欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
定性分析or定量分析的7种研究方法诗音

定性分析or定量分析的7种研究方法

今天继续教大家写留学论文,选择定性分析还是定量分析?1什么是定性分析?分析方向:---定义---得出的数据方向---如何采集---是否具有目的性---研究类型---主客观---数据类型2什么是定量分析?分析方向:---定义---得出的数据方向---如何采集---是否具有目的性---研究类型---主客观---数据类型3定性分析的3种方式定性分析的3种方式:---Focus Group---Depth Interview---Photo Enthnography4定量分析的3种方式定量分析的4种方式:---Telephone Surveys---Personal Interviews---Web Surveys---Hybrid Method

回旋曲

定量研究方法和质性研究方法的区别何在?

研究方法作为知识生产的工具,其实跟背后的本体论是有很大的关系。我们完全可以不关注研究方法背后的本体论。很多人认为不需要关注,但是如果不关注的话,会导致研究方法的使用上会有很大的一个误差。那么定量研究方法和质性研究方法的区别何在?表面上看,一个是用数学,一个不用数学。也就是说是研究形式上的区别:一个采取量化的手法,一个不采取量化的方法,而是用文字表述的方法。但二者的区别,根本原因在于社会本体论预设的不同。量化方法本体论预设:社会世界类似于自然世界。所以社会科学可以模仿物理学,采取类似于自然科学的方法,数量化是必不可少的特征。科学性体现在实证性(或者经验性,注重可观察的证据),精密性(数学是特征)和揭示一般规律(从而可以做出预测)质性方法的本体论预设:社会世界不同于自然世界,因为社会是由人构成,人是有思想,情感,价值观念,信念等主观主义。人的行动是意义驱动的,而不是自然界中的刺激—反应行动。对意义的把握要通过理解,自然科学的客位立场无法达到对意义的理解。比如说对人的现象进行研究,就要理解人。比如说你要理解穆斯林的行为,你就要去读伊斯兰教的教义。如果不理解这个教义,怎么能理解它呢?我们很可能就是从一个非宗教徒的角度用自己的想法来裁剪它的行为,扭曲了它的行为,那这已经是违背现实了。意义可以定量的测量,但测量不是理解,因为测量可能是从客体立场来裁剪意义,甚至是研究者把自己的意义强加给研究对象。对意义的把握要从主体的立场出发。科学性首先体现在方法与社会科学研究对象的属性的匹配性。量化方法与社会现实的本体论属性不匹配。质性研究在实证上,与定量研究者一样。质性研究者也追求揭示规律,但社会规律与自然规律有不同的表现形式。科学性不在于严密性,严密性是我们追求的,但不仅仅在于严密性,它还在于研究方法和研究对象的本性的匹配性。

小椋

学会量化的方法去做决策

在漫长的历史长河中,人类始终未曾停止过对这个世界的探索和理解。我们是谁?我们从哪里来?我们要去向哪里?成为哲学最本源的问题。人类不断的拓宽已知的边界,对这个世界的探索和理解以信息的形式被人类传承了下来,形成知识,融合为智慧,从而不断的改变着整个世界。一、一切都在快速的发生着变化1. 我们所处的世界世界(world)广义上来讲,就是全部、所有、一切。现在一般来讲世界指的是人类赖以生存的地球。世界也代称有天地、天下、人间、世间、万物、世上等。世界也可解释由可感知的、不可感知的客观存在的总和以及用于描述客观存在及其相互关系的概念总和,客观存在是不以人或其他物意志转移而存在的。世界由概念世界和物质世界组成,概念世界包含所有生命对客观世界的认知以及为记录认知而存在的事物的总和。5000年前,人类一直处于物理世界当中,1950 s年第一台计算机的出现以后,物理世界和数字世界是并行的,并未曾有过太多的交集,1990s 以后信息高速公路计划,促进了物理世界向数字世界的转化,物理世界中的业务开始在数字世界中出现,2013s 大数据时代的开启,推动了数字世界向物理世界的拓展,人们提出了"数字化双胞胎",提出以数字化方式拷贝一个物理对象,模拟对象在现实环境中的行为,物理世界和数字世界开始出现融合。2. 我们对这个世界的认知认知,是指人们获得知识或应用知识的过程,或信息加工的过程,这是人的最基本的心理活动。它包括感觉、知觉、记忆、思维、想象和语言等。人脑接受外界输入的信息,经过头脑的加工处理,转换成内在的心理活动,进而支配人的行为,这个过程就是信息加工的过程,也就是认知过程。人的认知能力与人的认识过程是密切相关的,可以说认知是人的认识过程的一种产物。一般说来,人们对客观事物的感知(感觉、知觉)、思维(想象、联想、思考)等都是认识活动。认识过程是主观客观化的过程,即主观反映客观,使客观表现在主观中。而智慧则是由智力系统、知识系统、方法与技能系统、非智力系统、观念与思想系统、审美与评价系统等多个子系统构成的复杂体系蕴育出的能力。智慧则涵盖了人类文化的所有。——李二和《中国水运史》3. 信息是人类对世界认知的碎片化呈现信息本身是被人类赋予了某种意义,当然这又是另外一个哲学话题,有关物质和精神的二元世界。狭义的信息定义,是指音讯、消息、通讯系统传输和处理的对象,广义的信息是指人类社会传播的一切内容。人类通过获得、识别自然界和社会的不同信息来区别不同事物,得以认识和改造世界。人类社会是各种信息的总和,借助这些信息,人类历史才得以完整保存。信息不仅被动记录世界,并且主动创造世界。信息在记录世界的同时,让人类对世界已有的指示进行了结构化,不断累计创新,从而改变和创造世界,让人类文明不断向前推进。人类对这个世界的认知结构是碎片化的,人类历史上承载的信息同苍茫宇宙相比,都只是一个碎片。所有的学科内容也仅仅是从某一个角度去解读这个世界。信息传递的载体在人类文明高速发展的几千年内不断发生着变化,语言、文字、电报、电话、无线电,连接了整个世界,有关信息的传递有很多典故,结绳记事、文以载道、烽火狼烟、飞鸽传信、驿马邮寄、击鼓鸣号、到无线电波傲游太空,交警手语、航海中的旗语,信息赋予了人类生活更多的意义,早期的造纸术和印刷术,电子计算机和现代通讯技术的应用都极大促进了信息的传播,随着信息技术的不断发展,促进了人类文明的不断进步。二、决策会更为科学与智能1. 人类都在主动或被动做着决策法国作家加缪曾告诉世人:“生活就是你所有选择的总和。” 如果依次类推,人类历史则是全人类的所有选择累计而成。人类一直一来都在主动或被动的在做着决策,即便在野蛮的远古时代,面对恶劣的生存环境,人类也会学着鸟儿在树上建造小屋,构木为巢,来躲避野兽的伤害,在相当长的时间内才学会了人工取火,又不知过了多久开始结网、打猎、圈养牲畜,来提升生存的几率,人类不仅希望对这个世界的规则有很好的理解,甚至希望可以掌控或改变规则,从而实现价值最大化,风险最低化,趋利避害似乎是人类适应这个世界的不二法则。用一句话来总结决策的意义,”两弊相衡取其轻,两利相权取其重 ”。2. 决策就是复杂的思维过程百科定义:指决定的策略或办法。是人们为各种事件出主意、做决定的过程。它是一个复杂的思维操作过程,是信息搜集、加工,最后作出判断、得出结论的过程。信息技术的快速发展,促进了决策方式也在不断演变发展为一门与经济学、数学、心理学和组织行为学有密切相关的综合性学科,在政治、经济、技术和日常生活中发挥着重要的作用;回顾人类历史上决策的发展历史,已有的信息无法支撑或解释人类对未知的困惑时,人类总会寻找新的突破,不断提升决策能力。智能决策支持系统是人工智能(AI,Artificial Intelligence)和 DSS相结合,应用专家系统(ES,Expert System)技术,使DSS能够更充分地应用人类的知识,如关于决策问题的描述性知识,决策过程中的过程性知识,求解问题的推理性知识,通过逻辑推理来帮助解决复杂的决策问题的辅助决策系统。三、数据化决策1. 一切皆可量化无量化,无管理;先量化,后决策。人们永远无法管理不能量化的东西。 —彼得.德鲁克我们首先来要清晰的理解什么是量化。如果人们找到观测事物的方式,并找到某种方法,无论这种方法多么模糊,它能让你知道的比以前更多,那么它就是一种量化方法。量化不需要无限精确,量化就是不断减少不确定性。当你能够量化你谈论的事物,并且能够用数字描述它时,你对它就确实有了深入了解,但如果你不能用数字描述,那么你的头脑根本就没有跃升到科学思考的状态。——英国物理学家 开尔文勋爵所有的科学都建立在近似观念之上,如果一个人告诉你,他精确的知道某件事情,那么可以肯定,你正在和一个不精确的人说话。——英国哲学家 波特兰.罗素2. 概念澄清链量化方法就隐藏在量化目标中。一旦弄清楚要量化什么以及被量化的事物为什么重要,就会发现事物显现出更多可量化的方面。澄清链就是把某物想象为无形之物再到有形之物的一系列短的链接过程。确定真正要量化什么,是几乎所有科学研究的起点,某些事物如果看起来完全无形无影,只是因为没有给所谈的事物下定义,如果弄清楚问题是什么,已经完成了量化工作的一半。你的难题并非你想的那么独特;你拥有的数据,比你认为的要多;你需要的数据,比你认为的要少;要获取适量的新数据,必你想象的更容易;3. 需要量化什么信息是我们决策的参考。信息可以减少决策的不确定性,信息会影响他人行为,也会产生经济效益,信息是有市场价值的。我们在量化什么?量化不确定性。缺乏完全的确定性,也就是说,存在超过一种可能,比如人们不知道的真实的输出、结果、状态、价值,缺乏足够信息的条件下所造成的实际值与期望值的偏差,其结果无法用概率分布规律来描述.量化风险。不确定性的一种状态,该状态包括出现亏损、崩溃、或其它不希望出现的结果,由于随机的原因而造成的实际值与期望值的差异,结果可用概率分布规律来描述。量化信息价值。4. 学习如何去量化使我们陷入麻烦的通常并非我们不知道的事情,而是哪些我们知道的不确切的事情。——美国作家 阿蒂莫斯.奥德新的测量方法不断出现,互联网与信息技术使得一些过去很难量化的事物逐步被量化。5. 努力成为量化大师

