燃料电池项目可行性研究报告-国产化、规模化、精细化一、背景:政策、成本推动下,FCV 开启放量降本1. 车辆电动化大势所趋,燃料电池为商用车电动化的优选方案电动化趋势下锂电技术路线率先突围,尤其带动了乘用车的电动化浪潮。相较之下,重载运输领域的电动化进程却略显缓慢。从市场规模看,2019年国内重卡销量 117 万辆,远不及乘用市场庞大,但其能源消耗大,污染严重,电动化意义不亚于乘用车。2019 年国内汽车销量 2577 万辆,其中重卡仅 117 万,占比不足 5%。从保有量看,截止 2020 年上半年国内汽车保有量 2.7 亿辆,其中载货汽车不足 3000 万辆,远不及乘用车等载客车辆。然而重卡等货运车型负荷重,运营时间长,燃油消耗量大,对推动节能环保意义重大。2017-2019 年重卡销量及市场占比2019 年重卡颗粒物、NOx 排放占比FCV 在重载、长续航领域优势明显,加氢更为便捷,成为商用车电动化的优选。商用场景下随续航里程增长,锂电车辆电池质量占比快速提升,造成车辆运载能力下降。相较锂电,燃料电池能量密度更高,相同续航里程下,FCV 在自重方面的优势将增加有效荷载。除此之外,FCV 能够在 10-15min 内完成氢气加注,而对纯电车型,快充桩充电时长仍需 1 小时上下,慢充近十小时。由于商用运营强度更高,FCV 成为其电动化的优选方案。2. 政策、成本交替推动下,产业分两阶段实现快速成长氢燃料电池汽车分阶段进入平价时代2020-2025 燃料电池系统降本曲线(元/W)2020-2025 49t 燃料电池重卡降本趋势(万元)二、需求:燃料电池技术成本中枢,2030 年市场规模 350 亿1. 膜电极是燃料电池的核心部件,在燃料电池成本占比超 30% 燃料电池主要包括电堆、氢气系统,其中电堆以膜电极(MEA)、双极板为主。氢气系统以空压机、增湿器、氢循环泵、高压氢瓶为主。燃料电池动力系统构成MEA 是燃料电池的技术和成本中枢。MEA 是燃料电池发生电化学反应的场所,为反应气体、尾气和液态水的进出提供通道,主要由催化剂、质子交换膜、气体扩散层构成。氢气通过阳极气体扩散层扩散至阳极催化层,在阳极催化层的作用下生成氢离子和电子,电子由催化剂中的导电物质传递到阳极气体扩散层向外电路传递,质子(氢离子)由阳极催化层通过质子交换膜传导至阴极催化层,外电路的电子经由阴极气体扩散层向阴极催化层传递,在阴极催化剂的作用下电子、质子、氧气在阴极催化层生成H2O,H2O 通过阴极催化剂扩散至阴极气体扩散层。理想的 MEA 需要良好的气体扩散能力、液态水管理能力、质子传导能力。从成本构成来看,膜电极占燃料电池成本大头。FCV 主要成本构成包括燃料电池系统、车载供氢系统、动力电池、车架等其他传统车辆部件。其中系统为 FCV 的核心部件,在整车成本占比超 60%。系统包含电堆、空压机、氢循环泵等,其中膜电极作为电堆核心部件,在整个系统成本占比约30%。49t 燃料电池重卡成本构成燃料电池系统成本构成2. 需求:整车放量拉动膜电极需求,2030 年市场规模将接近 350 亿元FCV 市场开启放量,2030 年有望达到百万产销。政策正式落地将加速国内 FCV 产销,2025 年国内 FCV 产销量有望突破十万辆。规模化、国产化推动下,燃料电池成本将快速下降,补贴期末 FCV 将在部分地区实现无补贴条件下对标燃油车平价,经济性优势驱动下,FCV 将持续放量,2030 年产销规模达到百万。2021-2030 年国内 FCV 产量规模预测(万辆)2030 年膜电极需求接近千万平米,对应市场规模超 350 亿元。假设 2021、2025、2030 年燃料电池车需求达 1.5 辆、10 万辆、100 万辆,考虑燃料电池重卡放量,单车系统额定容量将由此前 30kW 为主逐步提升至 100kW左右。膜电极功率密度由目前 1W/cm2 逐步升至 1.5W/cm2 以上,对应2030 年膜电极需求接近 1 千万平米,对应 2030 年市场规模在 350 亿元上下。2021-2030 年国内膜电极市场规模预测(亿元)国产化:膜电极达到商用标准,国产化推进带动成本下行目前生产膜电极的厂商分为两类:一种是具备膜电极批量产业化能力、能够自给自足的车企或燃料电池厂商,以丰田、Ballard 为代表。另外一种是专业的膜电极供应商,包括 Gore、Johnson Matthey、Toray(Greenerity)和国内的鸿基创能科技有限公司、苏州擎动动力科技有限公司、武汉理工氢电科技有限公司。国产膜电极已初步达到应用标准,成本较进口产品大幅优化,带动产业链成本下行。目前国内领先膜电极企业鸿基创能、武汉理工新能源、擎动科技膜电极产品功率密度均超过 1W/cm2,测试使用寿命达到 1~2 万小时,已基本满足产业化应用需求,2019 年开始国产膜电极产品逐步开始供应。国产膜电极较进口产品成本优势明显,带动燃料电池成本持续下行,2020年采用鸿基创能 MEA 的国鸿新一代“鸿芯”电堆成本已降至 1.99 元/W。国内膜电极产能布局燃料电池项目可行性研究报告编制大纲第一章总论1.1燃料电池项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1燃料电池项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表关联报告:燃料电池项目申请报告燃料电池项目建议书燃料电池项目商业计划书燃料电池项目资金申请报告燃料电池项目节能评估报告燃料电池行业市场研究报告燃料电池项目PPP可行性研究报告燃料电池项目PPP物有所值评价报告燃料电池项目PPP财政承受能力论证报告燃料电池项目资金筹措和融资平衡方案第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:
1.新能源车是确定性极强的高成长赛道,未来十年近万亿成长空间新能源汽车在环保减排和智能化自动驾驶进程中的绝对优势使其迅速发展成为必然趋势。我国经过七年示范推广、爆发增长、精准扶持和补贴退坡回归市场四个阶段,产业链经过降本提质,电池价格下降近70%、能量密度提高近50%,已具备市场化基础。政策上国内双积分和欧盟日趋严格的碳排放及各国新能源补贴,产品上新势力放量和传统车企布局电动化平台,两者共振将新能源车带入全新发展阶段。目前全球新能源汽车渗透率不足3%,处于行业成长阶段,2030年全球产销量或达3000万辆,对应30%渗透率,十年产销量十倍空间。预计2030年全球动力电池市场空间将近9000亿元,正极市场空间2630亿元、负极890亿元、隔膜610亿元、电解液520亿元。2.锂电在储能及铅酸替代领域潜力无限,经济性初显储能行业目前仍然是一片蓝海市场,近看5G基站带来年均超10GWh的确定性增量,远看新能源替代下多重应用场景:峰谷套利已经在部分地区具备商业价值;和新能源发电组合可赋予其可调节性;提供电能质量管理及作为备用电源。全球铅酸电池每年超500GWh出货量,超3000亿市场空间,下游应用主要是电动自行车等低速车、汽车启动电源及其他便携式设备;锂离子电池在能量密度、循环寿命、能量转换效率和环保方面全面优于铅酸电池,随着价格下降,目前单次循环成本已低于铅酸电池,全场景替代大势所趋。3.高镍三元和铁锂实现分级应用,结构端看动力软包崛起和方形无模组化高镍三元在以高端乘用车为代表的重视能量密度的应用场景下份额将持续扩大、趋势明显,磷酸铁锂将凭借其性价比和安全优势在低续航乘用车及储能、铅酸替代领域焕发活力。动力软包由于其高能量密度和不易爆炸属性,有望随着头部厂家放量持续扩大市场份额;方形电池结构进步空间大,看好以“CTP”和“刀片电池”为代表的无模组方案带来的能量密度提升和电池成本下降。4.中日韩多寡头逐步稳定,国内外交叉竞争,潜力电池企业加速上升中国的宁德时代、比亚迪,日本的松下,韩国的LG化学、三星SDI、SKI,进入电池行业早、技术积累深厚、不断投入产品迭代、规模成本优势明显、合作多家整车厂客户,CR10占比在80%以上,逐步形成多寡头稳定态势。随着国内外车企与电池企业在全球交叉竞争与博弈,部分有潜力的电池企业也在积极布局、绑定头部整车厂战略合作,加速提升期望站稳二梯队。了解酷车动态,关注KU车联盟。我们是内容生产商,我们更是智造搬运工。
来源:发布易发布易5月30日 - 中材科技(002080)晚间公告称,公司控股子公司中材锂膜有限公司拟投资15.47亿元,在山东省枣庄市滕州经济开发区实施建设“年产4.08亿平方米动力锂离子电池隔膜生产线”项目。公告显示,此次投资标的名称为年产4.08亿平方米(含2亿平方米涂覆隔膜)动力锂离子电池隔膜生产线建设项目,项目主要内容为投资建设6条单线产能6800万平方米/年的锂电池隔膜基膜生产线、10条涂覆隔膜生产线,合计产能4.08亿平方米/年(含2亿平方米涂覆隔膜)。项目地点位于山东省枣庄市滕州经济开发区顺河西路368号,中材锂膜现有厂区内。项目建设期23个月,计划于2019年7月启动。项目总投资15.47亿元,其中建设投资14.15亿元,建设期利息3797.93万元,流动资金9316.02万元。资金来源为自有资金5.18亿元,银行贷款10.28亿元。根据项目可行性研究报告,项目建成后,预计实现年均销售收入7.40亿元,年均利润总额3.20亿元,总投资收益率为21.38%,具有较好的经济效益。中材科技表示,本项目是公司锂电池隔膜产业发展的迫切需要,项目符合国家新能源、新材料等方面的产业政策,经济效益和社会效益非常显著。项目建成后,公司锂电池隔膜产业将抢占更多的市场份额,进入战略客户主流供应商体系,在中高端隔膜市场形成较高的市场地位,同时将大幅降低生产成本,提高盈利能力。
(报告出品方/作者:安信证券,邓永康、朱凯、王瀚、郭彦辰)报告综述:从三个问题,深度解析固态锂电池当前产业化进度。本篇报告我们将深度解析市场最关注的三个问题:1、半固态锂电池产业化对现有产业链的影响?2、全固态锂电池体系的产业化进程如何?3、全固态锂电池产业化后对现有锂电池体系的冲击有多大?1. 解析一:半固态锂电池的产业化道路进展如何?全固态锂电池具备能量密度高、安全性高、柔性化等优势,同时又存在离子电导率低、界面阻抗大等问题短期无法商业化,这个已经得到市场普遍的认可,我们不再赘诉。我们本篇报告将深度解析市场最关注的三个问题:1、半固态锂电池对现有产业链的影响?2、 全固态锂电池体系的产业化进程如何?3、全固态锂电池产业化后对现有液态锂电池的材料体系和制备工艺有多大的冲击?1.1. 脚踏实地,半固态锂电池先行蔚来发布 150KWh 固态电池,预计 2022 年四季度推出。2021 年 1 月 9 日,蔚来汽车举行 NIO DAY 发布会,发布 150kwh 固态电池包,预计将于 2022 年第四季度正式推出,能量密 度达到 360wh/kg。其中,固态电池主要采用了“原位固化固液电解质”,该技术的创新在于原 位聚合涂覆技术,即在基膜上进行的涂覆是由原位聚合反应实现,可以改善正负极界面接触, 预计原位聚合涂覆用了 LLZTO、LATP 等陶瓷固态电解质成分。我们认为原位固化固液技术主要为了解决无机电解质/电极的界面阻抗问题。目前市场上无机 固体电解质的研究主要集中在两大类,硫化物体系与氧化物体系,其中氧化物体系 LLZTO、 LATP 等存在界面阻抗高、制备的电解质膜机械性能差、离子电导率低等短期无法有效解决 的问题。采用原位固化技术,能够实现固体电极片与电解质膜在分子层面的紧密接触,降低 固/固界面阻抗,有效提升电池的倍率性能。同时,参考最新的学术研究成果,目前氧化物电 解质的离子电导率仍处于 10-4 S/cm 左右的较低水平,暂时达不到商业化(>10-2 S/cm)要求, 因此我们预计仍需要加入电解液来解决离子电导率。传统半固态锂电池,主要是指采用凝胶电解质制备的锂电池。凝胶电解质,是以聚合物为电 解质“基膜”,加入锂盐,同时加入碳酸二乙酯/碳酸乙烯酯等低分子有机溶剂作为增塑剂, 经过浸泡活化后,得到离子电导率指标介于固体电解质和传统电解液之间的凝胶电解质。凝胶电解质具备固体和液体的双重优势,同时具备粘结性和液体快速传输性质。凝胶电解质 是针对目前聚合物固体电解质离子电导率低,而采取的一种折中方式。凝胶电解质既不是固 体,也不是液体,反过来讲既是液体,也是固体,因此同时兼备两者的优势。凝胶电解质种 类:目前研究较为成熟,已经商业化的有 PEO(聚环氧乙烯)基、PVDF-HFP(聚氯乙烯六氟丙烯)基、PMMA(聚甲基丙烯酸甲酯)基、PAN(聚丙烯腈)基。其优点在于:1、离子电导率比聚合物固体电解质高,一般在 10-3S/cm 数量级,基本满足商 业化应用需求。2、基本形态为固态,没有流动的液体,封装简单,形状可以多样化,适用 于软包电池中。3、界面相容性较好,循环性能和倍率性能均较好。半固态锂电池只是一种过渡产品,并非最终解决方案。由于凝胶电解质还是含有少量低闪点 的有机溶剂,并没有从根本上解决电解液造成的安全性能问题,采用金属锂做负极仍有一定 的安全隐患,因此对能量密度的提升程度有限,是短期全固态锂电池没有实现商业化情况下 的一种折中解决方案,并非最终形态。1.2. 半固态锂电池商业化进展及制备工艺兼容性?珈伟股份实现第一期快充类固态锂电池投产。根据公司 2017 年 12 月 20 日公司,其控股子 公司珈伟龙能固态储能科技如皋第一期快充类固态锂电池生产线正式投产,规模 1 亿 Wh。 