欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
历年(1987-2019年)考研数学真题解析:2011年真题解析艾丽卡

历年(1987-2019年)考研数学真题解析:2011年真题解析

考研数学真题讲解:每日一练191天一、题目2011年考研数学真题二、解析考查知识点:含变限积分极限的计算考查知识点:不等式的证明、数列收敛证考研路上,你我同行。加油!

火柴盒

历年考研数学真题解析(1987-2019年)按年份讲解:2011年真题

考研数学真题讲解:每日一练192天一、题目2011年考研数学真题二、解析考查:方程的根考查:含抽象函数记号的多元函数求偏导考研路上,你我同行。加油!

何晏

数学篇|历年考研数学真题及答案解析

无论是第几遍做真题,做错的题目,都要做记号,并找出错因。如果下一次还犯类似错误(尤其是计算失误),一定要好好反思反思。

野东西

考研数学|真题一题多解系列,精选001

考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!

荀子

2021考研全国硕士研究生招生考试数学一真题+答案

2021考研数学一真题解析文档 可私信小编免费领取,请联系:

华之乱

2011-2018全国I卷数学真题:导数真题解析

2011-2018全国I卷数学真题:导数真题解析(更多资料和更详细的解答及解题技巧,请关注+评论,后续会持续更新!如果对大家有帮助,欢迎转发帮助更多学子!!!)导数在高考中占有很重要的地位。在近几年的高考中,不论是全国卷还是地方卷,导数除了会在选择题中出现,通常还会作为压轴题的形式出现,即出现在全卷的第21题。导数是解决函数问题的一把利刃,在求解函数的单调性(包括判断或证明函数的单调性和求解函数的单调区间)和最值问题(包括恒成立问题)以及函数零点问题时通常都会利用导数来解决。用导数求解函数的单调性问题时,一定要注意的是导数什么时候可以取“=”,什么时候不能取“=”,简单来说,由导数判断函数单调性时,导数不能取“=”;而已知函数的单调性,利用导数解决参数范围等问题时,导数要取“=”。一、选择题二、填空题三、解答题如有疑问,欢迎留言讨论!!!

天行

2021考研数学真题及答案解析,附真题难度分析,国家线预测

下面为数学一真题及答案解析下面为数学二真题及答案解析以下为数学三真题及答案解析考研过后,立即估分,准备复试。21考研难度如何?国家线会不会涨?扩不扩招?复试怎么开始准备?尽在28日晚8点的直播中04:28

摩羯座

2020数学一真题答案解析(完整版)

声明即日起,博林考研正式并入文都教育,加入文都考研大家庭!燕郊文都考研来到你身边啦!优秀的人总是互相吸引,博林考研全心全意为学生服务,不断提高服务质量。期待以全新的身份服务每一位新同学。文都考研,大家早已耳熟能详。但小编有必要隆重介绍一下:文都集团在考研、四六级、教资、中小学、留学、医考、建考、公考等领域多元化发展。文都考研积累了丰富的教学管理经验,并建立了优秀的管理团队。以数学汤家凤老师、英语何凯文老师、谭剑波老师、政治蒋中挺、万磊老师,为核心的教师团队,深受全国各地学生喜爱。并出版了大量优质考研用书。(比如今年考研数学多数证明题是汤老师的《接力题典1800》书中原题)回归到今天的主题,给大家分享下考研真题及答案解析。回忆版真题,仅供参考,如有错误欢迎各位考生留言:2020数学一真题答案解析