胡寅

定量研究方法真的比定性研究复杂难懂吗?

定量研究其实没那么难,本文笔者通过对量化研究方法的一些最常见用例的介绍,以及对每个实例的成本和难度进行估计,来帮大家更好地去找我定量研究的方法。你是否需要有关产品用户体验的数字数据, 但却不确定应该如何做?许多从事用户体验及研究的专业人士倾向于定性方法论, 而这也这被广泛认为比定量 (量化) 研究更容易。但不得不承认,定性研究可能回避了较大的样本规模和量化相关的统计数据问题。而量化方法却是经验丰富的用户体验研究员的工具包中应当包含的重要组成部分。量化方法允许你:用数字为产品的可用性打上一个标签;数字有时比质量测试的结果更有说服力 (特别是当你试图说服像 CEO 这样的高管时);比较不同的设计 (例如, 产品的新版本与旧版本, 或你的产品与竞争对手的产品), 并确定你所观察的差异是否具有统计学意义, 而不是随机偶然;改进用户体验权衡决策。例如, 如果建议的设计改进预计会花费很大的成本来实现, 它值得做吗?如果你估计了更改将在一定程度上提高可用性,那么量化方法可以帮助你决定是否值得重新设计;将用户体验改进与组织目标和关键绩效指标联系起来 (从而显示你的投资回报并证明用户体验研究团队的价值)。定量研究,首要确定的是:到底需要哪种量化研究方法?在此,我们介绍一些目前最流行的量化研究类型:定量可用性测试 (基准测试)网络分析 (或 App Analytics)A/B 测试或多变量测试卡片分类树测试调查和问卷调查聚类定型数据可取性研究眼动测试每种方法都产生有价值的数量数据, 但这些技术在所收集的数据类型,以及所需的资源和工作量方面差别很大。本文列出了这些方法的最常见用例,并估计了每个实例的成本和难度。此外,应该知道,这些方法中都需要不同的最小样本量来确定统计意义。一、定量可用性测试(基准测试)用途:随时跟踪可用性、与竞争对手比较费用:中等收集难度:中等分析难度:中等方法类型:行为使用环境:基于任务虽然不经常使用,但定量可用性测试(有时称为可用性基准测试)很像定性可用性测试——用户被要求使用产品执行实际任务。两者之间的主要区别在于,可用性测试优先考虑观察,例如识别可用性问题。相比之下,量化可用性测试侧重于收集任务或成功时间等指标。一旦你收集了具有相对较大样本量(大约 35 个参与者或更多)的指标,你就可以使用它们跟踪产品的可用性随时间推移的进度,或者将其与竞争对手产品的可用性进行比较。你选择的可用性测试类型(面对面,远程主持或远程未经调度)将影响成本,由于定量和定性可用性研究的目标不同,测试的结构和使用的任务也需要不同。二、网络分析(或 App Analytics)用途:检测或优先排序问题、监控性能。成本:低收集难度:低分析难度:高方法类型:行为使用环境:live分析数据描述了人们对你的实时产品做了什么:他们去哪里、他们点击了什么、他们使用了什么功能、他们来自哪里,以及他们决定离开网站或应用程序的页面。此信息可以支持各种用户体验活动。特别是它可以帮助你监控产品中各种内容:UI 或功能的性能,并确定哪些是真的不起作用。三、A / B 测试或多变量测试用途:比较两个设计选项成本:低收集困难:低分析困难:低方法类型:行为使用情况:live虽然你可以使用分析指标来监控产品的性能,但你也可以创建实验来检测不同的 UI 设计如何通过 A / B 测试或多变量测试来更改这些指标。在 A / B 测试中,团队创建同一 UI 的两个不同的实时版本,然后将每个版本显示给不同的用户,以查看哪个版本的性能最佳。例如,你可以创建相同号召性用语按钮标签的两个版本:“获取定价”与“了解更多信息”,然后,你可以跟踪按钮在两个版本中收到的点击次数。多变量测试类似,但涉及一次测试多个设计元素(例如,测试可能涉及不同的按钮标签,排版和页面上的位置。)这两个基于分析的实验都非常适合决定同一设计的不同变体,并且可以结束团队关于哪个版本最佳的争议,但这种方法的一个主要缺点是它经常被滥用。四、卡片分类用途:确定信息架构标签和结构成本:低收集难度:低分析难度:中等方法类型:态度(人们怎么说)使用环境:不使用产品在卡片分类研究中,参与者被给予内容项目(有时字面上写在索引卡片上),并要求以对他们有意义的方式对这些项目进行分组和标记。该测试既可以亲自进行,也可以使用实体卡进行,也可以使用卡片分类平台进行远程测试。这种方法为你提供了进入用户信息空间的心理模型的机会。他们使用什么术语?他们如何在逻辑上将这些概念组合在一起?对创建类似分组的参与者的百分比进行定量分析可以帮助确定大多数用户可以理解哪种分类方法。五、树测试用途:评估信息架构层次结构成本:低收集难度:低分析难度:中等方法类型:行为使用环境:基于任务,不使用产品在树测试中,参与者尝试仅使用你站点的类别结构来完成任务。它本质上是一种评估你的信息架构的方法,通过将其与 UI 的所有其他方面隔离开来。假设你的产品是宠物用品网站,这是你的顶级层次结构,你可能会要求参与者完成一项任务——找到狗项圈。树测试结果的定量分析将显示人们是否能够在信息层次结构中找到该项目的正确路径,以及有多少参与者选择了错误的类别。此方法可用于识别 IA 结构,标签和展示位置是否符合人们的期望。六、调查和问卷调查用途:收集有关您的用户他们的态度和行为的信息成本:低收集难度:低分析难度:低方法类型:态度使用环境:任何调查是一种灵活的用户研究工具。你可以在各种环境中管理它们:在实时网站、电子邮件或可用性测试之后进行短暂拦截调查等。它们可以产生定量和定性数据的组合——评级,多项选择题中每个选项的答案比例,以及开放式答案。你甚至可以将对调查的定性响应转换为数值数据。你可以创建自己的自定义调查,也可以使用许多已建立的问卷中的一个(例如,系统可用性量表或净推荐值得分)。调查问卷的一个优点是,你通常可以将结果与行业或竞争对手的分数进行比较,以了解你的工作情况。即使你创建自己的自定义调查问卷,也仍然可以跟踪你的平均分数以监控产品改进。七、聚类定性数据用途:识别定性数据中的重要主题成本:低收集难度:中等分析难度:中等方法类型:态度(人们怎么说)使用环境:任何这种技术不是数据收集方法,而是更多的定性数据分析方法。它涉及根据共同主题对来自定性研究(例如日记研究、调查、焦点小组或访谈)的观察进行分组。如果你有大量观察结果,则可以计算提及特定主题时的实例数。例如,假设你进行日记研究,要求参与者每次在日常生活中使用你的产品并进行一周报告,目的是了解他们在何种环境中使用你的产品。此方法可以识别特定主题或情况的普遍性或频率,例如,用户投诉的频率或 UI 问题。这种方法是从大量定性信息中挖掘数值数据的好方法,但它可能非常耗时。八、可取性研究用途:识别与您的产品或品牌相关的属性。成本:低收集难度:低分析难度:低方法类型:态度使用环境:基于任务定量可取性研究试图量化和衡量产品的某些质量,例如美学吸引力、品牌强度、语调。这些研究可以根据你的研究问题进行定制,但通常包括首先将参与者暴露给你的产品(通过向他们展示静止图像或要求他们使用实时产品或原型)。然后,你将要求他们通过从描述性词汇列表中选择选项来描述设计。随着样本量越来越多,一些趋势则开始出现。 例如:你可能有 84% 的受访者将设计描述为“新鲜”。九、眼动测试使用:确定哪些 UI 元素分散注意力,可查找或可发现。成本:高收集难度:高分析难度:高方法类型:行为使用环境:基于任务眼球跟踪研究需要特殊的设备,来跟踪用户在界面上移动时的眼睛。 当许多参与者(30 个或更多)在同一界面上执行相同的任务时,有意义的趋势开始出现,你可以通过一些可靠性告诉页面的哪些元素会吸引人们的注意力。眼动测试可以帮助你确定需要强调或强调哪些界面和内容元素,以使用户能够实现其目标。运行眼球跟踪研究的一个主要障碍是高度专业化、极其昂贵且有些不稳定的设备以及需要大量的培训才能使用。在尝试确定使用哪种定量方法引导你的研究问题时,你需要了解什么?例如:我们的产品可用性如何随时间而变化?与竞争对手相比,我们的表现如何?我们哪个问题影响最大?我们应该如何优先排序?对于这些类型的问题你可能希望使用定量可用性测试、网站分析或调查。当你想要回答更具体的问题时,或许其他方法更佳。 例如:我们应该如何修复我们的全球导航类别?我们的大多数用户对我们的视觉设计有何看法?我们应该在仪表板中使用这两种设计方案中的哪一种?对于这些研究问题,你可能希望使用 A / B 测试、卡片分类、树木测试、编码定性评论,可取性研究或眼球跟踪。但是,这些建议中有一些灰色地带。 例如:出于安全或技术原因,A / B 测试可能不是贵公司的选项。如果是这种情况,你可以进行面对面的量化可用性研究来比较两个原型。但是,这不是定量可用性测试的典型用法,所以没有在这里讨论它。在研究问题之后,选择方法的第二个最有影响力的因素是成本。这些方法的成本会有很大差异,具体取决于你实施研究的方式。你使用的工具、你拥有的参与者数量以及研究人员花费的时间都将影响最终成本。低预算团队将依赖数字方法——远程可用性测试、在线卡片分类平台、如 OptimalSort、A / B 测试以及 Web 或应用程序分析。根据经验,现场方法(例如:面对面的可用性测试,面对面的卡片种类)往往更昂贵,因为它们需要更多消耗研究人员更多的时间。此外,他们可能需要旅行和设备租赁。眼动测试是这里列出的最昂贵的方法,应该只有具有大预算和研究问题的团队才能使用它。一旦选择了方法,就要了解它,并确保你获得有用的成果。警告:不能只收集指标并开始做出决策而不进行任何统计分析。仅收集来自 5 个用户的评级规模响应,取平均值并继续前进是不够的。对于此处讨论的每种方法,都建议最小样本量以获得可靠的数据并确定统计显着性。如果你不这样做,你无法保证你的发现不只是侥幸。无论你选择哪种方法,一定要考虑研究相关统计概念所需的时间。我保证,定量研究不像它看起来那么难,对于你的定量数据来说非常值得。作者:研如玉,神策数据·用户行为洞察研究院 公众号(ID:SDResearch)本文作者:Kate Moran文章来源:Nielsen Norman Group本文由 @研如玉 翻译发布于人人都是产品经理,未经许可,禁止转载题图来自Unsplash,基于CC0协议