公司通过引入离子液体或者凝胶电解质,改善电解质的界面浸润性和稳定性,降低界面阻抗, 达到类固态的标准,未来公司主要面向 4 种类型的电池:1、高镍电池,配套物流车、乘用 车等,能量密度达到 120-130Wh/kg,循环寿命 7000 次以上;2、磷酸铁锂电池,配套公家 车,客车;3、钛酸锂电池,配套卡车、拉煤车、轨道车等,循环寿命 20000 次以上;4、高能量密度锂电池,配套乘用车,能量密度到 230Wh/kg,循环寿命 2000 次以上。赣锋锂业一期项目固液混合的半固态锂电池实现规模化生产能力。公司与中科院许晓雄课题 组合作,设立全资子公司浙江锋锂新能源科技有限公司,开展固态锂电池方面的产业化工作。 根据公司 2018 年 8 月 3 日投资者关系活动记录表资料显示,公司项目一期中样品电芯属于 混合固液电解质类型的半固态锂电池;按照产品设计的要求,该款电池是综合具备了较高比 能量、优异的功率特性及良好的循环寿命,同时易于规模化制备。按照现有循环测试数据推 算,预计该类电池可循环 3000 次,容量保持 80%(1C 充电/1C 放电,100%DOD,室温条件)。半固态锂电池制备工艺流程可兼容传统锂电池生产工艺。半固态锂电池的正极、负极极片的制备工艺可兼容传统锂电池卷绕和叠片的制备工艺。凝胶电解质制备工艺相对复杂,主要有 两种:1、传统工艺:基于分子间作用力形成物理交联,再吸入电解液。需要经过聚合物成 膜、造孔剂萃出、电解液浸渍等步骤,制备出凝胶电解液后再通过叠片、卷绕的方式与正负极组装成电池。2、现场聚合工艺,其中热引发现场聚合是目前主流的技术。加入一定比例 的单体、热引发剂、交联剂、电解液混合均匀,制备前驱体溶液,注入电池壳中,臵于 50-120℃ 下加热 0.5-1 小时,在不改变现有锂电池工艺的基础上,制备半固态锂电池。目前中科院物 理研究所、比亚迪、三洋株式会社、三星 SDI 均有相关的技术研究和专利储备。半固态锂电池对现有四大材料体系冲击较小。1、正极材料:可延续现有锂电池的正极材料 体系,磷酸铁锂、锰酸锂、钴酸锂、三元 NCM 等。2、负极材料:目前主流的石墨系,钛酸 锂等、以及未来的硅碳系均可适用,由于存在电解液以及隔膜,不适用于金属锂负极。3、 电解液:仍需要少量的有机溶剂浸渍,目前主流的商业化锂盐 LiFP6,以及新型锂盐 LiTFSI/LiFSI 等需要添加。4、隔膜:由于仍有部分电解液存在,凝胶电解质不能起到电子绝 缘的作用,仍需要隔膜隔绝正负极防止短路。2. 解析二:全固态锂电池的产业化现状如何?业内预计全固态锂电池有望在 2020-2025 年期间实现小批量生产。早在 1978 年 Michel Armand 首次 报道了固态金属锂电池的相关研究,随后 40 年内固态锂电池被全球广泛研究,固体电解质离子电 导率低,界面相容性差等技术瓶颈制约了商业化进程,全固态锂电池的研究停滞于 20 世纪末,2007 年开始,全固态锂电池的研究开发复苏,2017 年中国电动汽车百人论坛上,业界预计 2020-2025 年全固态锂电池有望实现小批量生产。固体电解质按照体系主要分为两大类:有机体系和无机体系固体电解质。有机电解质相对简单一 些,主要以 PEO 为主,无机体系又可以细分为氧化物体系和硫化物体系。氧化物电解质体系又可 以细分为非晶态氧化物(薄膜氧化物)体系,以及晶态氧化物体系;硫化物体系也属于非晶态体 系的固体电解质。2.1. 从全球研究机构看全固态锂电池的产业化进程日本固态电池研究体系成熟,计划 2022 年全面掌握全固态电池相关技术。日本在硫化物全 固态锂电池方面的研究成果较为突出。法国 Bolloré公司是全球第一个将聚合物全固态锂电池 运用于电动车的公司。海外申请专利前 10 名中,日本公司占有 9 家,韩国公司占 1 家。其 中日本丰田株式会社申请的专利数最多,达到 218 件,占总申请数的 20.15%。2018 年 6 月,日本新能源产业技术综合开发机构宣布,将于未来五年内联合学术机构和企业共同开发 下一代电动车全固态锂电池。该项目预计总投资额 100 亿日元(5.8 亿元人民币),丰田、 本田、日产、松下等 23 家汽车、电池和材料企业,以及京都大学、日本理化学研究所等 15 家学术机构将共同参与研究,计划将于 2022 年全面掌握全固态电池相关技术。丰田的固态电池专利申请居全球之首,80%集中在无机固体电解质领域。丰田进入无机固体 电解质的时间相对较晚,但进行了持续性的专利布局,主要分布在氧化物电解质和硫化物电 解质方面。其中氧化物电解质只集中在 2010-2011 年期间,占比逐渐减少,丰田对硫化物电 解质的重视程度逐渐加大,重心主要放在如何减少硫化氢的产生,以及如何提高固体电解质的离子电导率方面。全球固态锂电池专利申请数量呈现加速提升趋势。据德温特数据库检索数据显示,在 1995-2015 年期间,海外全固体锂电池领域,共申请专利 1082 项。2007 年后,海外对全固态锂电池的专利申请年均复合增速达到 35.3%。1996-2007 年期间,液态锂电池实现商业化 生产固态锂电池的研究持续低迷。2007 年后液态锂电池的技术趋于成熟,在安全性能和能量密度上的天花板也逐渐显露出来,海外主流研究机构加大对固态锂电池的研究力度。国内对固态锂电池的研究起步相对较晚。国内关于全固态锂电池专利申请数量相对较少, 1996-2015年期间共申请专利170项。通过检索国家知识产权局检索数据,查询了1996-2015 年期间公开的全固态锂电池专利申请数据,期间共申请专利 170 项。国内全固态锂电池仍处于基础性研究阶段。主要两部分机构在做相关研究:1、国内知名高 校及科研院所,具有代表性的团队有:清华大学南策文院士团队、中南大学刘业祥院士团队、 中科院物理所陈立泉院士团队、中科院宁波材料所许晓雄团队、中科院青岛能源所崔光磊教 授团队等。2、国内锂电池产业链上优秀企业,比如宁德时代、赣锋锂业、中航锂电、贝特瑞、力神、台湾辉能等等。2.2. 聚合物全固态锂电池:已有初步商业化产品面世聚合物电解质基体可类比于固态溶剂。聚合物电解质主要有三大体系,其中最早发现可以导锂, 研究相对成熟的是 PEO 基固体电解质体系,其次还包括聚碳酸酯基体系、聚硅氧烷基体系以及聚 合物锂单离子导体基体系。其优点在于工艺流程简单,原材料价格低廉,缺点在于离子电导率低, 常温电导率在 10-6~10-7S/cm。2011 年法国 Bolloré 公司实现聚合物固态锂电池商业化,核心点要采用高温加热。法国 Bolloré 制 备的全固态锂电池,是国际上最早将聚合物全固态锂电池运用于电动汽车的案例,运用于市内租 赁电动车中。法国 Bolloré 公司旗下子公司 Batscap 公司生产的聚合物全固态锂电池,用于 Autolib 项目,采用磷酸铁锂为正极,带电量 30KWh,测试数据表明,电池在 60-80℃期间工作,以 1/3C 的倍率循环 1200 圈后,容量保持率在 80%左右,单体电芯的能量密度为 230Wh/kg,续航里程达到250km,最高时速 130km/h,能够满足城市居民的临时用车需求。2011-2015 年期间,博罗雷共计投 入 3000 辆电动汽车,租赁站点 1150 个,充电桩 6000 个,服务巴黎 12000 平方公里的 1300 万市民。 聚合物全固态锂电池的最大问题在于离子电导率低,法国 Bolloré 公司采用安装加热装臵的方式给 电池加热实现正常使用,一方面带来安全隐患,另一方面也造成成本抬升。中国科学院青岛能源所突破高能量密度固态锂电池技术。青岛能源所研发的“刚柔并济”固体 电解质,复合刚性的多孔骨架材料和柔性的聚合物离子传输材料,改善电池的固固界面相容 性和抑制锂枝晶产生,成功研制能量密度 300Wh/Kg、循环寿命超过 500 次的全固态锂电池。 通过了多次穿钉测试,固体电池体现出了一定的自修复功能,安全性很好,并通过了国家深 海中心的 11000 米深海压力舱检测。2017 年 3 月,青能所开发的“青能-Ⅰ”固体电池随中科 院深渊科考队远赴马里亚纳海沟,为“万泉”号着陆器控制系统及 CCD 传感器提供能源,累计 完成 9 次下潜,深度均大于 7000 米,其中 6 次超过 10000 米,最大工作水深 10901 米,累 计水下工作时间 134 小时,最大连续作业时间达 20 小时,顺利完成万米全深海示范应用。 相关成果已申请中国发明专利 29 项,国际 PCT 专利 3 项。其他大部分机构的聚合物全固态锂电池仍处于中试阶段。1、日本电力研究所采用卷对卷工艺,制备输出电压 12V 的三层单体聚合物全固态锂电池,正极材料 NCM111,负极材料石 墨,固体电解质聚醚材料,正极表面涂覆无机物材料防止界面氧化,降低界面阻抗,室温电 导率 10-5S/cm,未来设想通过与热泵、储热槽组成的热水器结合,使其在较高温度下正常工作。2、日本三重县产业支援中心,同样采用卷对卷的生产工艺,制备了超薄可弯曲的聚合 物固态锂电池。正极材料是磷酸铁锂与碳的复合材料,负极是钛酸锂/硅/石墨的复合材料, 电解质是交联型聚氧乙烯结构。该电池能在 0℃正常工作,未来有望与太阳能电池、电子纸、 柔性底板等大面积元件相结合使用。3、SEEO 公司主攻聚合物固态锂电池。SEEO 的研发 技术主要来自于美国能源部所属的劳伦斯伯克利国家实验室,主要研究方向是嵌段共聚物为 聚合物电解质。目前样品供货的电池组能量密度达到 130-150Wh/kg。2.3. 氧化物薄膜全固态锂电池:小微型电池领域实现商业化应用薄膜全固态锂电池主要通过磁控溅射方式商业化。薄膜全固态锂电池主要是指以 LiPON 为 电解质的锂电池,工作原理与传统锂电池相同,是重点研究的氧化物全固态锂电池体系,1992 年由美国橡树岭实验室通过射频磁控溅射 Li3PO4 靶材制备。由于 LiPON 离子电导率较低, 制备工艺苛刻,难以生产大电池,一般只能做成小微型电池,可用于微芯片、微机电系统、 微型存储器、植入式医疗器械、无线传感器等低能量供电领域。美国 Sakti3 公司研究较为深 入,技术相对成熟,此外 Cymbet Enerchips, Excellatron, Front Edge Technology, Infinite Power Solutions 等公司均初步具备商业化生产能力。美国 Sakti3 生产薄膜全固态锂电池的技术相对成熟。1、美国 Sakti3 采用真空沉积法制备电池,预计为氧化物体系,成本可控。Sakti3 自 2007 年成立以来,获得了包括通用汽车 320 万美元在内的 3000 万美元风险投资,采用真空沉积法制备,公司已经在密西根的小型示范 生产线上做小批量生产,未来有望在 1-2 年内实现商业化。2、韩国 GS Caltex 采用层层溅 射的方法制造出了超薄、邮票大小的固体锂离子电池。并在日本发行了样品。其正极材料为 LiCoO2,负极材料为锂,电解质材料为 LiPON。虽然其容量只有 0.5mAh,但是体积能量密 度超过 800wh/L,是普通锂离子电池的 1.2 倍,最高充电倍率可达 50 C,这款电池被用作无 线传送测试数据的小型温度感应器上,并可采用太阳能电池对其充电。国内率先商业化的是天津瑞晟晖能,产品性能稳定,能量密度超过 200Wh/kg。根据钜大锂电资料报道,公司已开发多款柔性薄膜全固态锂电池,目前已经在实验室小试,近期将筹建 1 万块薄膜全固态锂电池的连续化生产中试线。据公司官网介绍:公司电池产品体系为钴酸 锂/LiPON 电解质/Li,公司采用多层薄膜电池堆垛结构提升单体电池能量密度,能量密度大 于 200Wh/kg。公司电池循环性能稳定,能稳定循环 1000 次,容量衰减率小于 5%,年自放 电率不超过 10%,工作温度范围-40~160℃。应用领域包括军事工业、医疗电子、消费电子、 超级智能卡、微电子器件、可穿戴设备等等。空间测算:中短期应用领域以小微型电池领域为主,2020-2022 年预计维持高增速。根据 NanoMarkets 公司发布的 2015—2022 年薄膜电池和印刷电池市场报告显示,随着智能卡、 包装、消费类电子产品、可穿戴设备以及物联网的迅速发展,薄膜电池在这些领域的市场将 从 2015 年的 3400 万美元增长到 2018 年的 1.83 亿美元,于 2022 年最终将达到 11 亿美元, 2018-2020 年的年均复合增速达到 56.6%。在微电子领域,薄膜型全固态锂电池是微机电系 统唯一匹配的能源形式,随着微机电系统的发展,其需求也将进一步增大。柔性电池市场空间增速大,预计 2015-2020年维持 46.6%的年均复合增速。根据 Markets and Markets 发布的全球柔性电池市场预测研究报告显示,2015-2020 年期间,全球柔性电池市 场以 46.6%的复合年增长率增长,到 2020 年预计将达 9.58 亿美元,为薄膜锂电池的市场化 带来了新的市场空间。中长期离子电导率进一步改善,薄膜全固态锂电池有望用于大型电池领域。在手机、笔记本 电脑,以及电动汽车领域对电池的能量密度、倍率性能都提出更高的要求。目前已有企业在 手机市场做薄膜全固态锂电池的商业化开发。2013 年被苹果收购的 Infinite Power Solution 开发出多层堆垛统一密封结构的薄膜型全固态锂电池。其中,1.3mm 厚的电池容量高达 1360mAh,可以满足手机使用需求,并且各项性能远优于当前商业化的锂离子电池,而制造 成本相当,都是 0.8 美元/Wh 的制造成本。表明高容量的薄膜型全固态锂电池具有巨大的发 展潜力和应用前景。2.4. 硫化物全固态锂电池:界面性能和工艺技术突破成为商业化关键无机全固态锂电池的开发研究目前主要集中在硫化物电解质体系。