关系.【评注】从2002年至今差不多20年,考研数学在反函数与复合函数部分并没有单独出题。但近些年考研数学都出现了多年未见的题型,如2018年数学一的假设检验,2020年数学一求函数解析式。2021年考研数学会不会在分段函数的复合函数及反函数方面习题呢?知识点链接一、反函数1、定义设 y=f(x) 的定义域为 X ,值域为 Y 。若对任意 y∈Y,都只有唯一的 x∈X,使得 y=f(x) 成立,则按这个对应关系定义的函数称为 y=f(x) 的反函数。2、反函数存在的条件(1) 设 y=f(x) 的定义域为 X,值域为 Y,则 f(x) 存在反函数的充分必要条件是对X 中任意的不同元素 a,b, 都有 f(a)≠f(b);(2) 设 y=f(x) 的定义域为 X,值域为 Y。若 f(x) 是 X 上的单调函数,则 f(x) 在 X 上存在反函数,且反函数的具有相同的单调性。二、复合函数设 y=f(u) 的定义域和值域分别为 U 和 V,函数 u=g(x) 的定义域与值域分别为 X 和 Y,且 Y∩U 非空。由 y=f[g(x)] 确定的函数称为由函数 u=g(x) 与函数 y=f(u) 构成的复合函数,变量 u 称为中间变量。下期预告:30年考研数学真题分类解析专题二:函数的特性期待您的关注!

聚客镇

1987-2019年 历年考研数学真题解析:2015年考研数学真题解析

2010-2019年 考研数学一二三真题 逐题精讲视频已出!!!考研数学真题讲解:每日一练216天一、题目二、解析考研路上,你我同行。加油!

期而后可

考研数学|真题一题多解系列,精选001

考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!

昏昏默默

2021年考研数学一真题、解析

2021年考研数学一真题、解析2021 年全国硕士研究生入学招生考试数一试题一、选择题 :1-10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号里.

逆之则凶

历年考研数学真题解析:2020考研数学强化复习 2007年线代真题

考研数学真题讲解:每日一练171天一、题目题目二、解析题目1解析题目2解析考研路上,你我同行。加油!