海之花

想要做好用户调研,你要学会这九种定量用户研究的方法

当你需要关于自己产品的用户体验数据时,然而,你却不知道从哪里获取?那么首先,你需要选择正确的研究方法。接下来,我们来看看这些当下最流行的定量研究方法。许多用户体验专家倾向于采用定性的研究方法,原因在于他们认为:定性的研究方法要比定量的研究方法更容易操作和节约成本。其实,他们忽略了与定量分析联系紧密的大样本量以及数据统计的巨大前景。如果你也是这样认为的,那你也就错了!定量的研究方法是任何有经验的UX研究人员必须掌握的重要技能。定量用户研究的方法允许你做以下事情:用一个数值来表示你产品的可用性。数值有时比质量检测的结果和视频更有说服力(特别是当你试图说服像高管这样的人)时。比较不同的设计(比如,你的产品的新旧版本,或者是你的产品与竞争对手的产品相比),并且确定你观察到的差异是否具有统计学意义,而不是随机的。改进用户体验权衡决策。比如,如果预期的设计改进成本很高,那么它值得做吗?如果你已经想到这种改变会提高可用性,那么定量研究方法可以帮助你验证重新设计是否值得。将用户体验的改进与企业目标以及关键绩效指标结合起来(从而证明你的投资回报并且证明你的用户体验团队存在的价值)。这篇文章可以让你清楚的知道,用户研究的第一步是:确定要使用哪种定量的研究方法。接下来,我们将会给大家介绍一些当下最流行的定量研究方法:定量可用性测试(基本测试)网站分析(或APP分析)A/B测试或者多变量测试卡片分类法树状测试调研或者问卷调查聚类定性评价满意度调研眼动测试以上每种方法都会产生有价值的定量数据,但是这些方法在收集的数据类型以及所需的资源和工作量方面差别很大。一、九种定量用户研究方法概述本文列出了这些方法最常见的示例,并对每种方法的成本和难度进行了评估。与其它任何研究方法一样,这些方法中的每一种都可以适用各种不同的需求。根据具体情况,你的成本和困难可能与我们的粗略估计有所不同。此外,你应该意识到,这些方法中的每一种都需要不同的最小样本量来确定统计的意义。1.定量可用性测试(基本测试):用途:随着时间的推移跟踪可用性;与竞争对手比较。成本:中等收集难度:中等分析难度:中等方法类型:行为(用户做了什么?)使用的情境:基于任务尽管不常用,但是,定量可用性测试(有时也称为可用性基准测试)与定性可用性测试其实非常相似:两种方法都要求用户使用产品去执行实际的任务。两者的主要区别在于:定性可用性测试优先考虑如何观察用户行为,比如,识别可用性问题。相比之下,定量可用性测试的重点则是收集数据指标,比如任务时间或者成功率。一旦你收集了相对较大的样本量(大约35个或者更多),你就可以使用它们来跟踪产品的可用性,或者将其与竞争对手产品的可用性进行比较。如果在产品的迭代过程中,你一直追踪着一些产品的可用性指标,那么你就可以创建一张类似这样的趋势图。这种类型的信息可以帮助你持续关注产品的用户体验,并确保它随着时间的推移而逐步改进。你所选择的可用性测试的类型(现场测试、远程引导测试或远程无引导测试)将对成本产生影响,并且难以与此方法相关联。由于定量和定性可用性研究的目标不同,测试的结构和进行的任务也需要有所不同。2.网站分析(或者APP分析):用途:发现问题或确定问题的轻重缓急;监测性能。成本:低收集难度:低分析难度:高方法类型:行为(用户做了什么?)使用情境:现场分析数据,描述了用户使用线上产品的各种操作行为,比如,他们去了哪里,点击了什么,使用了什么功能,他们从哪里来以及到哪里去。这些信息可以帮助你做各种各样的用户体验活动。特别是,它可以帮助你监测各种内容、UI或产品功能,并识别哪些不能正常运行。3.A/B测试或者多变量测试:用途:对比两种设计方案成本:低收集难度:低分析难度:低方法类型:行为(用户做了什么?)使用情境:现场虽然,你可以使用分析指标来监控产品的性能(如上所述),但你也可以创建一些实验,来检测不同的UI设计,然后,通过A/B测试或多变量测试来改变这些指标。在A/B测试中,团队需要创建同一界面的两个不同的最新版本,然后将每个版本展示给不同的用户,用来确定哪个版本的性能更好。例如,你可以创建同一个操作按钮标签的两个版本:“获得定价”或“学习更多”。然后,你就可以跟踪统计两个版本中按钮的点击次数。多变量测试的操作方式也是类似的,但是,它与A/B测试不同的是:多变量测试需要同时测试多个不同的设计元素(例如,测试可能涉及不同的按钮标签、排版和页面上的位置)。这两个基于分析的实验,对于决定同一个设计的不同变体非常有用,并且可以结束团队关于哪个版本最好的争论。A/B测试是将网站流量(用户)拆分为两部分:一部分导入到A方案,另一部分则导入到B方案。这种方法的一个主要缺点是:它经常会被滥用。有些团队没有尽可能长时间地运行测试,收集不到足够的样本,就匆忙的下了结论,这样的结论往往失败的风险很大。4.卡片分类法:用途:确定信息架构的标签和结构成本:低收集难度:低分析难度:中方法类型:态度(用户说了什么?)使用情境:不使用产品在卡片分类研究中,参与者会拿到一些内容项(有时是写在索引卡上的),并要求以一种对他们有意义的方式对这些项目进行分组和标注。这个测试既可以亲自进行,也可以使用物理卡片或者使用类似于OptimalSort这样的卡片排序平台进行远程测试。当卡片排序测试是亲自进行时,用户对物理卡片进行排序和分类,每张卡片都包含了它所代表的内容的描述。这个方法可以让你有机会了解用户的心理模型。他们使用什么术语?他们是如何将这些概念组合在一起的?对创建类似分组的参与者的百分比进行定量分析,可以帮助确定哪种分类方法对大多数用户来说是可以理解的。5.树状测试:用途:评估信息架构的层次结构成本:低收集难度:低分析难度:中方法类型:行为(用户做了什么?)使用情境:基于任务而不是使用产品在树状测试中,会让参与者尝试使用网站的分类结构来完成任务。这种方法本质上是一种评估界面信息架构的方法,通过这种方法可以将界面上的其它信息区分开来。例如,假设你的产品是一个宠物用品网站,而这是它顶层的层次结构。网站信息层次结构的显示可能看起来是这样的,树状测试要求参与者在这样的层次结构中找到一个特定的条目(例如,项圈),他们首先看到的只是顶层的分类(例如,狗狗、猫咪、小鸟等)。一旦他们做出一个选择(例如,狗狗),就会看到自己选择相应选项的子类别。你可以要求你的参与者在一个任务中找到狗项圈。对树状测试结果的定量分析将显示人们是否能够在信息层次结构中找到该项的正确路径,以及可以确定有多少参与者选择了错误的类别。这种方法有助于确定界面信息架构的结构、文案以及放置的位置是否符合用户的心理预期。