材料端,离子电导率已经 接近电解液水平,是该类全固态锂电池最大的优势。丰田的商业化进展较快,有望率先实现硫化物全固态锂电池的产业化。1)2010 年,公司生产了一款 10cm× 10cm 大小的全固态电池产品原型,采用层叠串联结构,平均电压 为 14.4V,正极采用 LiCoO2,负极采用石墨,电解质采用硫化物材料.2012 年采用层叠串联结构,以 NCM 三元材料为正极,石墨为负极,得到了单体电压达 28V 的电池原型,其能量密度相对于液态电解液电 池提高了 5 倍。2014 年其实验原型能量密度达到 400Wh/kg。截止到 2017 年 2 月,丰田固态电池专 利数量达到 30 件,同时,公司计划在 2020 年实现硫化物固态电池的产业化,推出 10 款全固态电 池汽车。2)2010 年,日本 Idemitsu Kosan(出光兴产)开发了一款采用 Li2S-P2S5 电解质 A6 尺寸的层叠串联结构 固态锂离子电池单元,其电解质室温导电率达到4× 10-3S/cm以上,厚度为100μm,单体输出电压为14~ 16V。室温下,其放电容量为 136 mAh/g(30℃),低温下容量为 55mAh/g(-20℃)。3)美国 Planar Energy 公司于 2010 年得到美国能源部先进研究计划署(ARPA-E)400 万美元的资助。 该公司拟采用印刷—卷对卷工艺实现大面积电池生产。其关键技术在于通过化学沉积制备无机固 体电解质膜,采用印刷模式制备无机全固态锂电池。目前实验室已制备出容量为 5Ah 电池原型, 其体积能量密度达到 1200Wh/L(400Wh/kg)。4)三星日本横滨研究所也取得了一定成果,利用硫化物类固体电解质试制出 2000mAh、175Wh/kg 的压层型全固态二次电池,300 次循环保持 85%的容量。5)国内企业:CATL 在硫化物固态电池方面比较成熟,改性后的 LiCoO2/硫化物电解质/Li 电池,在 0.1C 倍率下,能做到 200 周以上,容量保持率在 80%以上,处于行业领先水平。清陶能源:公司 核心在于高固含量的全陶瓷隔膜和无机固体电解质的开发和生产。目前团队已经和北汽开展合作 进行中试,未来可能作为北汽电动车的重要组件。3. 解析三:全固态锂电池产业化对现有电池体系的冲击有多大?3.1. 全固态锂电池&液态锂电池生产工艺对比3.1.1 聚合物全固态生产技术可以兼容现有产线聚合物全固态锂电池未来有望兼容传统液态锂电池生产工艺。聚合物电解质具备较好的韧性和机 械强度,成膜性能较好,可以直接生成厚度均匀的薄膜。日本电力研究所设想采用卷对卷生产工艺制备聚合物全固态锂电池。基本工艺流程为:1、溶胶-凝胶法制备聚合物固体电解质溶液,2、 分别在正、负极极片上涂布或印刷上已制备好的电解质溶液,3、紫外线照射挥发制备聚合物电 解质的溶剂,使电解质与电极固化粘合,4、卷对卷压实正极/电解质/负极,5、裁剪、抽气、封装。聚合物固态锂电池与液态锂电池生产工艺异同。目前主流的电池制备工艺有叠片工艺和卷绕工艺。 聚合物全固态锂电池对现有电池制备工艺大部分可以兼容,只需要在少部分环节做调整。1、电极极片制备工艺保持现有工艺不变;2、采用溶胶-凝胶法制备电解质溶液,需要烘烤蒸发溶剂, 得到固体电解质薄膜,工艺上增加电解质涂覆、紫外照射烘烤工艺;3、由于没有电解液,不需 要注液工序。3.1.2 LiPON 薄膜全固态锂电池:工艺设备壁垒高,成本管控是关键极片及电解质薄膜工艺壁垒高。薄膜型全固态锂电池由致密的正极薄膜、负极薄膜和电解质薄膜 组成。1、电极制备方法与传统搅拌、涂覆法不一样,由于需要制备非常薄的电极膜,通常也是采用磁控溅射、脉冲激光沉积、热蒸发镀膜等方法,或者化学气相沉积、溶胶-凝胶等方法来成膜。 以上制备工艺导致薄膜型全固态锂电池的电极薄膜非常致密,材料利用率大幅提升,其循环性能、 界面相容性均大幅提升。2、LiPON 固体电解质薄膜制备方法与电极类似。电池制备工艺上,可以采用多层堆垛提升能量密度。由于采用磁控溅射等方式制备的极片厚度很 薄,电池能量密度比较低,在电芯制备工艺上可以采用多层串联紧密堆垛的方式,来提高电芯能 量密度。3.1.3 硫化物全固态锂电池:制备工艺有望兼容传统锂电池叠片工艺极片及电解质薄膜工艺壁垒高。薄膜型全固态锂电池由致密的正极薄膜、负极薄膜和电解质薄膜 组成。1、电极制备方法与传统搅拌、涂覆法不一样,由于需要制备非常薄的电极膜,通常也是 采用磁控溅射、脉冲激光沉积、热蒸发镀膜等方法,或者化学气相沉积、溶胶-凝胶等方法来成膜。 以上制备工艺导致薄膜型全固态锂电池的电极薄膜非常致密,材料利用率大幅提升,其循环性能、 界面相容性均大幅提升。2、LiPON 固体电解质薄膜制备方法与电极类似。工艺流程:硫化物全固态锂电池的制备工艺关键在于电解质的制备,正、负极材料的制备可以兼 容液态锂电池的现有工艺流程。制备硫化物电解质浆料,搅拌涂覆在已经制备完成的正极极片上, 经过干燥、压延等工序,制备固/固界面接触良好的正极/硫化物电解质薄层材料,切割、裁剪后 再与金属锂单层叠片,最后串联堆垛,焊接极耳,完成单体电芯的制备。大部分的设备仍可以沿 用现有锂电池生产设备,只是由于硫化物电解质对水分、氧气的敏感度比较高,在生产环境上有 了更高的要求,需要在更高级别的干燥间内进行生产,最好能在全封闭的充满氩气氛围的条件下 生产。同时,目前考虑到硫化物无机固体电解质膜的柔韧性不佳,在制备全固态锂二次电池时更 多的采用叠片工艺,至于具体是分别制备电解质与正负极膜片后叠合,还是采用双层或多层一次 涂布制备电解质和正极的复合层,更适合规模化生产的技术路线还有待进一步的研究。3.2. 全固态锂电池&液态锂电池的电池材料体系对比全固态时代下,四大材料中正极和导电箔影响较小。我们对比全固态锂电池与现有液态锂电池的 材料体系,其中现有正极材料体系可以完全兼容,固态电解质高电化学窗口,可能兼容更高电压 的正极材料。电解液体系中,现有液态溶剂会被取代,聚合物路线中新型锂盐 LiTFSI、LiFSI 等应 用潜力巨大。负极材料可以兼容现有材料体系,也能逐步衍变到能量密度更高的金属锂,铜箔和 铝箔目前来看仍是最好的导电载体材料,隔膜可能会被逐步取代。3.2.1. 正极材料体系:兼容性较强,高电压复合电极材料有望成为主流现有材料体系未颠覆,复合电极有望成为解决方案。全固态锂电池只是改变了正负极之间传导锂 离子的方式,对正极材料体系并没有出现颠覆性的改变。目前市场主流的磷酸铁锂、钴酸锂、锰 酸锂、以及未来高能量密度的 NCM811、NCA 等正极体系,均可用于全固态锂电池。在制备方法上, 为了解决固/固界面相容性的问题,未来可能会采取使用复合电极材料,包括:正极材料、导电剂、 固体电解质,在电极中同时起到导离子和导电子的作用。高电压正极材料在全固态时代下发展空间更大。目前电解液的电化学窗口较低,对于高电压的正 极材料,需要添加高电压添加剂等方式,来配套使用。由于固体电解质大部分具备电化学稳定性 能好、电压高的特点,可配套高电压的正极材料,未来有望在现有体系下,发展高镍层状氧化物、 富锂锰基、高电压镍锰尖晶石型的正极材料。3.2.2. 负极材料体系:金属锂有望逐渐替代当前石墨、硅碳负极材料固体电解质由于具备致密性和高稳定性,以及足够高的机械强度,能量密度更高的金属锂负极也 可以用做负极材料,能够有效阻挡锂枝晶的穿透。未来金属锂有望成为全固态锂电池的主流负极 材料。全固态锂电池向下兼容现有的石墨负极以及硅碳负极、硅基负极,均可以直接兼容配套。但由于 能量密度较低,首次充放电会出现较明显的衰减现象,可以配合预锂化技术,补充首次充放电过 程中损耗的锂。实际上大规模使用金属锂的节奏一方面取决于固态锂电池电化学体系的发展进程,另一方面取决于现有生产环境的配套升级情况,金属锂对水氧的敏感度高,操作过程需要在保护 气氛下进行,对生产环境的要求苛刻。3.2.3. 电解液体系:有机溶剂将被替代,新型锂盐有望导入聚合物全固态锂电池溶剂方面:对于半固态锂电池,仍需要少量有机溶剂改善聚合物电解质的离子电导率。进入全固 态锂电池时代后,将对电解液的有机溶剂完全取代。锂盐方面:聚合物电解质仍需要新型锂盐做溶质,无机电解质可以完全取代溶剂和溶质。聚合物 电解质以 PEO 或类 PEO 聚合物为“固体溶剂”,同样需要像电解液一样,添加锂盐充当“锂源”。 锂盐在电解质中离解出游离锂离子的能力,同样影响聚合物电解质的离子电导率。与聚合物进行 络合的锂盐,其阴离子的半径越大,越有利于解离锂离子,从而得到更高的离子电导率和锂离子 迁移数。类 LiTFSI/LiFSI 等新兴锂盐有望成为聚合物全固态锂电池的主流溶质。目前电解液的主流溶质是六 氟磷酸锂,但其耐高温性能较差,也是液态锂电池高温性能差的原因之一。类似于双(三氟磺酸) 亚胺锂(LiTFSI)、LiFSI、LiBOB 等具有较高的耐热性、良好的化学和电化学稳定性。同时,LiTFSI 具备较大的阴离子基团,其晶格能最低,相对其他几种锂盐而言在聚合物中容易解离,同样能够 起到提升聚合物电解质离子电导率的作用。相对而言,其他几种目前主流采用的锂盐:六氟磷酸 锂、四氟硼酸锂、六氟砷酸锂均有热稳定性差,容易水解的问题。在聚合物全固态时代,LiTFSI/LiFSI, 或者根据不同聚合物基体,新合成的容易解离的大阴离子基团型锂盐,有望成为未来聚合物全固 态锂电池的主流溶质锂盐。无机固体电解质完全替代传统电解液的溶质和溶剂。无机固体电解质通常采用溶胶凝胶法、高温 固相法、高温烧结法等来制备电解质材料,不需要传统电解液的溶质和溶剂。比如石榴石型氧化 物电解质(LLZO),采用高温固相法制备,以碳酸锂、La(OH)2、ZrO2 为原料,在 1000℃下烧结三 小时。LiPON 无机电解质,采用气相沉积法制备,以 Li(C11H19O2)、(C2H5)3PO4 以及氨气为原料。 硫化物电解质,大部分以硫化锂、P2S5 为原材料,再通过高能球磨、高温烧结等方法制备得到。3.2.4. 对其他零部件的影响隔膜:当前在半固态锂电池体系下没有变化,但全固态时代下将被逐步替代。隔膜在锂电池中存 在的价值即为隔绝正、负极材料,防止电池短路。固体电解质具备电子绝缘性和离子导电性,可 以逐步替代现有体系下的隔膜。4. 重点企业分析(详见原报告)锂行业和固态电池研究居前的公司:赣锋锂业(有色组覆盖)、天齐锂业(有色组覆盖)、宁德时代、比亚迪(汽车组覆盖)等。优质二线电池厂逐步放量,即将出现业绩拐点,有望迎来价值重估:孚能科技、亿纬锂能、欣旺达、国轩高科。部分中上游材料环节供需格局反转,六氟磷酸锂环节:新宙邦、多氟多、天 际股份、永太科技。材料环节:璞泰来、恩捷股份、科达利、当升科技、中科电气、宏发股份、三花智控、法拉电子、翔丰华、星源材质、容百科技等。锂电铜箔环节:嘉元科技、诺德股份。磷酸铁锂材料环节:德方纳米、龙蟠科技、湘潭电化。5. 风险提示固态锂电池技术进步超预期、新能源汽车需求增速不及预期等。(报告观点属于原作者,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)精选报告来源:【未来智库官网】。
由于政府补贴将在2020年之后退出,市场对于新能源汽车的渗透率和动力电池需求存在疑虑。我们认为,随着锂电池成本持续下降,新能源汽车作为消费品的性价比优势将逐步体现,渗透率持续提升,加上储能行业即将突破,动力电池在未来十几年内的需求将维持25%以上的高复合增速。来源:彭翀 卢日鑫 李梦强 东方证券▌汽车电动化是动力电池需求的主要来源2017年全球新能源汽车销量超过122.3万辆,比2016年增长58%,推动全球新能源汽车销量在全球汽车总销量当中的占比首次突破1%。2012年以来,国内外新能源汽车的产销量持续高速增长,近五年来复合增速达到54%。截至2017年底,全球累计新能源车销量已接近400万辆,占全球汽车保有量的0.3%,其中中国新能源车累计销量超过160万辆,占全球累计总量的42%,除中国以外的主要市场还包括美国、日本以及挪威、德国等欧洲国家,前十大消费国累计销量占全球总量的93%。国内新能源汽车产销量从2011年不足1万辆增加到2017年近80万辆,6年复合增速超过100%,2017年国内新能源汽车产销量同比增长50%以上,2018年以来继续保持高增长,前7个月国内新能源汽车产销量双双突破45万辆,同比增长近80%,占国内汽车总销量的比例达3%以上,汽车电动化的趋势已经明朗。根据新能源汽车动力来源和续航里程的大小,电动车可分为轻混电动车(带电量较少,主要功能是降低启停油耗)、混合电动车(HEV)、插电式混合电动车(PHEV)和纯电动车(BEV)。纯电动车又可根据续航里程的长短分为低端(小于250km)、中端(250~380km)和高端电动车(380km以上),纯电动车的续航里程由汽车携带电量决定,一般而言,1kWh电量可以驱动汽车行驶5-7km。作为电动车动力的主要来源,动力电池是汽车电动化的最大获利者。受益于新能源汽车行业销量的快速增长,动力电池的出货量节节攀升,在锂电池应用中的占比快速上升。2017年全球锂电池总出货量达到148.1GWh,其中动力电池总出货量达到62.35GWh,储能电池的出货量增速也很快,2017年储能电池出货量达到10.4GWh。2014年以来,动力电池和储能电池的复合增速分别达到80%和77%,传统消费类电池的复合增速仅有7%,锂电池行业的新增需求将由动力电池和储能电池主导。国内锂电池出货情况也呈现类似的走势,2013年之前小型电池的出货量占比在90%以上,到2017年动力电池和储能电池的占比就已达55%。