昊天

2021考研数学一参考答案

2021研究生入学考试考研数学试卷(数学一)一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.1. 在处(A)连续且取得极大值 (B)连续且取得极小值 (C)可导且导数为零 (D)可导且导数不为零2. 设函数可微,且,,则(A) (B) (C) (D)3. 设函数在处的3次泰勒多项式为,则(A) (B) (C) (D)4. 设函数在区间上连续,则(A) (B)(C) (D)5. 二次型的正惯性指数和负惯性指数依次为(A) 2,0 (B)1,1 (C)2,1 (D)1,26. 已知记若两两正交,则依次为(A) (B) (C) (D)7. 设为阶实矩阵,下列不成立的是(A) (B)(C) (D)8. 设为随机事件,且,下列为假命题的是(A)若,则(B)若,则(C)若,则(D)若,则9. 设为来自总体的简单随机样本,令,则(A)是的无偏差估计,(B)不是的无偏差估计,(C)是的无偏差估计,(D)不是的无偏差估计,10. 设是来自总体简单随机样本,考虑假设检验问题:表示标准正太分布函数,若该检验问题的拒绝域为,其中,则,该检验犯第二类错误的概率为(A) (B) (C) (D)二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11. 12. 设函数由参数方程确定,则 13. 欧拉方程满足条件的解为 14. 设为空间区域表面的外侧,则曲面积分 15. 设为3阶矩阵,为代数余子式,若的每行元素之和均为2,且,则 16. 甲、乙两个盒子中有2个红球和2个白球,选取甲盒中任意一球,观察颜色后放入乙盒,再从乙盒中任取一球,令分别表示从甲盒和乙盒中取到的红球的个数,则与的相关系数为 三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸指定位置上.17. (本题满分10分)求极限18. (本题满分12分)设,求级数的收敛域及和函数.19. (本题满分12分)已知曲线求上的点到坐标面距离的最大值.20. (本题满分12分)设是有界单连通区域,取得最大值的积分区域记为(1) 求的值.(2) 计算,其中是的正向边界21. 设矩阵(1) 求正交矩阵,使为对角矩阵(2) 求正定矩阵,使,为3阶单位矩阵.22. 在区间上随机取一点,将该区间分成两段,较短一段的长度记为,较长一段的长度记为.令.(1) 求的概率密度;(2)求的概率密度;(3)求.2021考研数学试卷答案速查(数学一)一、选择题(1)(D) (2)(C) (3)(A) (4)(B) (5)(B) (6)(A) (7)(C) (8)(D) (9)(C) (10)(B)二、填空题(11) (12) (13) (14) (15) (16)三、解答题(17)原式(2分)(4分) (7分) (9分)(10分) (18)(1) 设,,则收敛区间为,收敛区间为(3分)时,,级数发散时,,级数收敛所以级数的收敛域为.(4分)(2)(6分)则,因为,所以,因为,所以(9分)因此时,当时,和函数连续,所以所以,(12分)(19) 根据题意,目标函数为,约束条件是以及(2分)设(6分)解得或者(10分),因此距离的最大值为(12分)(20)(1)根据题意,易知(4分)(2)补充曲线(顺时针方向)由高斯公式可知,其中为和围成的封闭区域.(8分)根据高斯公式其中是围成的封闭区域.所以(12分)(21)(1)令,解得(2分),解得,解得(4分)将进行施密特正交化可得(6分)将单位化,可得可得正交矩阵,使(8分)(2)因为可知,因为为正定矩阵,所以(12分)(22)易知,且在上服从均匀分布;(Ⅰ)的概率密度. (4分)(Ⅱ)的分布函数:时,;时, ;的概率密度为. (8分)(Ⅲ)

不可多取

2011-2018全国I卷数学真题:数列真题解析

2011-2018全国I卷数学真题:数列真题解析(更多资料和更详细的解答及解题技巧,请关注+评论,后续会持续更新!如果对大家有帮助,欢迎转发帮助更多学子!!!)数列一直都是高考比较热衷考查的知识点,而且随着高考的改革,近几年的考试难度有所下降,但是考试分值却一直稳定在10-12分,多的时候达到17分,比如18年的全国卷,I卷考了一个选择题和一个填空题共10分,II卷和III卷都是一道解答题12分。数列如果出现在选择题和填空题,主要考查的是等差数列和等比数列的概念和基本性质。如果对基础知识掌握得比较扎实的同学,这类题目比较简单,不过如果记不住这些基本性质,很可能就拿题目没有办法了,或者计算起来就会很复杂,所以理解和掌握等差数列和等比数列的基本性质就很重要了。数列如果出现在解答题,个人觉得比在客观题更简单,因为套路性更强。一般来说,在解答题中,第1小问是求解通项公式,第2小问是求解前n项和。这两类题型,不管是等差数列等比数列的通项公式,还是递推法求解通项公式以及求和,都有固定的套路,掌握了方法完全不需要思考即可做出来(解题技巧见前面的文章)。下面通过2011-2018年全国I卷的高考真题对数列的相关知识进行再一次的复习和巩固,查漏补缺,把握出题方向。一、选择题二、填空题三、解答题数列真题解析就分享到这里,明天和大家分享2011-2018年全国I卷中“三角函数和解三角形”的真题解析,敬请关注!如有疑问,欢迎留言讨论!!!