6.调研或者问卷调查:用途:收集调研用户的态度和行为信息成本:低收集难度:低分析难度:低方法类型:态度(用户说了什么)使用情境:任何问卷调查是一种灵活的用户研究工具。你可以在不同的环境中进行测试,比如,在一个实时网站、电子邮件或可用性测试之后进行简短的拦截调查。调研时可以同时获得定量和定性的数据,比如评分、多项选择题中的答案的比例,再加上开放式问题的答案。你甚至可以把对调查的定性回答转化为数字数据(参见下面的代码质量评论部分)。像这样的语义差别等级量表,每个单选按钮代表一个数值。被调研的用户可以选择:1.容易使用;5.难以使用;或选择介于两者之间的选项。对这个问题的平均回答来衡量你的应用程序在使用上的难易程度。你可以创建自己的自定义问卷,也可以使用其它已经建好的问卷模版(例如,系统可用性量表或网络推广者评分)。问卷的一个优点是:可以经常将你的调研结果与行业或竞争者的分数进行比较,看看你做得怎么样。即使你创建了自己的自定义问卷,也可以随时间的推移对自己产品平均分数进行追踪,来监控产品的改进情况。7.聚类定性评价:用途:确定定性数据中的重要主题成本:低分析难度:中收集难度:中分析类型:态度(用户说了什么?)使用情境:任何这种技术不是数据收集的方法,而是定性数据的分析方法,它包括根据共同主题对定性研究(例如日记研究、调查、焦点小组或访谈)的观察结果进行分组。如果你进行了大量的观察,你就可以计算出一个特定主题被提及的实际数量。例如,假设你做了一个日记本研究,让参与者在他们的日常生活中,每周都要报告他们使用产品的时间,目的是理解他们使用产品的背景,你可以算一下用户在工作、家中或外出的时候使用产品的比例。这种方法可以识别特定主题或情况的流行程度或频率,例如,用户抱怨的频率或UI问题。这种方法可以很好地从大量的定性信息中挖掘数值数据,但它可能耗时会非常长。8.满意度调研:用途:确定与你的产品或品牌相关的属性成本:低分析难度:低收集难度:低分析类型:态度(用户说了什么?)使用情境:基于任务定量可用性测试试图使用量化的方式来衡量产品的质量,比如:审美情趣、品牌实力、语气等。这些研究可以根据你的研究问题进行定制,但这些方法通常会首先让参与者接触到产品(通过向他们展示静态图片或者要求他们使用现场产品或原型)。然后,要求用户通过从描述性的词语列表中选择一个来描述当前设计。如果你获取自身目标用户的样本量足够大,那么整体趋势就会显示出来。例如,你可能会有84%的受访者将此设计描述为“最新”。9.眼动研究:用途:确定哪些UI元素是分散注意力的、可发现的或可找到的成本:高分析难度:高收集难度:高分析类型:行为(用户做了什么?)使用情境:基于任务眼球追踪研究需要特殊设备来追踪用户的眼睛注意力轨迹,因为他们在界面间移动。当许多参与者(30个或更多)在同一个界面上执行相同的任务时,有意义的趋势就会出现,你可以清楚地看出页面的哪些元素会吸引用户的注意力。眼动跟踪可以帮助你确定哪些界面和内容元素需要强调或者弱化,从而使用户能够轻松的实现他们的目标。眼球追踪软件可以使用聚合的凝视数据(用户在这里查看界面,用绿点表示)来创建各种可视化效果。进行眼球追踪研究的一个主要障碍是高度专业化、价格昂贵和不稳定的设备,这些设备需要大量的培训才能使用。二、选择一种方法(九种方法概况表)上表提供了上面讨论的研究方法的概况。三、从你的研究问题开始1.当你要确定使用哪种定量研究的方法时:首先,你得先确定你要研究的问题:你想知道什么?以上方法中有一些非常适合一般性的研究问题。例如:我们产品的可用性是如何随着时间变化的?和竞争对手相比,我们做得怎么样?我们的哪些问题对于产品的影响最大?我们该如何确定其优先级?对于这些类型的问题,你可能需要使用:定量的可用性测试、web分析或调查问卷。2.当你有一个想要回答的具体问题时:以上方法中也会有好的方法来研究以下这些问题。例如:我们应该如何调整我们的全球导航分类?我们的大多数用户怎么看待我们的视觉设计?在dashboard中,我们应该使用这两种设计方案中的哪一种呢?对于这些研究问题,你可能需要使用:A/B测试,卡片分类,树状测试,编码定性评论法,满意度调研,或眼球追踪。然而,在这些建议的方法中有一些不可控的因素。例如,由于安全或者技术原因,你的公司可能不会选择A/B测试的方法。如果是这样的话,你能做的就是发起一个面对面的可用性研究来对比两个原型。然而,这并不是定量可用性测试的典型应用,所以我在这里就不讨论它了。四、考虑研究成本在研究问题之后,选择研究方法的第二大影响因素是成本。这些方法在成本上的差异很大程度上取决于你如何实现该研究。你使用的工具,要求的参与者数量,以及研究人员花费的时间都将影响最终的成本。更复杂的是,许多团队的研究预算也有很大差异。再者,这里的成本估计是相对的。预算相对较低的团队可能需要依靠数据收集分析的方法,比如,使用远程可用性测试、在线卡片排序平台(如OptimalSort)、A/B测试以及网站分析(或APP分析)的方法。根据经验,面对面的方法(比如面对面的可用性测试,面对面的卡片排序)往往成本比较高,因为它们需要很多的研究人员和时间成本。此外,他们还要求外出和租赁专业设备。眼动测试应该是这里列出的最昂贵的方法了,只有那些拥有大量预算和专门的用研团队才会使用它。这张图显示了本文中讨论的定量研究方法的位置,即它们适合于研究问题(一般到特定)的不同维度级别。五、总结一旦你选择了一个方法,就要去了解和学习!结束之后,确保你能够按照你想要的方式和计划进行研究,并保证能得到对自身有用的结果。要注意的是:你不能只收集数据指标,不做任何统计分析就开始做决定。仅仅收集5个用户的评级响应是不够的,要取一个平均值,然后再继续。对于这里讨论的每种方法,都有不同的建议最小样本量。为了获得可靠的数据和确定统计的意义,你可能需要收集数据点的数量需要达到最小样本量才行。如果不这样做,就不能保证你的发现或者结论是正确的。不管你使用哪种方法,一定要把握好需要你研究相关统计学概念的时间,以及获取正确的最小样本量的成本。你要相信,这并不像表面看起来那么困难,而你最终获取的定量数据一定是有价值的。原文作者:Kate Meyer原文链接:s/quantitative-user-research-methods/译文校对:不器#专栏作家#熊猫小生,,人人都是产品经理专栏作家。高级交互设计师,UED负责人。关注互联网C端产品设计相关,擅长移动端产品交互设计,前沿设计风格探索,设计流程优化和管理,欢迎交流~本文翻译发布于人人都是产品经理。未经许可,禁止转载。题图由译者提供