▌新能源汽车驱动力切换,不改电池行业高成长性性价比决定汽车电动化进程,电池成本是关键推手汽车作为大众消费品,性价比是决定其技术路线的根本因素。与燃油车相比,电动车与传统燃油车的区别主要包括以下方面:结构上,电动车采用动力电池取代燃油发动机,并且简化了燃油车的动力总成系统,成本的差别也来自于此;性能上,由于动力电池的能量密度较低,而且快充能力受限,电动车的续航里程和充电体验较燃油车仍有劣势,不过随着电动车带电量的增加,“里程焦虑”已大为缓解;成本上,由于动力电池成本仍然较高,电动车的购置成本高于燃油车,同时电动车的使用成本更低,优势的多寡取决于年行驶距离以及油价/电价比。我们构建了模型研究不同车型的购臵成本和使用全成本(totalcostofownership,TCO)。在基准条件下,普通燃油车的购臵成本为19.6万元,同档电动车的购臵成本为24.6万元,电池成本为1500元/kWh(含税);运营寿命8年,每年行驶15000公里,车辆残值分别为6万元和4万元。运营期间燃油车和电动车的TCO分别为21.3万元和24.8万元。相比而言,燃油车的购置成本仍然更有竞争力,电动车的燃料成本在比较高的电价之下仍有明显优势。电池的成本对电动车的TCO和购置价格都有非常明显的影响,在其他因素不变的情况下,当电池价格降至900-1000元/kWh时,电动车的TCO基本与燃油车一致,普通乘用车消费者采购新能源汽车的积极性将加强,当电池成本进一步下降至700元/kWh以下时,纯电动车的购置成本可与燃油车相竞争,其渗透率将进入加速提升的阶段。我们据此将电动车的发展阶段划分为“前TCO平价”阶段、TCO平价阶段和购臵成本平价阶段。在前TCO平价阶段,由于成本仍然缺乏竞争力,电动车过去几年的高速增长主要是由政策驱动,尤其是补贴政策的驱动,此时产业处于补贴驱动的时期;随着电池成本的下降,电动车与燃油车的TCO不断逼近,在部分应用场景中电动车甚至已具备TCO成本优势,此时,采用一些非补贴的产业政策推高燃油车的使用成本,可以进一步提升电动车的渗透率,此时行业由政策倒逼来驱动;一旦电池成本突破临界点,电动车的购臵成本将占据优势,行业也将过渡到消费驱动阶段。驱动力切换的内因在于动力电池成本快速下降,电动车成本竞争力持续增强,外部原因在于产业政策的调整。▌补贴政策助力新能源汽车完成市场导入尽管动力电池成本已从2009年1000$/kWh快速下降到目前150~170$/kWh,新能源汽车尤其是纯电动车的购置成本和使用全成本仍然远高于传统燃油车。根据BNEF的研究,2018年美国燃油小型车的成本约为18000美元,其中动力总成系统成本约5500美元,而电动车的电池系统与动力系统成本接近12000美元,因此截至目前最有效的政策仍以直接补贴为主—如中国对于各种车型的购置补贴、美国对于销量在20万辆以下的车企给予每辆7500美元的税收抵免—以缩小电动车和燃油车的成本差距。在补贴等相关政策的驱动下,新能源汽车在全球的导入过程非常迅速,2012年全球范围内新能源汽车的销量占比仅有不到0.2%,到2017年市场份额已上升至1.26%。进入2018年,全球新能源汽车继续保持大幅上涨的态势。据统计,今年上半年全球电动汽车销量达到76万辆,同比增长69%,整体市场份额达到1.6%。海外主要市场新能源车的渗透率呈加速提升的趋势,上半年,欧洲电动汽车销量同比增长43%,注册量达18.5万辆,市场份额增至2.2%,美国电动车销量也突破10万辆,达到12.2万辆,其中53%为纯电动汽车,市场份额达到1.4%,同比提升0.3个百分点。中国新能源汽车的市场导入经历了三个阶段,历时十几年。其中,2003-2008年为技术验证与科技示范工程阶段,标志性事件是在北京奥运会上开展的全球最大规模的奥运会新能源汽车示范运行,共投入595辆节能与新能源汽车;第二阶段为2009-2012年的第一期“十城千辆”新能源汽车推广工程,在此期间在25个试点城市开展的新能源汽车规模化示范运行,总共推广新能源汽车2.7万辆;第三阶段为2013-2015年的第二期“十城千辆”示范工程。具体政策层面,2009年国务院发布《汽车产业调整和振兴规划》,其中首次提出了“启动国家节能和新能源汽车示范工程,由中央财政安排资金给予补贴”的政策指导意见。同年,财政部发布《关于开展节能和新能源汽车示范推广试点工作的通知》,明确对试点城市公共服务领域购臵新能源汽车给予补助,公共领域新能源汽车补贴时代正式来临。彼时,一辆纯电动最高可拿到6万元/辆的国补资金,插混(默认为40%节油率以上)一般也能拿到5万元/辆的国补资金,纯电动大巴的补贴更是高达50万元/辆。在强力的补贴刺激下,我国新能源汽车产销规模节节攀升,2015年中国新能源汽车销量达到33万辆,在新增汽车销售中的占比首次突破1%,在当年全球销售新能源汽车的占比超过50%。至此,中国新能源汽车产业的发展出现了不可逆转的拐点,导入期基本结束。2017年我国新能源汽车的销量已达汽车总销量的2.6%,2018年前7月份该比例高达2.84%,中国新能源车的渗透率已走在世界前列。▌补贴退坡,限制性政策登场,行业驱动力悄然换挡2017年全球范围内新能源汽车渗透率超过1%,同时动力电池的成本仍在快速下降,继续维持之前的补贴激励政策对于各国政府都是沉重的负担。因此,全球范围内补贴政策退场已是大势所趋,而在新能源车仍不具备成本竞争力的阶段,对燃油车施加一定的限制性政策、推高其生产/使用成本将成为一段时期内汽车电动化的主要驱动力。国内:补贴退坡,双积分接棒随着电池价格持续下降,我国政府对于新能源汽车的补贴力度也在逐渐下调,自2009年施行补贴政策以来,纯电动车补贴上限从6万元/辆下调至5万元/辆,对于里程的要求则从没有硬性规定到400公里以上,如以度电补贴计,早期纯电动车每kWh的补贴强度最高可达3000元,2018年的最新标准降至1200元/kWh以下;插电混合乘用车的补贴强度则从5万元/辆降至2.2万元/辆,2019年的补贴将在2016年基础上再降40%,而按照规划,2020年之后电动车的直接补贴将全部取消,届时中国的新能源汽车产业也将走完依靠补贴政策驱动的阶段。与此同时,尽管电池成本持续快速降低,但预计在2025年之前,电动车的成本竞争力仍居于劣势。换挡阶段,工信部推出双积分政策,迫使传统车企加大新能源汽车产量,提升新能源汽车的渗透率。2017年9月28日,工信部、财政部、商务部、海关总署、质检总局等五部门联合发布《乘用车企业平均燃料消耗量与新能源汽车积分并行管理办法》,规定该办法自2018年4月1日起施行,同时规定对畅通能源乘用车年度生产量或者进口量达到3万辆以上的企业,自2019年开始设定新能源汽车积分比例要求,这标志着备受关注的双积分政策正式落地。根据双积分政策的实施方案,NEV正积分的企业可以通过交易新能源积分获取额外收入,传统车企面对积分不达标的惩罚压力,也有动力向电动车转型。双积分对于车企可以看成是一种隐性的成本,随着这种法规成本越来越高,以至于会成为一种政策性的壁垒,这需要车企投入大量的资源和资金去跨越。初步估算,2020年NEV积分比例达到12%对应当年200万辆的新能源汽车销量。通过调整不同车型的分值、NEV积分比例等方式,双积分政策可以作为一项长效机制来推动新能源汽车销售占比的提升。在当前补贴仍未完全退出的情况下,各种约束政策的作用已逐渐显现,预计2020年之后新能源汽车行业的主要推动力切换为约束性政策对于整车企业的倒逼作用。国外:排放标准趋严提升燃油车成本海外市场的补贴退坡进程也在稳步推进。在美国市场,由于特斯拉电动车累计销量已接近20万辆的临界值,购买电动车所享受的7500美元税收抵免将削减一半至3750美元,并将在一年半之后全部取消补贴,其他销量较大的车型如通用Bolt、日产聆风也面临补贴退坡的问题。另一方面,持续提高燃油车的排放标准,推升燃油车的生产成本,也能从另一个角度缩小电动车与燃油车的成本差距。根据现有资料或趋势判断,到2020年全球主要市场的燃油车排放标准将提高到100~120g/km,较2010年全球的排放标准降低20%~40%,按照目前燃油车的技术水平,届时多数传统车企能够满足排放标准。2020年之后,排放标准进一步趋严,欧盟希望整车厂商2020年1月1日前将CO2的排放量控制在95g/km,每超出1g将对每台车处以95欧元的高额罚款,并计划到2025年将排放标准进一步降低到78个/km以下。与此同时,燃油车为满足要求额外需要投入的成本将快速提高,达到经济性瓶颈,据BCG估计,假如2025年燃油车排放标准提高到80~100g/km,将导致每辆燃油车成本上升470~580美元,届时尽管新能源汽车的成本竞争力仍不充分,整车企业出于达标的要求会考虑生产一定比例的新能源汽车。在美国,整车厂商为满足监管要求,将燃油车辆的整体市场份额从2020年的95%降至2025年的66%,同时推出更多MHEV和BEV车型。MHEV具有相对低的制造成本,并且可以适用当前的车辆平台。BCG预计MHEV在2023年的市场份额将扩大到近20%。之后,BEV将成为最有效的解决方案;随着电池成本的下降,它们的份额将从2020年的接近2%迅速扩大到2025年的8%。由于欧洲法规对BEV提供了倍增效应,欧洲市场电动车的发展将呈现不同的轨迹,纯电动汽车有望成为实现欧盟当前和预计任务的最有效方式。虽然燃油车仍将继续保持最大的市场份额,但预计BEV的份额将从2020年的1%增加到2025年的13%,而所有其他xEV的份额将从5%上升到18%。在此期间,汽油车和柴油车的份额将从93%下降到68%,柴油车的份额下降最快。TCO趋于平价,细分市场有望不断涌现随着动力电池成本的进一步降低,新能源汽车的使用成本和生产成本不断接近甚至低于传统燃油车,即实现使用全成本平价(TCO平价)和生产成本平价(costofproctionparity),电动车的驱动因素切换为市场竞争力。对影响TCO的各项因素进行敏感性分析,可以发现对TCO影响最显著的因素主要是年运营里程和燃油价格。当年运营里程增加一倍至30000公里/年时,两种车的TCO接近,当进一步增加至45000公里/年时,电动车的TCO将比燃油车低4万元。燃油价格对于二者TCO的影响也比较明显,当油价从7.5元/升下降20%时,燃油车的TCO优势将扩大至4.8万元,当油价上升20%时,燃油车的TCO优势将收窄至2.2万元。这个结果与BCG的研究成果相一致。BCG的研究结论认为,对汽车TCO影响最大的因素包括燃料价格、购置价格、年运营里程。从全球范围内来看,按照使用全成本衡量,中国市场将率先成为电动车使用成本平价的区域市场。对于某些细分市场,如年行驶里程超过平均值的出租车、网约车等行业,使用电动车已经更具经济性。BCG预计,2020-2025年期间电动车将实现TCO平价,到2025年纯电动车的渗透率将达6%,到2027年前后将实现生产成本平价,到2030年纯电动车的渗透率将达到14%。受此影响,2018-2020年动力电池的复合增速超过20%,2018-2030年动力电池的复合增速将达到29%,动力电池行业需求在未来十年中将呈现极高的成长性。▌生产者平价开启消费驱动新时代进一步地,如要实现电动车加速替代,需要满足的前提条件是电动车的生产成本低于同档燃油车。据不同机构估算,到2025-2030年间,动力电池的价格将降至50-70$/kWh,届时电动车的生产成本将低于燃油车,新能源汽车真正迈入“生产者平价”阶段,供需两侧都有动力推动汽车电动化加速发展。BCG预计到2025年,全球6%的汽车销量由纯电动车占据,到2030年该比例将提升到14%,MorganStanley的预测值分别为9%和16%,UBS则预测2025年纯电动车和PHEV合计占比达到13.2%,到2040年以后各机构一致认为电动车将成为汽车市场的主要部分。尽管各家机构对于渗透率提升的速度预期有所不同,但即使按照最悲观的假设,2025年全球新能源汽车的年销量也将数倍于2017年销量,动力电池的需求量也将随之成倍增长。据初步估算,假如2025年全球纯电动车销量占比达到6%,PHEV销量占比达到2%,按照2种车型带电量分别为55kWh和15kWh计,2025年动力电池需求量将超过580GWh,到2030年总需求将超过1300GWh,2018-2030年12年复合增速接近30%。对于中国市场而言,根据工信部等部门的规划,到2020年国内的新能源汽车保有量将达到500万辆,当年实现新能源汽车销量200万辆,占汽车年度销量的12%左右,假设新能源汽车平均带电量为45kWh,则2020年动力电池需求量将达90GWh,对应2018-2020年需求复合增速达到33%。随着电池成本的进一步下降,新能源汽车的渗透率持续提升,假设2025年和2030年渗透率分别达到15%和20%,2020-2030年电池需求量的复合增速将仍达到20%以上。可以说,无论是国内市场还是全球市场,动力电池行业都是成长空间和成长速度兼具的优质行业。▌储能:应用前景无限,市场即将破晓应用场景多元,需求空间广阔传统电力系统是由需求侧决定的实时平衡系统,其结构为典型的枝叶型结构,分为“发电-输电-配电-用电”等环节,由于当前储能成本仍然较高,储能在电力系统所扮演的角色比较局限。近年来,随着风电、光伏等不稳定电源的占比快速提升,以及越来越多的分布式电源从配网侧接入,维持电网安全的挑战越来越大,对于储能的需求也日益迫切。储能的应用场景非常多样,在电力系统发输配售四个环节均能发挥巨大的作用。在发电侧,储能主要用于可再生能源的移峰;在输配电环节,储能可以发挥区域调频的功能,部分国家调频市场开放,采取竞价机制,电池储能的参与度较高,但调频市场的总容量有限。