名川三百

蔡红红|在教育研究中运用量化研究方法的问题与反思

DOI:10.16298/j.cnki.1004-3667.2020.09.12摘要量化研究的客观性与教育研究的主观性存在冲突,因此,运用量化研究方法进行教育研究的适切性引人深思。在教育研究领域,量化研究方法的运用常面临以下问题:量化研究具有表层化倾向;调研数据的信度难以保证;受强调学术发表的风气和形式主义的影响,部分量化研究者时常容易陷入“数据”的泥沼,或热衷于使用“高级”统计方法,但这无益于探寻教育行为和现象背后的现实意义与内涵。应忠实于教育研究中测量结果的宽松尺度,不能一味迷信精确的“数字化”测量;掌握较完善的量化研究技能和哲学思辨能力,并在教育研究过程中始终保持思考。关键词教育研究;量化研究;实证主义;统计方法社会科学的量化实证取向源自19世纪中叶以孔德为代表的实证主义,最初主要受自然科学领域的启发。20世纪二三十年代,美国社会学界一方面为了吸引学生,满足学生对实用性、工具性知识的需求,另一方面为迎合政府和财团法人对现实问题调查研究的资助偏好,推行“实用为本”的改革。与此同时,受自然科学领域“客观、科学”的数学化研究方法和沃森(Watson J B)行为主义(Behaviorism)的影响,统计方法逐渐在社会学研究中取得主导地位。由此,美国社会科学研究走向量化与反规范性论述的“科学”方向。而教育研究以社会科学的量化研究传统为依据,20世纪初以来,美国的主流教育研究也往往带有定量性质。一、教育研究中的量化研究方法教育研究方法是人们在研究教育问题时所采取的步骤、手段和方法的总称,它是决定教育研究质量的关键因素。近年来,我国教育研究领域出现了一些推崇实证研究方法的声音,以统计方法为主的量化研究是其重要组成部分,它通过实验、调查、测验、结构观察以及已有的数量化资料,对教育现象进行客观分析,并将所得结果作相应的统计推断,使研究结论具有普遍适应性。研究方法决定教育学的科学性质。尽管伦德伯格(Lundberg G A)意识到社会现象与自然现象有所差异,如人有态度、动机、意向等,但他依旧坚定地认为,问题的关键在于如何处置这些差异。他认为,诸如渴望、希望、恐惧、价值、目的、意图等的心灵状态均可被客观地观察和记录,即“自然科学”化。对于社会科学的发展而言,研究方法的“自然科学化”成为其“科学性质”的重要体现,同时加强了社会科学自身的合法性地位。在崇尚实证研究的研究者意识里,通过将教育现象或研究对象的态度、看法与意见等转化为量化的客观材料与数据进行研究,至少抽离了人的个体性和主观色彩,避免陷入“自说自话”的窠臼,得出的结论更客观、可靠,具有较高的可信度。这无疑也更符合科学研究中价值无涉的标准。此外,在日常生活中,统计方法在经济消费取向、文化观念和政治意向等方面的运用屡见不鲜,人们也已经习以为常。因此,运用量化方法进行教育研究,有着广泛的社会现实基础。但运用此方法研究教育问题的适切性和具体操作过程中存在的问题着实引人深思。笔者将以教育研究中最常见、运用最频繁的量化研究方式——通过对研究对象进行问卷调查,并将所得的资料与数据进行统计分析,进而验证或推断结论,这一研究形式为例,阐述其在具体操作过程中存在的争议与问题。二、在教育研究中运用量化研究方法面临的问题马克思曾说:“一种科学只有在成功地运用数学时,才算达到真正完善的地步。”“数学化”的研究方式一度促进了社会科学的发展,但运用该方法进行研究,不可避免地带有鲜明的精确化和机械的“测量”印记。教育现象是一种复杂、独特、富有价值色彩的社会现象,其运行、发展与变化都有与其他现象不同的特点和规律:教育研究的对象,是具有自组织能力的人及其在教育过程中的多层次、多维度的关系,非任何自然现象和生物现象所能比拟。然而,当前对“数学化”、以统计分析为重点的量化研究方法的推崇常常容易使人们忽略了该方法用于探究特定教育问题的适切性及方法本身的缺陷。不假思索地套用自然科学精细化的数学模式,很可能导致研究结论与教育现实并不相符,不但无法揭示客观的教育规律,也贬损了教育研究的科学性。在教育研究中运用量化研究方法面临着如下诸多问题。(一)量化研究存在简单的“数学化”取向物理测量数据的每个数字都有其确定的位置与意义。在教育研究中,量化研究者经常将不可观察与直接测量的被研究者主观态度或意见等概念操作化为测量量表,并赋予相应数字以程度高低之含义。以李克特五分态度量表为例,“1至5”这之间的5个整数分别代表被研究者“非常不同意——非常同意”的态度。这些数字没有绝对零点和单位,两个相邻数值之间的数字如4.5,它介于同意与非常同意之间,但在被调查者的认知中,这个数值是未被赋予意义的,且无法说明被调查者赞成4.6即代表同意程度高于4.5。因此,研究者擅自赋予除五分量表中五个整数之外的数值以内涵,其与被研究者本人的初衷可能不符。拜尔考(Berka K)指出,在大多数情况下,心理或社会测量是一种较为精致的分类,或者可以说,它是一种理念的或概念的方法,具有相对参考性,与实际意义上的“测量”还存在一定差距。社会学家邓肯(Duncan O D)也注意到了社会学研究中态度量表可能面临的基本问题,他认为,在“非常不同意——非常同意”的数轴上,每个人都有他独特的位置,只有他自己才可能恰当地指出这个位置在哪里。人们对数轴上每个态度的判断标准是有差异的。如有人对事物的态度比较宽容,有人则比较严格,前者“非常同意”的选择标准可能相当于后者“同意”的判定尺度。因此,同样选择“非常同意”,对被调查者而言,可能具有不同的含义。在分析时,研究者一律将在李克特五分量表中回答“非常同意”的人赋值5分,并直接将其作为等距且等比的物理测量数据进行计算,如此便能将他们作为类别或等级变量时获得更多信息,且能用更高级的统计分析方法来处理数据,以显示分析的复杂性与研究的深刻性。这样的做法体现了当前教育领域的量化研究对精确的追求,带有简单化、易操作倾向,却忽略了问题的真正焦点:能否如实呈现被研究者的态度与想法。(二)量化研究具有表层化倾向基于问卷调查的量化研究,其价值与深刻性时常遭到质疑。弗莱克斯纳(Flexner A)指出,调查问卷在花了大量的时间和精力之后被整理成各种图表,但最后得出的结论却要么是凭调查开始前的常识就能直接判断的,要么是最终得不到可靠证据支持的。他对问卷调查进行了强烈批判,称其只是一种廉价、方便和快速获取信息资料或非信息资料的方法,问卷填答的随意性也令其不具备科学特征。他强调,不管多么巧妙地收集资料与信息,报告和检查等都不构成研究。尽管许多研究者指出,量化研究是通过对数据和资料的统计分析以探求各个研究变量背后的因果关系。但当前教育领域许多的“量化文章”,甚至相当部分教育学领域的学位论文,更类似于调研报告,而不是科学研究文本。在教育研究中,量化研究往往只提供了一种呈现教育现象的方式,它能向我们展示“实然”的状态,却无法指引我们“应然”的方向。如我们可以通过问卷调查,知晓大学当前及以往的所作所为,以及这如何影响社会;或根据调查,揭示政府、教师或学生对大学行为的态度与期待。但这都不能回答“大学应该扮演什么样的角色”这个问题。无论量化研究结果如何,我们都可以合理发问:这是大学应该做的吗?在收集了所有的调研数据,并进行统计分析后,这个问题仍然存在。无怪乎有研究者指出,量化其实只是一种近乎没做什么决定的决定。与此同时,量化的数字将人们的认知限缩在表层化的维度内,量化研究者时常容易忘记在教育研究中这些数字代表的概念与内涵,陷入纯粹计算数值间各种关系的狂热之中。对于这一现象,孔德曾指出:在实证体系下,基于盲目联系的本能作用,我们热衷于为同时存在或相继出现的现象建立联系,但对外部世界的合理探索和考察却证明,世界的连带关系比我们所设想或希望的松弛得多,许多这类关联在现实生活中纯属虚妄。另一方面,量化研究者根据数据或统计结果“看图表写话”,这一模式促使其习惯于将重心置于数据或数量关系的解释,忽视了对教育现象自身更深层次内涵的关切,也不利于个人创新思维的发展。正如弗莱克斯纳所说,无休无止的计算绝不会产生理论、原理或思想。教育研究中的测量无法让人们触及蕴藏在表象下的内涵,而且也导致人们不想往深处继续挖掘。工具实证主义倾向导致量化研究者选择性地关注当前研究工具所能解决的范围内的问题,之所以使用量化,其实是因为看到了该问题可运用与自然科学类似的测量指标进行测算与分析。在教育研究领域,这表现为部分定量研究者越来越倾向于研究能够直接用测量量表(特别是西方广泛使用的、较成熟的量表)进行定量分析的教育问题。就如卡西尔(Cassirer E)所说的方法决定论,方法本身决定了“科学性”,因而也决定了“事实性”和“真理性”。在当前社会科学崇尚实证研究的环境下,这体现了一种片面追求量化,研究方法决定研究问题的不良倾向。(三)量化研究的信度难以保证数量化资料的可靠性是量化研究具备一定信度的基础。通过问卷调查获取调研数据的方式,因其高效、便捷和易量化等特点,在社会学、心理学和教育学等社会科学领域被广泛使用。在教育研究中,问卷类型主要以自填式调查问卷为主,这意味着被研究者能否根据自身的现实情况,如实、准确地填答问题是数据真实可靠与否的关键。但是,有些学者指出,中国是一个低信任度的国家,中国人缺乏以共同的信任和制度保障为基础的对一般人的“普通信任”。在问卷填答过程中,低信任度的人际关系可能导致被调查者不愿意填写问卷;不完全相信调查的匿名性,戒备心较强,未依据自己的真实情况或态度回答问题;对一些通过行政手段收发的问卷,鉴于行政压力与社会称许性的影响,被研究者在填答问卷时倾向于美化组织或自身形象。有研究进一步指出,即使在匿名回答的基础上,采用投射、情境故事等技术性手段,中国被试仍对问卷调查保持较高的防御性。这都导致问卷调查所回收的数据可能并不反映被研究者的真实情况与想法。除了天然存在的人际信任问题,教育研究对象的特质与调查工具的设计也深刻影响着调研数据的信度。在教育研究中,调研对象经常包含多维度的人的态度、情绪与意见等具有强烈主观特质的概念尺度。人的多变性、不同的问卷填答情境,往往也意味着这些主观概念的测量结果可能并不稳定。例如,同一位被调查者填答两次相同的问卷可能会得到不同的结果;是否有人监督、问卷发放者的身份、以及调查是否关涉自身利益等,这些因素也显著影响着被调查者的问卷填答情况。而我们无法通过观察等客观手段对问卷的信度进行监测,以确保收集到他们真实的想法。此外,问卷设计的合理性也极大影响了可靠数据的回收。一些研究者希望通过一次问卷调查尽可能多地收集信息,在设计问卷时,未考虑问卷篇幅的科学性,也未设身处地地感受被调查者填答问卷时的心理状态,经常出现一份问卷包含上百甚至几百个问题的情况。通过这样的问卷收集而来的数据,其信度是存疑的。一项量化研究的论证依据与结论建立在调研数据的分析之上,常有学者用“Garbage in, garbage out!”来形容数据品质对量化研究的重要性,即如果你收集回来的数据质量(指数据的信度、效度)很低,则不论你使用何种分析方法,得出的研究结论都将无法令人信服。因此,能否收集到人们的真实信息与想法,并合理地将其转化为可信和有效的数据,是进行规范、科学的量化研究的基础,同时也是得到可靠结论的重要保证。(四)量化研究者容易陷入数据的泥沼学术发表在很大程度上象征着一位学者的科研能力与声誉,且与其职称评定、晋升、薪酬待遇等一系列现实问题有着千丝万缕的联系。在教育领域推崇实证研究的当下,逐渐有些研究者,特别是一些研究新手开始注意到基于数据(尤其是大样本数据)撰写的文章在学术发表中的优势:量化文章在部分教育期刊中的比例逐渐增加,有了数据的论证,论文可能更易发表;相比哲学思辨而言,运用基于数据的量化分析方式撰写文章的门槛较低;量化研究更关注教育领域中的现实问题,很多研究成果被采用为政府决策的依据,这为研究成果和研究者带来更高的社会关注度和认可度。这些特点使得部分研究者对数据的收集与运用趋之若鹜,也因此时常容易陷入数据的泥潭:倾向于探究能够用数据分析和回应的教育问题,对于教育领域中不可操作化的理论或伦理问题不感兴趣,也束手无策;将数据作为“原材料”,企图通过“概念-属性-变项-测量-因果关系-统计”这一套特定程序,解释其所研究的所有教育问题;只看到数值及其之间关系的测算与内涵,将教育研究对象抽离出具体的历史-文化情境,使其成为“没有历史”的人与物。另一方面,量化研究者希望从数据出发,让数据为现实发声,但这需要建立在对数据科学严谨和实事求是的处理、分析与解释之上。然而,在测量、探索变量关系等环节,部分研究者的量化操作却并未严格遵守统计要求或学科研究规范。他们忽视数据特点,简单套用各种统计方法,极度关注统计结果的“价值性”;操纵甚至篡改原始数据,直到获得各项指标良好的模型和符合其预期假设的统计结果。这样“数据至上”,却又随意对待数据的行为,是一种典型的为了发表而研究,缺乏信仰和思想,没有精神、没有灵魂、没有价值追求的“投机行为”。(五)量化研究者热衷于使用“高级”统计方法由于数理概率理论提供统计学科学的基础,以致统计学连带地提供了社会学量化研究以科学的基础。依据此认知模式,数理统计得以被“正当化”为科学。在自然科学研究中,越高级的技术越有利于揭示复杂、未知的科学问题,以此类推,数理统计作为量化研究在教育领域中的分析工具,这是否意味着,越繁复和高阶的统计方法就越有利于分析深奥的教育问题,或是将问题分析得愈深刻呢?但事实似乎并不是这样。部分教育研究虽然运用了回归分析、结构方程模型等看似“高级”的统计方法,但其要处理或说明的问题,其实使用较为简单的交叉表分析或差异分析等“普通”方法就能解决,因为基础与高阶的统计方法之间往往存在着部分相似的功能。但当前许多量化研究者却乐于“化简为繁”,倾向于使用复杂而不是简单易懂的统计方法来分析问题,以使研究过程看起来更有深度,结论更具“科学性”。然而,方法的“精进”并无助于厘清事实或揭示更深刻的道理。在教育研究中,同时运用基础或高阶的统计方法,得出的结论别无二致的情况时有发生。“给小孩一根铁锤,他会发现,任何他看到的东西都需要给它一锤。”科塞(Coser L A)用这个有关工具的法则讽刺20世纪70年代那些热衷于使用当时被视为“先进”的结构方程模型等量化社会学家的做法与想法——以为严谨而复杂的方法即是具备了刚性科学的特质,因此可以克服理论上的薄弱。仔细阅读教育类量化文章会发现,研究者使用“高级”统计方法,通常建立在将量表“数学化”操作的基础上,它意味着数轴上的每个数字都具有内涵,且每位选择同一数值的被研究者的态度都是一样的,但这样精细的“数学化”操作可能并不恰当。这一量化研究的客观性与教育研究的主观性冲突,笔者已在上文进行了详细阐述。在数值意义尚未明晰的前提下,“精深”的统计方法或精巧的计量模型无法增加研究的价值。另一方面,“高级”统计方法是易复制的,片面追求“高级”统计方法的技术主义倾向无助于学科知识的积累,也背离了“研究方法始终应为研究问题服务”的初衷。三、结论与反思在教育领域推崇实证研究的当下,定量研究由于其数学化的“科学”特性而备受关注。但教育研究的主观性与量化研究的客观性之间的冲突、量化研究的表层化倾向、调研数据的难以确信、部分研究者对“数据”和“高级”统计方法的偏执,这些都表明:将定量方法运用于教育研究领域应当是谨慎的。所以,我们应该始终明晰对教育研究怀抱着的期待。为了把社会学推进以物理学为典范的“科学”殿堂而一味向自然科学的认知模式倾斜,将只是一种东施效颦的作为,更是一种自我矮化与异化的行止。鉴于教育研究情境和研究对象的复杂性,我们不能迷信问卷调查和统计方法。但不可否认的是,他们的确是教育研究方法体系中非常重要的数据采集与分析工具,服务于教育研究目的,有助于提示教育活动或现象的特点和规律。所以,我们也不能因噎废食,应在深刻意识到量化研究方法局限性的同时,更慎重地使用它。量化研究中的教育测量需要还原被调查者最真实的想法与状态,这意味着研究者要忠实于被调查者的选择和测量结果的宽松尺度,对数据的解读保持谨慎的态度。如将量表的数值作为有序变量进行操作与分析,而不是一味追求精确的数字化表达,也许这样更有利于探寻教育行为和现象背后的现实意义与内涵。此外,对量化研究浅层化的诟病一定程度上源于部分教育研究者对量化研究方法的不当使用,且量化研究的数据收集、处理与分析过程绝大部分在私下进行,往往不为人所知,这导致人们无法监督和检测其分析过程和研究结论的科学性。因此,我们应掌握扎实的问卷设计、数据处理与统计分析方法,严格遵守量化研究程序,对数据与客观事实始终保持敬畏之心,科学地操作数据,谨慎地解释结论,以此提高教育研究中量化研究方法的价值。同时加大对量化研究中学术不端行为的伦理审查与惩戒力度,遏制“为了发表而发表”的形式主义。最后,教育研究的成功取决于研究人员在遵守基本研究原则的背景下,对其研究实践的不断反思。所以,最重要的是,在量化操作的过程中,我们不能只关注数据和计算而牺牲了思考,漠视数字背后“人”的内涵。量化研究方法的价值与局限性也提示我们,作为一名教育研究者,我们不仅要具备较完善的量化研究能力,还需重视对哲学思辨能力的培养,对于它的重要性,孔德早就做出了预判:如果缺乏某种既定的思辨观念作一贯的指引,那么人的才智就绝不可能组织、甚至不可能收集必不可缺的材料。作者蔡红红,华东师范大学高等教育研究所博士研究生,上海200062原文刊载于《中国高教研究》2020年第9期第61-65页教育研究方法研究中国高教研究投稿平台:http://editor.cahe.e.cn/中国高等教育学会学术立会 服务兴会 规范办会 创新强会网址:https://www.cahe.e.cn/【来源:中国高等教育学会】声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 邮箱地址:newmedia@xxcb.cn