国内市场,储能主要是通过辅助火电机组进行调频,提高火电调频响应速度;在用电侧,储能系统可以显著提高供电的稳定性。根据CNESA全球储能项目库的不完全统计,截至2017年底,全球已投运储能项目累计装机规模175.4GW,同比增长4%。其中抽水蓄能的累计装机规模占比最高为96%,较上一年下降1个百分点;电化学储能累计装机规模为2926.6MW,同比增长45%,占比为1.7%,较上一年增长0.5个百分点。在各类电化学储能技术中,锂离子电池的累计装机占比最大,超过75%。2017年,全球新增投运电化学储能项目装机规模为914.1MW,同比增长23%。新增规划、在建的电化学储能项目装机规模为3063.7MW,预计短期内全球电化学储能装机规模还将保持高速增长。截至2017年底,中国已投运储能项目累计装机规模28.9GW,同比增长19%。抽水蓄能的累计装机规模占比最大,接近99%,但较上年有所下降。电化学储能的累计装机规模为389.8MW,同比增长45%,所占比重为1.3%,较上一年增长0.2个百分点。在各类电化学储能技术中,锂离子电池的累计装机占比最大,比重为58%。2018年上半年国内新增锂电池装机100.2MWh,同比增长133%。应用场景方面,2017年全球新投运的电化学储能项目中,33%应用于集中式可再生能源并网,26%应用于辅助服务领域,其他份额则流向电网侧、电源侧和用户侧的场景;国内则以用户侧领域应用为主,2017年达到全部新增投运量的59%,其次是集中式可再生能源并网领域,份额达到25%,辅助服务的份额约16%。储能行业有着巨大的市场前景。可再生能源并网方面,随着并入配电网的分布式能源(光伏、风电等)日益增加,既有电源与新并网的分布式电源之间的相互影响对于电网管理和运营而言构成巨大的挑战,由于分布式电源的稳定性较差,其电网渗透率的进一步提高将对电网的平衡增加额外成本,储能系统在今后的电力系统中将扮演愈发重要的作用。近年来我国每年新增风电、光伏装机容量达到50GW以上,按照2小时配比,即存在100GWh的潜在需求空间。调频的储能需求空间也比较大,国家电网中心专家表示,预计未来五年国内储能调频装机量将保持8%的年均增长率,每年仅调频需求就达2GW左右。其他场景的应用更加广泛,以基站为例,中国铁塔股份有限公司目前在全国范围内拥有近200万座基站,备电需要约44GWh,60万座削峰填谷电站需要电池约44GWh,50万座新能源站需要电池约48GWh,合计需要电池约136GWh。此外,以存量站电池6年的更换周期计算,每年需要电池约22.6GWh;以每年新建基站10万个计算,预计新增电站需要电池约2.4GWh,合计每年需要电池约25GWh。锂电池储能优势明显,成本下降已接近临界点在新近发展的各项储能技术中,锂电池储能在能量密度、功率密度、循环次数、成本等方面的综合优势极为突出,也成为近年来新增储能容量的最主要来源。2017年全球新增储能电池容量914.1MWh,其中锂离子电池占比达93%;国内新增储能电池容量100.4MWh,其中锂离子电池占比达58.5%。制约锂离子电池进一步大规模应用的主要障碍在于其相对较高的成本。2010年前后储能系统的投资成本高达11元/kWh以上,对应的储能度电成本(Levelizedcostofenergystorage,LCOS)超过2元/kWh,到2017年储能电池的成本已降至2元/Wh以下,加上PCS等全系统成本约2.6元/Wh,对应的LCOS为0.6元/kWh,与我国的峰谷电价差接近,部分削峰填谷项目已初步具备经济性。随着电池系统成本的不断下降,储能的LCOS有望降至0.3元/kWh,在更多应用场景都有使用价值,储能系统容量也将进入快速增长期。据BNEF估计,到2024年全球电化学储能电池容量将超过81GWh,为2016年累计容量的10倍,10年复合增长率达38%。国内方面,据CNESA估计,到2020年我国储能设备容量将达到41.99GW,其中电化学储能容量达到1.78GW,达到2017年底电化学储能累计装机量的4.5倍,对应新增锂电池需求达2.6~5GWh。值得一提的是,当前以磷酸铁锂、三元等新材料为主的动力电池,在储能市场十分受欢迎。与传统铅酸电池相比,锂电池具有更高的能量密度,以三元锂电池为例,一台40尺集装箱可最多放置4.8MWh锂电池,并且集成HVAC、FFS、BMS、通讯保护等辅助单元。同时,相较于传统的铅酸电池,锂电池对温度适应性更强,更适合户外的储能需求。此外,储能电池还可以采用退役的动力电池梯次利用,降低成本的同时也能有效解决动力电池退役后的处理问题,成为国家鼓励的产业发展方向。长寿命和高安全性要求有利于集中度提升汽车动力电池对于电池的功率和能量要求较高,而储能电池则更偏重于安全和寿命等方面,而且在不同工况下对于产品性能也有不同的要求。总体而言,电池的安全、循环寿命和日历寿命、价格和存储效率等因素是储能系统优先考量的性能。安全性方面,由于锂电池储能电站的电池容量较大,一个系统往往包括成千上万个电芯,出现热失控的概率更高,造成的后果也更加严重,一旦某个电池出现热失控,很容易导致电池系统的整体失控,因此储能系统对于锂电池的安全性能有极高的要求。2017年年初以来,韩国的储能项目共发生7起起火事故,共影响到78MWh的项目容量,占韩国所有项目容量的3%,2011年以来受起火事故影响的电厂级储能项目数量达11个,发生事故的多个储能系统都采用了同一厂家的镍钴锰三元电池。此外,为了实现储能系统在整个寿命周期内的经济性,储能系统还必须保证几千次的充放电循环和大于10年(甚至到20年)的寿命。电池系统的安全性和寿命与材料路线和电池厂商的生产能力高度相关。技术方面,目前汽车动力电池已全面转向镍钴锰三元体系,该体系的能量密度和工作电压较高,但大规模集成存在爆炸风险,而且循环寿命最多仅有3000次左右,并不能很好的满足储能需求。与此相比,磷酸铁锂电池则表现出非常好的稳定性,即使在高达300°C的温度下都不会导致热分解反应,并在电池单体测试中表现出全面卓越的循环稳定性,在整个寿命周期内容量衰减都很低。将磷酸铁锂与钛酸锂(LFP-LTO)作为正负极材料的电池单体循环寿命甚至超过20000次,预计随着锂电池储能应用规模的日益扩大,安全性相对更高的磷酸铁锂电池有望得到更广泛的应用。生产能力方面,储能电池的安全隐患主要来自生产过程中各种误差的累积,提升安全性主要依赖厂商对于产品质量和生产过程一致性的把控。储能对于安全性的高要求更有利于一线技术实力有优势的企业,预计该领域的市场份额将会比较集中。(来源:东方证券)
获取报告请登录【未来智库】。1、 降本提质倒逼技术不断进化动力电池堪称电动汽车的心脏,对动力电池的研发是新能源汽车行业的核心。从目前现状来看,动力电池的研发主体是电池企业与车企,他们从“降低成本+提升能量密度+提升循环寿命与安全性”三个目标出发,在材料、工艺、电池体系上做出很多突破。核心产品力决定动力电池企业的行业地位。本文将对目前各企业在材料技术储备做详细梳理。1.1 、 能量密度是衡量电池性能的核心标准在动力电池领域,系统的能量密度与电动汽车的续航里程直接挂钩,高能量密度几乎成为市场衡量电池性能的绝对标准。目前,多国政府和企业对动力电池能量密度提出发展规划。从国家规划来看,韩国的规划相对激进,提出电芯能量密度在 2030 年达到 600Wh/kg。美国先进电池联合会提出在 2020 年电芯能量密度提升至 350Wh/kg。日本新能源产业技术综合开发机构提出在2020/2030 年电芯能量密度分别达到250/500Wh/kg。中国的目标最为稳健, 计划在 2020/2025/2030 年分别达到 300/400/500Wh/kg。龙头公司带动行业技术创新。落实到企业层面,动力电池新技术开发的主力除了动力电池巨头外,还有新能源车企。特斯拉是全球电动化的引领者,一直以来和松下合作研发动力电池,其规划是在 2020 年实现电芯密度 385Wh/kg,2025 年实现500Wh/kg。宁德时代对能量密度的追求一直是“稳准快”。从宁德时代 2017 年的技术展望中可以看出,公司 2020 年之前的目标已经基本实现,2019 年 NCM811 已经实现量产, 单体电芯能量密度达到 304Wh/kg。2020 年以后,CATL 对电芯能量密度的规划与国家步调较为一致。国内外动力电池的能量密度平均水平离设定目标尚有差距,新技术、新体系将推动行业竞争格局良性改变。目前成熟的锂电池体系的能量密度天花板已现。对于电芯而言,能量密度提升的本质在于提高正负极材料的比容量以及正负极材料的电势差。短期可以通过调节材料元素成分或改善制备工艺提高现有体系的能量密度,如无钴高镍技术、干电极技术;长期看,现有锂电成熟体系的能量密度天花板已现,未来十年里,固态电池、锂空/锂硫电池等新体系的开发或将成为重点。1.2 、 锂离子电池仍存有成本下降空间降低成本是电动汽车对锂离子电池行业发展提出的另一需求。电动汽车的造价成本一般比传统燃油车高。而电动汽车中动力电池成本占比在 40%左右,动力电池成本的降低对整车降本贡献最大。而且锂离子电池成本下降空间一直存在。自从大规模工业化应用以来,锂离子电池的制造成本呈现急速下降趋势。根据 BloombergNEF 数据,2019 年全球动力锂离子电池包价格在 156 美元/kWh,预计到 2024 年降至 93 美元/kWh,到 2030 年进一步降至 61 美元/kWh。降本方式主要从电芯四大材料与新工艺着手。从电池包的成本结构来看,电芯原材料成本占比最大。进一步拆分电芯成本,发现正极材料占比最大。三元电芯的正极材料成本占比达 38%。降低正极材料的成本对整个电池包降本效果最佳。而目前成熟的正极材料的价格已经随着规模化生产显著降低,市场供需关系基本稳定,进一步大幅降价的可能性较小。因此寻找新材料、新工艺成为降本新方向。各企业对降本的热情不竭,从材料到电池包零部件,已经涌现出许多新技术。合成三元材料的平价替代、研制新的制备装配工艺等是各个公司研发的热点。1.3 、 锂电失效是汽车电动化进程的拦路虎锂离子电池失效诱因复杂。锂离子电池的失效分为性能失效与安全性失效。性能失效指锂电池容量衰减、循环寿命短、倍率性能差、一致性差、易自放电、高低温性能衰减等。安全性失效包括热失控、胀气、漏液、析锂、短路等。失效的内因较为复杂,电芯四大材料皆存在失效导火索。概括起来就是电芯内部发生一系列“反常反应”导致四大材料的损伤。动力锂电池的失效直接影响电池的使用寿命与安全性。动力电池使用寿命的评价标准通常是循环圈数与容量保持率。目前商业化动力电池的循环寿命在 2000 周左右,意味着一辆续航里程为 400km 的纯电动车在 100%的放电深度下,全生命周期运行里程为 80 万 km。一辆纯电动乘用车正常通勤情况下年均里程为 2.5 万 km,则该纯电动乘用车使用寿命为 32 年。但实际上,在电芯充放电过程中可能会发生“反常反应”,降低电芯循环圈数与容量保持率,从而减少电动汽车的使用寿命。改善电芯使用寿命的主要方法是对电解液改性。安全性失效是锂离子电池发生较多的一种失效,来源于电池在充放电过程中的热失控问题。目前成熟的锂离子电池体系使用的电解质为有机物,当电池内部发生一系列“反常”反应而放出大量热,有机电解液有可能在高于其燃点而燃烧,并在密闭空间内释放气体,最终导致电池包爆炸。电池内部“反常“反应的诱因相对复杂且不可控,因此从材料角度而言,有效解决电池热失效问题主要思路为:1)使用阻燃添加剂防止有机电解液燃烧;2)开发不易燃的固态电解质。2、 材料创新:抓住锂电池充放电本质材料层面的技术创新着眼于电芯的充放电机理。从提高能量密度的角度看,电芯能量密度等于正负极电势差与电芯容量的乘积。提高电芯的能量密度的本质是提高正负极电势差与理论比容量,而电势与理论比容量由材料自身特性决定。因此,正负极材料的选择较为关键。从提高循环稳定性与安全性的角度看,电解液的改性可以有效避免电解液与正负极之间的副反应。从降低成本角度看,选择新型正极材料或将使电芯度电成本下降。2.1 、 正极:现有三元体系的无钴化、单晶化2.1.1 、 无钴化:安全性尚待验证高价钴元素掣肘正极材料降本。在三元材料中,三种元素各司其职:镍主要用来提供容量,钴主要用来稳定结构,而锰/铝主要用来改善材料的导电性。但三种元素中钴的价格最高且易波动。以 NCM523 材料为例,NCM523 正极材料的价格波动与硫酸钴的价格走势高度一致,钴价的波动性严重影响了正极材料的价格。现有三元体系进一步降钴的可能性较小。目前已有企业宣布量产高镍 9 系。我们根据三元材料钴含量的质量分数 NCM 三元系列的钴元素度电成本做出测算,可以发现,从 NCM811 到 NCM9055,钴元素度电成本边际减少量为 14.06 元/kWh,假设单车带电量为 50kWh,则单车成本减少量仅为 703 元。如果进一步降低 NCM9055 的钴含量,单车成本边际降幅将更低。我们认为,牺牲三元材料的稳定性换取成本的小幅下降不可取,单纯以提升镍含量的方式降低钴含量的可能性较小。寻找替代钴的平价元素是三元材料去钴化的基本思路。钴在三元中的主要作用有两个,其一是阻碍Li-Ni 混排提高材料的结构稳定性,其二是抑制充放电过程中的多相转变。因此寻找钴元素的平替或从不含未成对的电子自旋的特定元素着手,降低 Li- Ni 混排,或掺杂 M-O 键能大的元素,稳定结构。由此衍生出两条路线:1)使用Mg/Al/Mn 元素直接取代钴元素,造出新三元或二元材料,实现完全去钴化;2)在NCM 三元体系中添加铝元素制备四元 NCMA,将钴含量进一步稀释,实现材料低钴化。