迟缓者

每天进步一点点|教育中的定量研究法

原文选自:雅思真题阅读—Quantitative Research in Ecation编辑:小kMany ecation researchers used to work on the assumption that children experience different phases of development, and that they cannot execute the most advanced level of cognitive operation until they have reached the most advanced forms of cognitive process.许多教育研究者都曾经立足于这样一个假设,即儿童会经历不同的认知发展阶段,在他们的大脑达到最高形式的认知之前,大脑无法执行最高级的认知操作。词汇解析assumptionn. 假设The whole argument rests on a false assumption.整个论证都是基于一个错误的假设executev. 执行We are going to execute our campaign plan to the letter.我们将严格执行我们的竞选方案。advancedadj. 高级的There were only three of us on the advanced course.只有我们三人学高级课程。cognitiveadj.认知的As children grow older, their cognitive processes become sharper.随着孩子们长大,他们的认知过程也变得越来越敏锐了。operationn.操作Operation of the device is extremely simple.这个装置的操作非常简单。For example, one researcher Piaget had a well-known experiment in which he asked the children to compare the amount of liquid in containers with different shapes. Those containers had the same capacity,but even when the young children were demonstrated that the same amount of fluid could be poured between the containers, many of them still believed one was larger than the other.比如,其中一名研究者皮亚杰曾做过一个十分著名的实验。在实验中,他要求孩子们比较两个不同形状容器中液体体积的大小。事实上着两个容器的容积相等,但当皮亚杰向儿童展示一个容器中的液体刚好可以倒入另一个容器后,孩子们依然认为其中一个容器的容积更大。词汇解析capacityn. 容量Two water tanks provide a total capacity of 400 litres.两个水箱的总容量为400升。demonstratedv.展示Catherine demonstrated the proper way to cleanse the face.凯瑟琳展示了洁面的正确方法。Piaget concluded that the children were incapable of performing the logical task in figuring out that the two containers were the same size even though they had different shapes, becaouse their cognitive development had not reached the necessary phase.皮亚杰由此得出结论,儿童无法理解两个不同形状的容器具有相同的体积,因为这个问题需要孩子使用逻辑思考能力,但是他们的认知能力还没有达到更高级的水平。词汇解析Incapableadj.无能力的If people keep telling you you're incapable, you begin to lose confidence in yourself.如果人们不断地对你说你无能,你就开始失去自信了。

开放日

研究设计|研究方法07

在重度考察社会研究方法的学校和专业中,研究设计是难度较大的题目类型。通常的考察方式是,给出一个明确的研究方向,要求学考生做出一个研究设计。例如清华真题:对近期发生的热点环境议题、媒体报道情况和扮演的角色,进行一个实证研究,说说你的研究设计。为了能答好这种题目,我们需要在考前自己准备几个研究设计,包括定量研究设计、定性研究设计、定性与定量结合的研究设计、网络研究设计等。同学们可以研究书本上给出的范例,也可以查找列出具体研究过程的论文,总结出一般的套路和格式,然后针对自己感兴趣的议题,尝试做一个研究设计,有条件的还可以请研究生学长学姐进行修改。在考场上遇到这些题目时,直接套用准备好的研究设计模板,并进行适当修改即可。一个较为完整的研究设计,应当主要包括以下内容:研究背景与研究目的。主要说明研究题目的产生背景,以及这一课题要解答哪些问题、达到哪些目的。研究意义。介绍此次研究的理论意义和现实意义。理论架构。一般的研究课题往往以某个理论为基础,此处要结合研究课题介绍该理论。研究假设。从理论出发,结合研究课题提出假设。研究方法。此处说明本次研究应用的概念操作化方法、抽样方法、资料收集方法、资料分析方法,以及使用的工具,例如SPSS。抽样方案。这里要尽可能详细地阐述抽样的过程、结果。调查问卷/访谈提纲/编码表。如果使用调查问卷/访谈提纲/编码表搜集资料,这里要列出这些工具的部分内容。调查时间、场所。根据研究课题,列出调查时间、场所。研究反思。指出本研究设计的不足之处,或者不周全、未考虑的因素。需要注意的是,研究设计大概遵循这种逻辑顺序,但不一定包括以上所有内容,不重要的部分可以不写、略写;研究设计不必写出研究结论,这是一个研究实施前的设计。接下来,将给出本文开头提到的清华真题的一个参考答案,同时也是对研究设计案例的展示:热点环境议题的议程互动与建构研究——以上海市垃圾分类为例1、研究背景2019年1月31日,上海市公布《上海市生活垃圾管理条例》,明确规定将垃圾分为可回收物、有害垃圾、湿垃圾、干垃圾,合理分类,增加了可回收物的多样性。该条例于2019年7月1日正式施行,上海市成为全国城市垃圾分类管理的“领头羊”,也由此进入生活垃圾分类强制时代。上海市垃圾分类引起了网民的持续关注,多次登顶微博热搜榜。垃圾分类这个环境议题与人们的生活息息相关,垃圾分类的践行需要全社会的共同努力。在垃圾分类的推行过程中,媒体在信息传播、新闻报道、宣传引导等方面具有不可替代的作用。根据CNNIC发布的第45次《中国互联网络发展状况统计报告》显示,截至2020年3月,我国网民规模为9.04亿,互联网普及率达64.5%,网络媒体已经成为人们生活、工作、学习、娱乐等的主要平台。因此,本研究立足于中国网络媒体传播环境,研究2019年1月31日至2020年1月31日之间微博平台上的上海垃圾分类事件的议程互动与建构情况。2、研究意义在理论层面,有助于验证媒体传播中的“议程设置”现象,并根据这一理论提出针对性建议。在现实层面,有助于了解垃圾分类这一议题的宣传与传播状况,从传播方法和技巧层面给予适当的帮助和关怀。3、理论架构议程设置理论(the agenda-setting theory)由美国传播学家麦库姆斯和肖提出。该理论认为:大众传播具有一种为公众设置“议事日程”的功能,传媒的新闻报道和信息传达活动以赋予各种“议题”不同程度的显著性的方式,影响着公众注目的焦点和对社会环境的认知。议程设置理论所考察的,是作为整体的大众传播在较长时间跨度内的一系列报道所产生的中长期的、综合的、宏观的社会效果。随着近年来网络媒体的快速发展,议程设置的合理性面临着质疑和挑战。但仍有许多实证研究表明,网络环境下媒体对公众具有议程设置功能,网络媒体与传统媒体之间、网络媒体之间存在媒体间议程设置效果。4、研究对象议程建构理论(the agenda-building theory)指出在议题构建过程中,媒介、政府和公众互相影响,决定什么是重要事件。因此,本文的研究对象是媒体议程、政府议程、网民议程各自的特点以及互动关系,并分析上海市垃圾分类这一环境议题的建构过程。媒体议程本研究选取《人民日报》《澎湃新闻》《中国环境报》三家媒体的微博账号在2019年1月31日至2020年1月31日期间发布的相关新闻报道为研究对象。《人民日报》是中国最具权威性、发行量最大的综合性日报,位于上海的《澎湃新闻》是专注时政与思想的媒体开放平台,《中国环境报》是环境保护部主管、全球唯一的国家级环境保护报纸,具有极强的权威性和专业性。使用网络爬虫工具,以“垃圾分类”为关键词,搜集并整理本研究时间段内,这三家媒体微博账号内的相关新闻报道的内容。政府议程政府是社会公共事业和活动的领导者、管理者,从社会整体利益层面推动社会发展。在上海市垃圾分类这一环境议题中,上海市政府多从顶层设计层面加以关注并出台相关政策。因此,本研究选取2019年1月31日至2020年1月31日期间,涉及垃圾分类的国家和上海地方政策文件、官方通报等,例如《上海市生活垃圾管理条例》,作为政府议程的代表。网民议程确定网民议程主要有三种方法:一是通过网民在微博所讨论话题的热度确定,二是通过新闻浏览量、点赞量、转发量和评论量决定,三是通过对网络搜索关键词的排序确定。因此,本研究把2019年1月31日至2020年1月31日期间,微博“上海垃圾分类”相关话题下的原创微博作为网民议程的代表。对网民原创微博在这一时间段内的数量变化进行研究;并进行简单随机抽样,均匀抽取页码,每页抽取10条微博,一共顺次抽取100条微博,以进行内容分析。5、研究假设基于此次研究的目的、对象和方法,现提出如下假设:◆ H1:政府议程直接影响媒体议程,进而设置网民议程;◆ H2:当网民的关注形成一定规模或者发展到线下行动时,会影响政府议程;◆ H3:媒体议程与网民议程相互影响,媒体、网民对待垃圾分类的态度是一致的。6、研究方法本研究对政府议程主要采用描述法进行研究,对媒体议程、网民议程主要采用内容分析法进行研究,研究数据和统计分析则是使用SPSS。内容分析法需要根据样本特点建构类目,将所有类目构成一份编码表,再对照编码表阅读每一篇符合要求的内容,同时进行编码。编码要求每一个研究对象在一个维度只属于单一属性,例如,一篇新闻在信源上只能是“官方”或者“非官方”,报道内容横向属性只能是“事实”“问题”“议题”三者之一。对于内容较为综合的新闻,一般根据文章主要观点强调的属性而定。之后,需要对这一编码表的信度和效度进行检验。部分编码表可建构如下▼7、研究反思研究对象方面,选取的是有限的样本,结论的可靠性、代表性面临挑战。媒体议程仅选取了三家媒体微博账号的新闻报道,网民议程并不能代表公众议程,因此接下来的研究中,样本的选取范围需要进一步扩大。研究方法层面,对于政府议程的研究采用的描述法主观性较大,之后的研究中可以采用量化的方法。对于网民议程的研究,可以采用访谈法、观察法等质化方法,获得网民的态度、情感、认知等信息,配合内容分析法使用,使得研究更加直观、可靠。参考资料[1] 袁方.社会研究方法教程[M].北京大学出版社,2013.[2] 风笑天.社会研究方法[M].中国人民大学出版社,2018.

猎鲨者

定性定量分析,调查研究方法知多少

这里是与可杂谈,喜欢可以点上方蓝色背景按钮加关注哦!封城的第52天,天气回暖,楼下的声音多了起来。今天分享一下调查研究要用到的方法。方法是为了达到某种目的(解决某个问题)而采取的测量手段,如购物网站、点评平台用到的星级评定。以这么一个问题为例,玩暴力游戏会让人变得暴力吗?先用实验的方法,在实验组中,实验人员玩双人对战暴力游戏,对照组中,实验人员玩双人非暴力游戏,赢家可以选择对输家进行惩罚,结果表明,玩暴力游戏的一组选择的惩罚力度更强。再用最不暴力的游戏测试,俄罗斯方块和巴斯特,结果显示,挫败感会让人们产生暴力情绪。用文本的方法,媒体中对暴力游戏和现实暴力行为的所有报道的梳理,但其有一种偏向性,尽管努力靠近客观的态度。用二手数据的方法,得出,同时期暴力游戏销量增加,青少年的犯罪率显著降低。用访谈或问卷的方法,有深度访谈、焦点小组访谈,调查问卷这么几种形式。还可以使用观察的方法,看暴力游戏和暴力行为是否有相关关系。研究问题在制定计划、收集、分析、综合、得出结论的过程中,收集和分析就是调查方法。定性的调查方法可以有一个总体和大概的判断,揭示事物的本质,适合于小规模、深入细致、长期的调查。定性多用于创造想法,以文字形式报告,问题是开放式的探索,缺点是广而不深。定量的调查方法选取一定数量有代表性的样本,用数学工具分析,计算机录入、整理,多以数字形式呈现。定量多用于验证想法,问题是封闭式的选择,优点是代表性强。定性是定量的基调,定量是定性的准确化。定量中有自变量与因变量,自变量的变化要优先于因变量,因变量的变化由自变量引起,没有其他原因。相关变量无法确定谁影响谁,比如媒介偏好和风险感知。共变变量是两者同时变化,不是因为对方的影响,而是同时受第三方的影响,如春晚期间抖音和快手的注册用户明显增加是因为春晚中的红包活动。测量结果的衡量标准有信度,即使用相同调查方法重复测量同一个对象得到相同研究结果的可能性,比如体重用目测和体重秤测量的信度是不一样的。效度,即有效性,测量工具或手段能够准确测出所需测量事物的程度,如菜市场里的公平秤,肩负着准确测量的使命。在调查与研究方法中,属于定量的有问卷调查、实验、内容、文本、话语分析,属于定性的有观察法(民族志)、深度访谈、焦点小组访谈。有任何想法,欢迎告诉我哦!来评论区留言吧!期待听到你们的看法与建议!喜欢可以关注,收藏,转发哦!你们的支持是最大的鼓励!比心!

纥之则啼

韦编|社会科学研究方法有体系

社会科学研究社会科学研究的有三个层次,即方法论、研究方式、具体方法和技术,这三个层次是相互联系的。一般来讲,方法论观点影响研究者对研究方式的选择,一定的研究方式又规定了一套与其相应的具体方法和技术。图1 社会科学研究的方法体系01 社会科学的研究步骤在每一个环节都需要理论的指导。其中,在检验研究假设结束之后,需要与现有的文献对话,再次发现新问题,开始新一轮的研究过程。在这个环节之中,资料分析作为重要一环,对于社会科学的研究极为重要。图2 社会科学的研究步骤02资料分析的方式分类一般情况下,按照认识论基础,研究方法可以分为定量研究、定性研究和混合研究。也有部分学者按照研究目的、手段等对研究方法进行分类。比如别敦荣和彭阳红将研究方法分为:理论思辨、经验总结、历史研究、调查研究、比较研究、数学分析、质的研究和个案研究;国内,根据刘良华对研究方法的分类大体上有三个基本类型:实证研究(量化的、质化的)、思辨研究(又称理论研究)、实践研究。实证研究是基于“事实”的方式进行论证并有规范的研究设计和研究报告。陈向明指出,“研究方法”一般包含三个层面:第一,方法论,即指导研究的思想体系,其中包括基本的理论假定、原则、研究逻辑和思路等;第二,研究方法或方式,即贯穿于研究全过程的程序与操作方式;第三,具体的技术和技巧,即在研究的某一阶段使用的具体工具、手段和技巧等。文中所采取的分类是按照陈向明定义中的第三个层面为标准进行的分类。在实际的研究过程中大多数时候是以一种研究方法为主,其他为辅,交叉使用的。03具体的资料分析方式汪燕、唐涌在借鉴和修正孙戌星研究方法分类体系的基础上,对研究方法分类体系进行了归纳统计,见表1。表1 研究方法分类体系及简要释义具体来说,思辨分析方法包括历史研究方法、比较研究方法、文献研究方法;话语分析方法主要是批评话语分析,其下又分系统功能语法分析、语篇体裁交织性分析、话语历史背景分析;内容分析的方法主要是内容分析法,ROST content mining是一款免费的大型内容分析研究性工具平台,凡是需要分析论文、微博、博客、论坛、网页、书籍、聊天记录、电子邮件、本地文本类格式文件、数据库中各类文本字段的学科,都可以使用本软件;质性研究是许多不同研究方法的统称,它们都不属于量化研究,其中包含但不限于民族志研究、口述史研究、行动研究、扎根理论研究、个案研究、文本分析、访谈研究等;社会网络分析用于描述和测量行动者之间的关系或通过这些关系流动的各种有形或无形的东西,如信息、资源等;引文分析法,就是利用各种数学及统计学的方法进行比较、归纳、抽象、概括等的逻辑方法,对科学期刊、论文、著者等分析对象的引用和被引用现象进行分析,以揭示其数量特征和内在规律的一种信息计量研究方法。引文分析的主要内容:引文年代分析、引文量分析、集中和离散规律分析、引文类型分析、引文语种分析、引文国别分析;统计学分析包括统计描述、方差分析、二元相关、元分析、多元回归、多元变量分析、因子分析、主成分分析、聚类分析、非参数检验、结构方程模型。注:社科类的研究方法并没有在本文中全部包含,例如实验法并没有详细介绍,关于研究方法的分类已有说明。以上仅供参考。参考资料[1]汪燕、唐涌.国外远程教育研究方法计量分析——以ERIC收录期刊(2007-2013年)调查为例[J].中国远程教育,2015,(04).[2]量化研究方法公众号撰稿|学科部 解敏排版|宣传部 陆冬梅