2.1.2、 单晶化:制造壁垒高、量产难度大多晶材料在多次循环后会产生微裂纹,影响循环寿命。目前三元正极材料厂家所生产的材料多为细小晶粒团聚而成的二次球形颗粒。但二次球形颗粒在高压实密度、高压下易发生副反应,导致材料形成微裂纹,造成循环寿命与能量密度损失。根据Jeff Dahn 教授的研究,二次球形材料产生微裂纹的主要原因是随着充放电循环次数的增加,由于二次球中的一次颗粒有着不同的晶面取向和滑移面,晶粒间晶格膨胀和收缩的各向异性,导致其在循环后期可能会出现二次颗粒的破碎,并在一次颗粒间产生微裂纹,最终导致电池容量衰减。单晶技术可提升三元材料的循环稳定性。单晶型三元材料内部没有晶界,可以有效应对晶界破碎及其导致的性能劣化问题。此外,单晶三元正极具有以下优点:1)机械强度高,高压实密度下不容易破碎;2)比表面积低,减少副反应的发生;3)表面光滑,利于锂离子传输。单晶和多晶的晶体学概念相对抽象,我们可以从凝固理论理解单晶和多晶的区别:从微观结构看,材料从液态转变为固态需要先经过晶粒成核、长大。如果在这个过程中仅形成一个核并长大,那么最终只有一个晶粒,也就是单晶。如果有多个核形成并长大,那么会生成多晶。因此,单晶和多晶的合成区别主要在于结晶过程的控制。单晶 NCM 的合成不是对现有多晶 NCM 合成技术(共沉淀-烧结)的颠覆,而是在煅烧温度、锂化比、水洗工艺等反应参数上进行优化。容百科技是国内最早一批突破单晶三元制备技术的公司, 从其专利披露的单晶 NCM523 合成工序来看,与常规三元的两次煅烧并无较大差别, 但在烧温度、锂化比等参数上有较大差别。单晶 NCA 比单晶 NCM 的合成更为困难,原因主要在于合成过程中易生成副产物Li5AlO4。Jeff Dahn 研究团队于 2019 年提出“两步锂化法”合成单晶 NCA,2020 年4 月获得专利授权(申请单位为特斯拉公司)。通过降低常规单晶 NCA 合成温度及分两次锂化,消除常规单晶 NCA 合成方法中的副产物Li5AlO4,提高了单晶 NCA 的纯度。在添加 2%VC 的电解液添加剂的条件下,单晶 NCA 循环 100 圈后的容量保持率优于多晶 NCA。2.2 、 硅基负极:复合化和结构改性最具量产潜力硅负极理论克容量是石墨的 10 倍以上。目前主流的负极材料是石墨类负极,目前人造石墨和改性天然石墨的实际克容量基本达到石墨的理论克容量 372mAh/g,提升空间有限,因此新一代负极材料的研发热点集中在硅基材料。硅的理论克容量为4200mAh/g,超过石墨类材料的 10 倍以上。此外,硅是地球上储量排名第二大的元素,资源丰富。硅材料储锂的缺点是体积膨胀大、导电性差。但由于硅材料储锂的机制是合金化反应,不同于石墨材料的插脱嵌反应,在充放电过程中,硅材料体积变化达 300%-400%。硅材料的体积膨胀一方面会导致材料从电极片上脱落,进而导致循环寿命缩短。另一方面体积膨胀带来的应力不均匀会造成单个硅颗粒开裂,循环过程中不断产生新的表面,进而导致 SEI 膜持续形成,持续消耗锂离子造成电池整体容量持续衰减。此外,硅的导电性相对较差,导致倍率性能低。因此为解决硅材料的体积膨胀问题, 有三种改性路线:1)纳米化硅;2)与 CNT、石墨烯、石墨等碳材料复合;3)设计薄膜、纳米线等新结构。2.1.1 、 硅纳米线:成本是制约其发展的主要问题纳米线是一维纳米结构,长径比高,通常可以构建无需粘结剂的自支撑(free-standing) 电极。这种结构的优势在于:①与电解液接触位点增多,提高了材料的利用效率;缩短离子扩散路径,提升倍率性能;③降低电荷转移阻抗,提升倍率性能;④弱化材料在嵌入/脱出锂离子的体积膨胀效应等。因此将硅负极制备成纳米线形貌成为研究热点。制备结构均匀的形貌是工艺难点。斯坦福大学华人教授崔屹在硅负极材料研究较多, 并在 2008 年成立Amprius,进行硅纳米线负极的商业化,2018 年建成第一条硅纳米线中试线。但至今硅纳米线仍没能在工业大规模应用,原因主要在于合成困难且成本高。CVD(化学气相沉积)是目前学术界主流的制备硅纳米线的方法。从 Amprius 在 2018 年申请的一篇专利可以看到,利用 PECVD 法制备出的硅纳米线可能会呈现如“水滴型”不均一的形貌与尺寸。不均一的硅纳米线形貌一方面导致根部的材料基本成了“死区”,材料自身利用率下降,导致克容量低,另一方面,电池的循环寿命大大降低。该专利为了解决上述问题, 利用先 PECVD 后TCVD(热 CVD)的复合合成法制备出硅纳米线,循环 200 圈后, 容量保持率在 80%以上。虽然可以通过改进制备工艺有效改善沉积形貌的均一性,但放大规模生产后的形貌可控性尚待考量。此外,CVD 法的制造成本问题以及生产效率问题也是产业界主要考虑的问题。2.2.2 、 硅碳复合材料:硅基材料中最先量产的材料硅碳复合具有协同效应。复合材料的设计初衷通常是两种或两种以上材料优势互补、从而发挥协同效应。硅负极材料较差的导电性限制其在锂电池负极材料的应用,而碳材料通常具有优异的导电性,硅碳复合将赋予其较好的导电性。同时,对复合材料进行结构设计也可减轻硅在充放电过程中的体积膨胀。硅碳复合材料的碳源可以是无定形碳、多孔碳、CNT、石墨、石墨烯等,通过喷雾热解法、CVD 法、化学液相法、高温热解法、高能球磨法等方法可以设计出核壳形貌、三明治形貌等。硅碳负极在所有硅基负极中率先实现量产。当前学术界和产业界对硅碳负极的研究进展较多,硅碳材料在产业界的量产也在加速进行。国内负极主流厂商杉杉股份、贝特瑞、翔丰华等公司在硅碳负极领域的专利数量均超过个位数。其中龙头厂商贝特瑞和三星 SDI 合作,在 2013 年便实现硅基负极的量产,用于动力及消费电池。贝特瑞目前已经开发出三代硅碳负极材料。根据其公开转让说明书,第三代硅碳负极材料的克容量达 1500mAh/g。从生产工艺看,硅基负极的生产工艺和石墨类材料差别较大,现有石墨负极厂商并不具备技术先发优势。不过,从贝特瑞硅碳负极的专利来看,目前硅碳负极基本上还是以碳材料为基底,在碳材料中掺杂硅,而不是硅材料掺杂少部分碳,因此当前负极厂商相对新进企业来说仍有一定优势。2.2.3 、 硅氧负极:性能介于硅、石墨之间硅氧负极原则上和硅负极并不属于同一体系,但广义上可以归类于硅基负极。硅氧负极的活性材料是 SiOx。相比于硅负极而言,非活性元素氧的引入显著降低了脱嵌锂过程中活性材料的体积膨胀率,硅氧材料的体积膨胀率一般为 160%左右,可逆容量在 1400-1740mAh/g。因此其体积膨胀率和克容量介于硅和石墨材料之间,是目前来看,最具商业化前景的第三种负极材料。但硅氧负极导电性极差,SiO 的室温电导率为 1.77×10-10S/cm,几乎接近绝缘。如果要用作电极材料,必须对其进行复合改性或者添加大量的导电添加剂。相比于在混料时加入大量添加剂并以物理方式混合,对硅氧材料复合改性与结构设计是更有效的方法。与硅负极改性类似,硅氧负极所需的复合材料通常选择导电性优异的碳材料。从国内主流的几家负极厂商的专利来看,硅氧负极材料基本上都采用 SiOx/Si/C 体系。贝特瑞已完成多款氧化亚硅(SiO)产品的技术开发和量产工作,部分产品的比容量达到 1600mAh/g 以上。2.3 、 电解液:添加剂是提升循环寿命的一剂“良药”电解液添加剂可改善电池循环稳定性。电池在循环过程中发生一系列副反应会影响电池的循环稳定性,而循环稳定性与电池在充放电循环的容量保持率直接相关。因此若要在多次充放电循环中保证较好的容量保持率,改进电解液或是一种低成本、高效率的选择。目前商业化电芯中,正极材料和电解液的副反应是影响电芯循环寿命的主要原因。磷酸铁锂、锰酸锂、三元材料、富锂材料均存在各类副反应问题。针对正极材料存在的问题设计合适的电解液添加剂可以有效解决电芯循环寿命。按功能分,电解液添加剂可分为成膜类添加剂、阻燃类添加剂、高压类添加剂、抑酸类添加剂等。特斯拉研究团队在电解液添加剂方面有许多进展。特斯拉在电解液添加剂的专利一共有 13 项,第一发明人均为 Jeff Raymond Dahn,主要涉及新型电解液添加剂的制备以及二元添加剂的组合。在 2019 年 9 月发表的一篇关于电解液添加剂文章中指出,在商用单晶 NCM523/石墨体系中,添加 2%VC+1%DTD 复合型电解液添加剂,1C 条件下循环 5300 圈后容量保持率在 97%。即在 100%放电深度的情况下,配套 NCM523 电芯的纯电动续航为 300km-400km,使用寿命可达 159 万 km-212 万 km。电解液添加剂的使用是一种低成本、高效率提升电池循环寿命与安全性的方法。少量的添加剂就可起到改善效果。电解液添加剂技术的难点在于 1)添加剂与溶剂、锂盐的配比调节问题;2)电解液添加剂的功能性取舍问题。我们认为,锂离子电池的循环寿命和安全性是终端消费者购车的主要考量指标,电解液添加剂对上述性能的改善立竿见影,若添加剂的配比与功能平衡问题得以解决,将是材料层面落地速度最快的技术创新。3、 相关企业分析3.1 、 特斯拉:降本增效的极致追求者降本增效的极致追求者。早年与松下合作开发高能量密度的电池,是全球最先使用硅碳负极与 NCA 正极的车企。如今考虑自产电池,一系列新技术、新材料、新工艺被其技术研究团队提出。在新材料方面,无钴、单晶、新型电解液添加剂、硅纳米线等新技术均有布局相关专利。特斯拉是动力电池产业链新技术的需求者,更是发明者与引领者。3.2 、 宁德时代:行业创新引领者技术创新推动龙头加速成长。宁德时代虽然是中游电池制造商,但其对上游锂电材料的理解也相当深刻。公司在四大材料正极、负极、电解液、隔膜领域专利达 1800余项,占公司专利总量约 50%。由于具备强大的人才储备、资金实力,公司常与上游供应商合作开发新型材料与技术,带领行业共同进化,是行业技术进步的最大受益者。3.3 、 贝特瑞:有望迎来硅碳负极风口贝特瑞是负极材料技术突破的先行者。2000 年贝特瑞掌握天然鳞片石墨的球形化技术,一举实现天然石墨国产化,贝特瑞在天然石墨市场的市占率常年保持在 50%以上。公司凭借技术优势逐步打入三星、LG 化学、三洋、松下、索尼等日韩主流电池企业。公司目前拥有硅基负极产能 1000 吨/年,且已经用于动力及消费电池。不过目前在负极领域,硅碳材料膨胀问题与首圈效率较低问题仍待解决,其应用规模相对石墨负极较小。未来若干电极技术转化成功,负极补锂技术将凭借干电极技术得到大规模应用。届时高比容量的硅碳负极的应用市场将完全打开,硅碳负极业务有望为贝特瑞贡献业绩新增量。3.4 、 新宙邦:电解液添加剂提升产品附加值新宙邦在电解液领域布局广泛。公司是国内锂离子电池电解液龙头,在电解液溶剂、锂盐、电解液添加剂领域均有布局。目前公司拥有锂离子电池电解液产能 6.5 万吨/年,在建电解液产能 6.0 万吨/年。在电解液添加剂方面,公司于 2014 年收购国内主流电解液添加剂供应商张家港瀚康化工,涉足成膜添加剂 VC、FEC 领域。目前子公司淮安瀚康的 VC 产能为 1000 吨/年、FEC 产能为 1000 吨/年,子公司南通新宙邦VC+FEC 添加剂产能共 1000 吨/年。电解液添加剂是体现公司产品差异化的核心,可提升电解液产品溢价值。公司在电解液添加剂方面加大研发,不断推出添加剂新产品。目前公司已拥有新型添加剂 300余种,其明星产品正极成膜添加剂 LDY196、负极成膜添加剂 LDY269、低阻抗添加剂 LDY234 等显著改善锂离子电池高低温性能、循环性能等。3.5 、 格林美:高镍低钴前驱体材料的先行者格林美在三元前驱体领域具备客户资源优势与成本优势。公司是动力电池三元前驱体材料龙头企业,并积极布局废旧电池回收业务,打造“电池回收-原料再造-材料再造-电池包再造-新能源汽车服务”循环产业链,降低前驱体生产成本。此外,公司具有优质的客户资源,客户多集中在容百科技、Ecopro 等三元正极材料龙头与宁德代、LG 化学等动力电池龙头。格林美在 NCMA 四元材料开发具有先发优势与核心技术优势。公司三元前驱体产品定位在高镍、单晶等高端产品,目前已经全面掌握高镍(NCA、NCM8 系、NCM9 系) 及单晶三元正极前驱体生产工艺。公司已在高镍低钴前驱体材料领域积累较多产业经验,形成较高的技术壁垒。格林美NCMA 四元前驱体材料已在进行客户吨级认证, 在 NCMA 四元前驱体开发方面具备先发优势。3.6 、 容百科技:单晶与高镍技术的先行者研发实力雄厚,率先突破单晶与高镍技术。在三元正极领域,容百科技一直是技术先行者,公司于 2017 年实现了 NCM811 和单晶高电压 NCM622 产品的大规模量产,并在 2018 年末实现了高镍NCA 及单晶高电压NCM811 产品小规模量产。客户资源方面,公司包揽宁德时代、比亚迪、LG 化学、天津力神等国内外主流锂电池厂商, 目前是宁德时代 NCM811 正极的独供。2019 年由于比克电池坏账影响,以及高镍技术推广不及预期,公司业绩短期承压,长期看,公司强大的技术研发实力将带领公司业绩走出低谷期。3.7 、 当升科技:高镍单晶产品性能领先同业正极材料龙头,海外业务加速放量。当升科技是国内最早一批实现钴酸锂正极材料出口的公司,2008 年进军动力锂电市场后又率先开发日韩客户,并在海外优质客户发高标准、严要求下不断开发新产品。公司的单晶 Ni>85 产品比容量达 211mAh/g, 极片压实密度达 3.55g/cm3,领先同业。……(报告观点属于原作者,仅供参考。报告来源:开源证券)如需完整报告请登录【未来智库】。
新能源汽车充电桩项目可行性研究报告-新能源汽车基础设施建设持续升温1、新能源汽车充电桩定义及构成新能源汽车充电桩指为新能源电动汽车提供充电服务的设备装置,安装于公共楼宇、停车场、商场、运营车充电站等公共场所及居民小区等私人场所。充电桩的电力输入端与交流电网连接,带有充电插头的电力输出端与汽车连接实现充电。充电桩由硬件和软件构成。其中,硬件主要由总控单元、显示单元、监控单元组成。(1)总控单元:硬件系统的关键组成部分,与其他硬件单元双向或单向交互,是启动、运行、监控和关闭充电桩向汽车充电的决策核心,可将充电过程中采集的数据传输至后台;(2)显示单元:由LCD显示器、触控屏、指示灯、按键构成,是用户与充电桩的直接交互对象。显示单元的主要作用为向用户提供充电费用信息和了解用户充电需求;(3)监控单元:包括模拟量、开关量采集和开出控制。模拟量采集单元可获得用户在与显示单元交互过程中输入的数据。开关量采集可根据用户输入数据提供与用户充电需求匹配的充电量。在用户完成充电后,开出控制将指引用户结束充电行为。监控单元的主要作用为监测充电桩输入及输出电压电流、充电接口连接状态和车载电池状态,从而发现充电、车载电池异常状态,保护汽车和充电桩安全。新能源汽车充电桩硬件构成充电桩具体硬件设施包括充电枪、充电柜、配线柜等充电桩外部硬件和逆变器、变压器、整流器、滤波器、继电器等内部硬件。硬件设施通常采用耐候、耐温、阻燃性能好、绝缘性能优秀、抗电痕指数高的材料,如ABS、PET、尼龙等塑料。新能源汽车充电桩具体硬件设施充电桩软件系统由多个模块构成,主要分为主控模块、IC识别模块、人机交互模块、计费模块和充电模块,各模块在单独运作的同时进行信息交互,共同实现对汽车的充电和对用户的计费功能。新能源汽车充电桩软件系统构成2、新能源汽车充电桩分类根据充电方式,新能源汽车充电桩可分为交流充电桩和直流充电桩。交流充电桩成本较低、更加易于建设,直流充电桩成本高、建设要求高新能源汽车充电桩主要根据充电方式进行划分,可分为交流充电桩和直流充电桩:(1)交流充电桩俗称"慢充",不可直接为汽车动力电池充电,需连接车载充电机为汽车充电,采用常规电压、充电功率小、充电慢,但结构简单、体积小、成本低,通常安装于城市公共停车场、商场和居民小区。(2)直流充电桩俗称"快充",可直接为汽车动力电池充电,采用高电压、充电功率大、充电快,但成本高且电压电流大,影响电池寿命。直流充电桩通常安装于运营车充电站、快速充电站等场所。从公共充电桩角度而言,根据中国电动汽车充电基础设施促进联盟(EVCIPA)数据,2019年中国公共充电桩总数达51.6万台,其中交流充电桩占比58.3%,直流充电桩占比41.7%。3、中国新能源汽车充电桩市场规模近五年,在新能源汽车产业政策的刺激下,中国新能源汽车市场发展迅猛,对应汽车充电桩需求也持续上升。新能源汽车年销量由2015年的33.1万辆增加至2019年的120.6万辆。作为新能源汽车所需基础设施,新能源汽车充电桩行业深度受益,2015-2019年,中国新能源汽车充电桩行业市场规模(按充电桩建设规模统计)由12.6亿元增长至56.6亿元,年复合增长率为45.7%。2015-2019年充电桩市场规模波动明显2015-2018年,中国新能源汽车充电桩市场规模保持快速增长,主要原因为:充电桩保有量少,业内企业通过大幅铺设充电基础设施抢占市场先机。2019年,充电桩市场规模同比下滑,主要原因为:充电设备和核心—充电模块的价格持续下滑,价格由2016年的1.5元/瓦下降至2019年的0.4元/瓦以下,导致充电桩建设成本下降,建设规模出现回落。行业增速更加稳定,充电桩市场规模持续增长目前,新能源汽车充电桩行业集中度持续上升,行业逐步进入相对稳定的快速发展期,在充电桩建设成本稳定下降的同时,充电桩数量在快速增加。当前车桩比与中国政府制定的发展目标仍存在差距,充电桩建设有待提速。预计2019-2024年,中国新能源汽车充电桩行业市场规模年复合增长率将维持在25.9%,到2023年增长至179.0亿元。2015-2024年中国新能源汽车充电桩行业市场规模(按充电桩建设规模统计)分析预测4、中国新能源汽车充电桩行业产业链分析新能源汽车充电桩产业链主要由上游设备制造商、中游充电桩运营商与下游新能源汽车用户组成。中国新能源汽车充电桩行业产业链分为三个环节。产业链上游参与者为建设充电桩所需设备的制造商;产业链中游参与者为充电桩运营商;产业链下游参与者为充电桩用户,包括新能源汽车整车企业和个人消费者。A、产业链上游中国新能源汽车充电桩行业产业链的上游参与者主要是充电模块、滤波设备、监控计费设备和电池维护设备等充电桩设备制造企业。充电设备是充电桩的主要成本新能源汽车充电桩的成本包括原材料成本、制造成本和人工成本。其中,原材料成本即充电桩硬件设备投入成本,占充电桩总成本的90%以上。充电桩所需设备主要包括充电模块、有源滤波设备、监控计费设备、电池维护设备等。此外,功率大、电压高的直流充电桩还需额外安装配电设备,如大型变压器、高低压保护设备等。以直流充电桩为例,充电模块成本占原材料成本的比例约50%,有源滤波设备成本占比约15%,监控计费设备和电池维护设备的成本各占10%。2019年直流充电桩成本明细充电模块是充电桩最核心的设备,主要功能为将交流电网中的交流电转换为可以为电池充电的直流电。其中,IGBT功率开关是充电模块的关键组成部分,是在充电过程中起电力转换与传输作用的核心器件,占充电模块成本的20%以上。充电设备平均毛利率下行,企业向中游运营业务拓展充电设备行业壁垒较低,产品差异化程度较低,随着市场参与热度的增加,市场竞争加剧,行业盈利空间下滑。对于充电设备企业而言,制造充电设备所需电子元器件大同小异,获取门槛较低,产品同质化程度较高,导致业内企业并无明显核心竞争优势。例如,影响充电模块性能的核心电子元器件为IGBT,而IGBT进口依赖度较高,导致各充电模块产品性能趋同,缺乏差异性。此外,由于新能源汽车市场的快速发展,充电桩市场需求大幅上升,带动行业投资热情,市场参与者不断增加。受此影响,市场竞争加剧,行业平均毛利率下行。以英可瑞、奥特迅和盛弘股份为例,近三年充电设备企业毛利率下行趋势明显,由40%降至30%以下。由于充电设备行业毛利率日益微薄,业内企业向产业链中游运营市场延伸的动力增强,产业链上游和中游整合日趋明显。例如,特锐德、国家电网为充电设备供应商,同时也是充电桩运营市场主要参与者。B、产业链中游新能源汽车充电桩运营主体可分为专业化运营商、政府和整车企业三大类,三类企业实行多种充电桩运营模式,其中专业化运营商主导模式为当前主流运营模式。中国新能源汽车充电桩行业产业链中游运营主体可分为三大类,包括专业化运营商、政府和整车企业,不同类型企业在充电桩运营市场具备各自优劣势。在三类运营主体下,中国新能源汽车充电桩行业形成了六种主要的运营模式。六种类型新能源汽车充电桩运营模式对比专业化运营商主导模式是当前充电桩主流运营模式,因此专业化运营商占据充电桩运营市场的主导地位,占公共充电桩运营市场份额的75%以上。国有企业其次,占公共充电桩运营市场份额的20-25%。由于整车企业并非以开拓充电桩市场为目的,整车企业充电桩市场占比较低,不到5%。C、产业链下游新能源整车企业有望通过与中游充电桩运营企业合作加强市场差异化竞争能力。在政策补贴趋于平稳且汽车成本进一步降低的背景下,个人用户购车意愿有望回暖。中国新能源汽车充电桩行业产业链最终下游的参与者包括新能源汽车整车企业和新能源汽车个人用户。整车企业得益于产业链上游与中游的充电桩建设与运营,利用快速布局的充电网络作为开拓新能源汽车市场的有力基础,同时进一步加强与上中游的合作,推广汽车产品。个人用户在新能源汽车购车成本不断降低和充电基础设施不断完善的背景下,购车意愿增强,带动全产业链市场需求的增长。各类型新能源汽车销量占比新能源汽车可分为新能源乘用车和新能源商用车(客车和专用车)。2019年中国新能源汽车销量为120.6万辆。其中,新能源乘用车销量为106.0万辆,同比增加0.7%。新能源商用车销量为14.6万辆,同比下滑28.3%。2019年新能源汽车增长颓弱的原因在于政策补贴的大幅退坡,产业链相关企业短期内难以快速调节生产成本,汽车个人用户购车实际成本上升,导致2019年新能源汽车销售承压。2019年中国新能源汽车销量分布2020年,受新型冠状病毒肺炎影响,汽车消费市场景气度显著下滑,为保障新能源汽车产业发展符合预期,政策补贴进一步下滑的可能性较低。此外,产业链成本仍持续降低。在此背景下,新能源汽车市场有望回暖。整车企业市场格局从新能源汽车整车企业市场竞争格局角度而言,新能源客车市场集中度最高,其次为乘用车市场,专用车市场集中度相对偏低。2019年中国新能源汽车整车企业市场格局(按销量统计)5、中国新能源汽车充电桩行业竞争情况分析中国新能源汽车充电桩市场集中度较高2019年,充电桩运营数量超过1,000台的企业数量约20-30家,公共充电桩运营数量超过10,000台的企业数量为8家。其中,特来电、星星充电和国家电网运营平台为市场第一梯队。在此背景下,中国新能源汽车充电桩市场CR3近70%,CR8超过90%。中国新能源汽车充电桩市场集中度较高。2019年中国新能源汽车充电桩市场份额分布充电桩运营市场高度集中的主要原因在于充电桩运营规模效应强、前期投资大、投资回报周期长,极为考验企业的资金和经营能力。因此,长期而言,中国新能源汽车充电桩市场将维持较高的集中度。充电桩市场竞争结构分析尽管中国新能源汽车充电桩市场集中度已处于较高水平,随着充电桩需求的快速增加,充电桩运营商的竞争热度将进一步上升。具体而言,充电桩市场竞争可分为现存企业间竞争、新进入者竞争、与上游供应商的议价和与替代品行业的竞争。新能源汽车充电桩项目可行性研究报告编制大纲第一章总论1.1新能源汽车充电桩项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1新能源汽车充电桩项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:关联报告:新能源汽车充电桩项目申请报告新能源汽车充电桩项目建议书新能源汽车充电桩项目商业计划书新能源汽车充电桩项目资金申请报告新能源汽车充电桩项目节能评估报告新能源汽车充电桩行业市场研究报告新能源汽车充电桩项目PPP可行性研究报告新能源汽车充电桩项目PPP物有所值评价报告新能源汽车充电桩项目PPP财政承受能力论证报告新能源汽车充电桩项目资金筹措和融资平衡方案
获取《新能源锂电池系列报告之一:总篇:锂电池面向新能源车、储能、铅酸替代的万亿空间》完整版,请关注绿信公号:vrsina,后台回复“新能源车报告及白皮书”,该报告编号为20bg0058。预计 2030 年全球动力电池市场空间将近9000 亿元,正极市场空间 2630 亿元、负极890 亿元、隔膜610 亿元、电解液520 亿元。2019 年至今,补贴大幅退坡,补贴效应弱化,行业将迎来市场化发展。经过过去 7 7 年的补贴发展,产业链已经实现了降本提质,动力电池价格下降接近70%近 ,能量密度提高接近 50% ,具备了市场化基础。市场空间来看,2019 年我国动力电池市场超 600 亿元,全球超 1200 亿元;随着电池技术迭代、规模迅速扩大、成本下降, 预计 2025 年,全球动力电池市场空间将超过 5000 亿元,2030 年将近 9000 亿元,十年七倍市场空间;其中空间 2630 亿元、负极 890 亿元、隔膜 610 亿元、电解液 520 亿元。新能源汽车之外,储能是一片蓝海市场,极具成长空间, 近看 5G基站带来未来五年确定性增量,远看 新 能源 替代 下 的多重应用场景。 预计 5G基站的储能市场总空间超千亿,未来3- -5年为基站建设高峰,年均超 10 GWh h 的需求。新浪VR知识星球报告库以近五千分,所有新浪VR报告都将由管理员上传(包含部分未在其他平台发布的非互联网相关报告)VIP用户福利不定时开启,前1000名还能领领优惠券性价比更高! 新浪VR,早一天看见未来。
【能源人都在看,点击右上角加'关注'】免责声明:以上内容转载自电池中国,所发内容不代表本平台立场。全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
如需报告请登录【未来智库】。2019 年,新能源汽车销量因补贴大幅下滑而负增长,预计 2020 年我国新能源汽车补贴不再退坡, 但单车降本压力仍然存在,磷酸铁锂电池在成本方面较三元有较大的优势,再次进入市场视线。本文是铁锂电池产业链系列报告第一篇,主要阐述铁锂电池在动力领域的复苏逻辑,强调铁锂电池在低端乘用车领域的应用优势以及部分企业在这方面的积极探索。成本驱动磷酸铁锂电池向乘用车领域持续渗透从材料到电池,磷酸铁锂技术路线成本优势明显电池的性能由材料性能水平决定,作为锂电池的一种,磷酸铁锂电池(LFP 电池)优缺点都非常明显:成本低,循环次数高、低温性能差、能量密度低。特殊的指标数据决定了LFP 电池在新能源汽车中的份额逐渐被功率密度和能量密度更高的三元电池蚕食,目前的装机主要集中在客车和专用车上,在乘用车领域的装机量份额较低。但随着补贴政策大幅变动,一直追求三元电池高能量密度的方向遇到了成本的阻力。在降成本的压力下,寻找其他电池替换三元电池是车企一直坚持的思路。在价格上较三元电池便宜 10%-15%的 LFP 电池成为车企在低端乘用车型上考虑方案之一。LFP 电池成本较三元电池低 10%-15%,差距主要体现在两种电池的材料体系上。在三元电池体系中,电池占整车成本的 40%,其中三元正极材料又占电池成本的 30%左右。三元正极材料中钴镍锰有价金属含量高,尽管钴价格从最高点 68 万元/吨下跌至 28 万/吨,加上镍锰盐和碳酸锂/氢氧化锂材料以及加工成本,三元材料的价格在 12-18 万元/吨区间。而 LFP 正极主要由磷酸铁+碳酸锂组成,以两者较低的价格,最终 LFP 正极价格仅 4.1-4.5 万元/吨。另外,LFP 电池主要使用干法隔膜,价格也较三元电池用的湿法隔膜低。最终体现在电芯价格上,LFP 电芯的成本可以做到0.55 元/Wh,而三元电芯的成本则在 0.65 元/Wh 左右。两者的价差会因为正极材料价格差异而长期存在。叠加 pack 环节,两者之间的价差绝对值在 0.15 元左右。低端乘用车降本优先,铁锂电池配套比例提升2019 年,新能源汽车补贴大幅下滑,地方补贴也取消,导致单车平均补贴降幅高达 70%。从绝对额上看,微型车和小型车补贴金额从 4-5 万区间骤降至1.8 万元以下,降本是未来 2-3 年低端乘用车主线。磷酸铁锂在成本上较三元电池有着较大的优势。从正极材料,到电池系统,再到整车,甚至整个使用过程。降本路径来自于材料端价格不断下降和铁锂电池工艺水平的提升。以带电量 40 度电的小型车为例,三元电池价格约 4 万元,续航 350 公里;而磷酸铁锂电池的价格 3.2 万元,续航300公里;牺牲 50 公里理论续航(实际续航缩减20-30 公里)可以给车企带来约 8000 元降本空间。而在使用端,全生命周期内铁锂车型较三元车型的平均年度使用成本低约 4300 元。因此,我们认为低端车型从三元转向铁锂,是车企和消费者共同的目标导向。从工信部新车推荐目录来看,进入2020 年,铁锂电池在乘用车中的配套比例明显回升,最新推荐目录显示,乘用车中铁锂电池配套比例已经超过 20%。其中,上汽集团荣威 ei6 插电、荣威 eRX5 插电和名爵 MG6插电的改款版车型也确定更换为磷酸铁锂电池。这是车企对铁锂电池全新认知的变化,铁锂电池较三元电池节约成本,且对性能影响不大。插电混动车型本身带电量 15 度左右,电池重量 120 公斤,从三元换回铁锂,同等容量下,电池增重仅 10 公斤,续航里程影响 5 公里左右,但成本下降 3000 元。我们预计这一趋势将在 2020 年继续加强,铁锂在乘用车中的配套有望提速。中国热销 MPV 电动化,磷酸铁锂电池有望复苏五菱宏光引领,中国热门车型创造产销奇迹在中国汽车工业发展的大进程中,自主车企始终处于被动的局面,但仍有一些车型成为老百姓口中的神车。之所以用“神车”这个词,是因为它们在车市激烈的竞争中脱颖而出,创造了销量神话和优质口碑。以五菱宏光为首的中国国产神车以高品质、低价格、开不坏、低成本的特点给消费者留下了深刻的印象,五菱宏光更是被誉为“秋名山神车”。上汽通用五菱旗下的 A 级 MPV 车型五菱宏光首款车型 2010 年上市,定位成微型面包车。五菱宏光在动力性和经济性的完美平衡,以及在操控性和安全性上的实力表现,颠覆了人们对商务车的传统印象。自上市以来,该车连续 7 年霸占 MPV 细分市场销量排行榜冠军,巅峰时月销高达 8.25 万辆。2019 年,五菱宏光累计销量销量 37.5 万辆,在国内汽车销量中排名第四,在自主车型中排名第二,仅次于哈弗 H6。截止 2019 年底,五菱宏光系列车型累计销量高达 450 万辆,强大的用户积累、优秀的口碑反馈和极高的性价比是五菱宏光系列车型持续畅销的重要因素。此外,上汽通用五菱旗下另一款专用车五菱荣光 2019 年销量也达到 16 万辆的规模,位列 19 年自主车型销量排行榜第 7 位。大微客五菱荣光自 2008 年推出首款车型,定位微型面包车,商货两用。2012 年五菱荣光全面升级,其中加长款产品将整车长度延伸至 4490mm、宽度和高度分别为1615mm、1900mm,由原来的 7 座升级为 9 座,空间更大。经过三代改款,目前五菱荣光已经延伸出 V、S、加长版、单双排和小卡等多个版本。自主车企是电动化主力,但 2019 年销量 top10 自主车型的电动化率却比较低,仅3 款车型有对应的电动车在售。自主车企并未有效利用热销车型的高销量、高口碑效应来开拓电动市场。一方面,基于油车平台的车型纯电话,在续航上会有一定的劣势;另一方面,油电车型同台竞争也是车企的考量因素之一。我们认为,车企更愿意推出基于纯电动平台的新车来打市场,但新平台不等于新品牌,热销品牌在消费市场的穿透效果要明显好于新品牌。五菱宏光/荣光纯电版进推荐目录,有望带动铁锂电池装机回潮2019 年下半年,上汽通用五菱开始了相关热门车型的电动化进程,五菱宏光和荣光两款神车领衔,双双进入工信部发布的第 326 批新车公示名单。两者均将推出高低续航版的纯电动车型,并细分为多功能版和运输版。从电池配套来看,五菱宏光高续航版本由宁德时代配套磷酸铁锂电池,电池参数是(335V/125Ah),折合带电量 41.88KWh。低续航版本由国轩高科配套磷酸铁锂电池,参数是(323V/105Ah),折合带电量 33.92KWh。五菱荣光由鹏辉能源独家配套磷酸铁锂电池,高续航版电池参数是(368V/113Ah),折合 41.58 度电,低续航版电池参数(314V/113Ah),折合35.48 度电。继新车公示之后,两款神车很快进入工信部推荐目录。根据 2019 年第 11 批推荐目录,五菱荣光车型高续航版本310 公里,能量密度131Wh/kg;低续航版本260 公里,能量密度126Wh/kg。五菱荣光车型高续航版本41.6 度电,续航300 公里,能量密度125Wh/kg;低续航版本35.4 度电,续航 252 公里,能量密度 125Wh/kg。此外挂牌广西汽车的五菱牌厢式运输车续航里程为270 公里,由鹏辉能源提供磷酸铁锂电池配套。上汽通用五菱基于神车五菱宏光和荣光燃油车,一共推出 3 个品牌,累计 10 个型号纯电动车。此外,在乘用车领域,上汽通用五菱也即将推出 E300/E300L 等低端乘用车型,有望打开小型车渗透空间。我们假设五菱宏光和荣光车型销量渗透率20%,叠加 E100/200 增量和 E300 新车型,上通五电动车转型有望带动铁锂电池增量超过5GWh。BYD 刀片电池领衔,中高端乘用车试水铁锂电池后补贴时代,车企对铁锂电池的接受到有了很大的提升,铁锂电池不仅在低端乘用车中广泛应用,中高端车型中也开始出现铁锂电池的身影。在中高端领域,比亚迪率先推出最新刀片电池,采用磷酸铁锂路线,系统能量密度最高达到 160Wh/kg,改款电池应用在旗下高端车型汉上,实际能量密度 140Wh/kg,最高续航达到605 公里,是铁锂车型续航的最大突破。简单来说,所谓“刀片电池”,就是比亚迪开发的长度大于0.6 米的大电芯,是长电芯方案,通过阵列的方式排布在一起,就像“刀片”一样插入到电池包里面。将电芯进行扁长化涉及,提高电池包的集成效率。提升主要体现在动力电池包的空间利用率,体积能量密度可提高50%;重量能量密度也有所提升。另一方面,长电芯方案两侧直接与外壳相接,能够保证电芯具有足够大的散热面积,可将内部的热量传导至外部,从而匹配较高的能量密度。体现在成本上,刀片电池较传统结构电池成本下降 10%左右,能够有效节约电池成本。多款铁锂车型即将上市,LFP 动力电池增量空间广阔三元电池对铁锂电池份额的挤压始于 2016 年,在乘用车领域,三元迅速取代铁锂,装机份额逐渐提升。在专用车领域,三元的装机量也有较大增长,而客车领域由于政策的原因,未放开三元电池配套。2019 年全年,我国动力电池装机量达到62GWh,乘用车装机量 42GWh,客车装机量14.55GWh,专用车装机量5.4GWh,乘用车已经成为拉动电池装机的主要领域。因此三元的份额在装机总量中快速提升,达到 40GWh,装机份额65%,较 18 年增加10GWh;而铁锂电池的装机量仅 20GWh,装机量连续三年出现增长瓶颈,装机份额下降至32%。基于补贴变动向成本导向转变,我们坚定看好铁锂在乘用车领域的配套的持续提升。铁锂在新能源汽车应用的复苏是一个长期的过程,在动力装机量中的份额会维持一个稳定的比例。从单一车型来看,五菱荣光/宏光神车电动版本产销规模有望达到 10 万辆级别,贡献装机量达到 4GWh;而从长期看,我们预计国内 50%的 A00 车型,30%的 A0 车型,10%的 A 级车以及30%的插电车型有望配套 LFP 电池,以 2020 年各车型销量预测数据计算,对LFP 电池装机的增量高达 10GWh,铁锂装机量达到30.37GWh,2021-2022 年分别达到36GWh 和 42.6GWh。而随着全球主流车企低端车型也开始转向 LFP 电池,我们认为长期来看,LFP 电池的在新能源汽车领域的增量空间更可观。LFP 产业链相关标的梳理磷酸铁锂产业链涉及上游原材料磷酸、磷酸铁、碳酸锂,中游正极材料磷酸铁锂以及下游磷酸铁锂池和整车,后端市场还包括动力废旧磷酸铁锂电池拆解、梯次利用和湿法回收。从产业集中度和企业纯度来看,正极和电池厂业务相对更纯粹,是投资首选环节。电池环节建议关注宁德时代和鹏辉能源宁德时代:铁锂电池份额第一,发力乘用车宁德时代是电池环节绝对龙头,三元和铁锂电池并行。2019 年 32GWh 装机量中,21GWh 为三元,11GWh 为铁锂。铁锂电池主要配套大巴车,自 2019 年下半年起,公司铁锂电池开始向乘用车型配套,这次向特斯拉提供铁锂电池有望进一步奠定公司在铁锂细分领域的行业地位。在三元电池方面,公司目前已经与海内外多家主流车企建立起合作关系,并在欧洲设立了电池工厂,未来公司有望受益于欧洲电动车爆发从而进一步巩固市场份额,高成长型逻辑有望持续兑现。鹏辉能源:专注 LFP 动力电池的低成本玩家公司是小而美的全能型锂电池综合供应商,在消费、动力(含轻型动力)、储能和电动工具领域均有涉及。动力电池方面,公司 19 年深度绑定上汽通用五菱,为宝骏 E100/200 系列提供了 60%的电池配套,同时已经拿下上通五五菱荣光纯电车型独家配套。2019 年动力电池装机量 0.7GWh, 排名国内前 10。公司在动力电池业务上已经将重心转向铁锂电池,同时在储能板块对铁塔基站备用电源实现供货,并积极拓展欧洲储能市场。未来公司将受益于动力、3C 数码和储能等电池需求爆发,盈利弹性强。正极环节关注德方纳米和湘潭电化德方纳米:LFP 正极材料市场占有率第一,低成本方案不可复制公司是目前 A 股最纯正的磷酸铁锂正极材料标的。2018 年,纳米磷酸铁锂材料收入 10.1 亿元, 占到公司营收的 96.13%。公司是宁德时代铁锂材料的核心供应商,磷酸铁锂正极材料出货量迅速增长,2019 年出货量 2.2 万吨,其中对宁德供应量比达 72%,占其采购量的 60%。公司铁锂正极在工艺技术和成本上行业领先,采用的“自热蒸发液相合成纳米磷酸铁锂技术”,原材料从碳酸锂、硝酸、铁源、磷酸出发,与行业传统的“碳酸锂+磷酸铁”水热法有显著区别,低成本路径不可复制。湘潭电化:潜在铁锂正极低估标的公司是湘潭电化系湘潭市国资委下属控股企业,主营业务为生产销售电解二氧化锰和新能源电池材料、城市污水集中处理、工业贸易等。是湖南杉杉、青岛乾运、桑顿新能源等二次电池生产企业的优质供应商。公司参股裕能新能源16%的股份,裕能新能源是磷酸铁锂核心供应商之一,客户端涉及宁德时代、比亚迪和亿纬锂能。裕能新能源当前拥有 3 万吨磷酸铁锂正极产能,2019 年出货量超过1 万吨,销售渠道由湘潭电化帮助搭建。公司和德方纳米共处铁锂正极第一梯队,产品压实密度高。光华科技:LFP 新星,循环产业链已成公司主营业务 PCB 电子化学品和化学试剂,2017 年进军锂电材料行业,先后布局电池回收、磷酸铁锂&磷酸铁项目、铁锂梯次利用项目。2019 年上半年锂电材料业务规模占公司比重达到 18%, 较 18 年底提高 5 个百分点,预计 2019 年全年占比达到 19%。公司已经建成年产 1 万吨磷酸铁产能,基于电子化学品湿法提纯技术,公司磷酸铁品质优越,产品售价高于市场。磷酸铁锂正极产线建成,目前正在对验证中。在后端市场,公司布局动力电池回收业务,是五家示范企业之一。公司具备从梯次利用到湿法处理全链条能力,是电池报废放量的直接受益者。铁锂电池的梯次利用业务逐渐放量,成为公司收入和利润的增长点。中国宝安:子公司贝特瑞是 LFP 正极材料龙头之一公司持有贝特瑞 75%股权,后者是正极领域后起之秀,成长速度亮眼。目前贝特瑞主要正极材料产品包括 NCA 单晶品和多晶品以及 LFP 系列。公司 2015 年起投产正极材料磷酸铁锂,2018 年成为国内磷酸铁锂市场排名第三的企业,当前产能 3 万吨,常州的 1.5 万吨产能预计年中投产,19年出货量约 1.3 万吨。公司正极材料占营收比也快速上升,从 2015 年的 9.70%到2018 年的 36.80%, 逐渐成为公司主要营收业务。随着未来公司产能的进一步释放,正极材料对公司盈利情况的拉动将 更加明显。投资建议:首选龙头,正极优先2019 年 3 月底补贴大幅调整就预示着铁锂产业链在动力中的复苏。但下游整车受车型迭代长周期的影响,三元换铁锂较市场预期来的晚,但这种确定性随着车企、电池厂频繁的变化而逐渐增强。整个产业链将从萎靡的状态切换至高成长性,但从投资角度看,电池和正极材料环节的标的相对更纯粹。电池环节建议关注宁德时代(300750,未评级)、鹏辉能源(300438,买入)。我们认为把握这轮主题在于准确识别行业龙头,正极材料环节对应标的在业务份额上更集中,建议关注处于第一梯队的德方纳米(300769,未评级)和湘潭电化(002125,未评级)。在后端市场,光华科技(002741, 增持)是唯一一家综合处理报废磷酸铁锂废旧电池的公司,重申“增持”评级。……(报告来源:东方证券)如需报告原文档请登录【未来智库】。