考研数学真题讲解:每日一练179-184天一、每日一练179:2009年 线性代数、二次型真题题目1题目2二、每日一练180:2009年 不定积分、二重积分真题题目3题目4三、每日一练181:2009年 多元函数真题题目5题目6四、每日一练182:2009年 极限、定积分真题题目7五、每日一练183:2009年 定积分的应用真题题目8题目9六、每日一练184:2009年 概率真题题目10题目11考研路上,你我同行。加油!
考研数学真题讲解:每日一练192天一、题目2011年考研数学真题二、解析考查:方程的根考查:含抽象函数记号的多元函数求偏导考研路上,你我同行。加油!
考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!
大家好,我是老梁考研数学!今天老梁继续给大家推送《考研数学真题分类解析系列》第007期,精选了一道已知极限反求未知参数的问题,也叫作极限的反问题。一般来说,不同类型的问题(如0/0型,∞/∞型,∞-∞型等)采取的方法也有所不同。总体思路是根据已知极限利用极限存在性质、运算性质以及相关的计算方法(洛必达法则,泰勒公式,无穷小等价替换等)推出未知参数应该满足的条件,进而求得未知参数。真题及解析【例007】(1994数2)【分析一】这是个0/0型未定式,可利用洛必达法则以及下列性质分析: 【解法一】由洛必达法则,继续使用洛必达法则,选(A)。【分析二】极限式除了对数函数,就是幂函数,因此宜采用泰勒公式求解。【解法二】由泰勒公式,选(A)。【分析三】仍采用泰勒公式,但将极限式变形。【解法三】由题设,由泰勒展式的唯一性,选(A)。【分析四】由于是客观题,且带有参数,故也可采用排除法。【解法四】排除法。选(A)。总 结对于0/0型带有参数的极限式,通常有三种处理方法:利用已知极限式分母(或分子)的极限,推出分子(或分母)的极限,从而确定参数满足的方程;利用洛必达法则,泰勒公式,无穷小等价替换等处理极限;利用分类讨论法,对参数选取不同的值,使之满足已知极限式或排除错误选项。对于其他类型的带有参数的极限式处理方法,后文陆续推出。方法总结 归纳题型奇思妙解 就找老梁往期回顾考研数学|真题一题多解系列,精选006|中值问题考研数学|真题一题多解系列,精选004|反用等价无穷小考研数学|难点突破!递推数列单调有界原理方法之有界性证明考研数学|方法总结,递推数列单调有界原理方法之单调性证明考研数学|真题一题多解,精选003|∞-∞型未定式移位变形小技巧
本例为2006年考研数学二、四试题中的一道考题。【例】(2006数学二、四)【分析】本题主要对带参数无穷小的阶的比较进行考查。涉及的知识点有:无穷小的比较方法,如洛必达法则,泰勒公式,等价无穷小替换等方法。可用多种方法解答。【方法一】洛必达法则是解决这类问题常用的方法,但有时计算量稍大。由题设可知,由洛必达法则,有由上式极限分母极限为0可推得,再次应用洛必达法则,故,即则由(1)(2)(3),得,【方法二】利用泰勒公式法求解此类问题是非常有效的方法,尤其是涉及的函数为简单的初等函数(基本初等函数)时。根据泰勒公式,代入到题设等式中,得,整理并比较两端系数,得解得,【方法三】泰勒公式法为了更好应用泰勒公式法(或其他方法),可对题设等式变形。题设等式可变形为由泰勒公式代入,比较系数,得,【总结】(1)无穷小的阶的比较,是考研高频考点,常用方法有:泰勒公式,洛必达法则,无穷小等价,以及分类讨论;(2)不论是极限运算、求导求积运算,运算之前化简,变形会带来简便。本题变形后,利用洛必达法则进行计算,计算量也明显变小。
大家好,我是老梁!今天继续推出《考研数学真题一题多解系列》第二期!本期为大家精选了一道2019年考研数学一、二、三试卷共同的一道题,是一道无穷小量比较的问题。无穷小量比较问题是考研数学高频考点之一,每一年都会考(尤其是数学二)。通常以客观题(多数选择题,少量填空题)的形式出现,也会以主观题的形式出现。经常出现的有两种题型:一是无穷小量关系的比较,即将若干个无穷小量(通常是三个)放在一起,比较谁是谁的高阶、低阶、同阶、等价无穷小量等,二是已知两个无穷小量的关系(例如高阶、低阶、同阶、等价等等),然后把无穷小量中所含的参数反求出来。不管是哪种考法,其解决方法都是类似的,即洛必达法则法,泰勒公式法及无穷小等价公式法等。对于客观题,有时还可以根据函数、极限相关的知识点或技巧解决。先看真题,这是第二种考法。已知两个无穷小量的同阶关系,反求无穷小量中所含的参数的问题,难度并不大,利用常规方法就可以解决。【例002】(2019数一、二、三)【分析一】常用的方法就是定义法和无穷小等价公式法。(1)定义法根据无穷小同阶的定义写出下面的极限式然后利用求极限的方法:洛必达法则、泰勒公式等计算其极限。(2)无穷小等价公式法利用已知的无穷小等价关系,将两个无穷小都等价于同一个幂函数无穷小,然后再求参数。【分析二】上述两种方法都是常规方法,然而有时客观题常常需要根据本题条件及选项的特点采取非常规方法,如排除法。本题即可根据函数(无穷小)的奇偶性以及两个等价无穷小的性质排除掉错误选项,从而得到正确选项。【评注】本题难度不大,对于无穷小比较问题,解法一和解法二,洛必达法则,泰勒公式法及等价无穷小这三种方法最为常用,其中解法二简单,但要记住此等价公式。解法三,利用函数奇偶性质和两个等价无穷小之差一定高阶无穷小性质求解这类问题,则比较新颖。实际上,无穷小比较的本质上还是函数极限的问题,因此函数的性质(四大特性)及极限的性质(保号性,有界性等)都可以用来解决这类问题。同学们这些方法,都get到了吗? 如果是你,会用哪些方法解题呢?欢迎留言分享。相关链接考研数学|真题一题多解系列,精选001考研数学|上岸985,等价无穷小要掌握到什么程度?考研数学,一文搞懂无穷小可以等价替换的5个情形考研数学|变限积分函数无穷小的等价性
考研数学真题讲解:每日一练177天一、题目2008年考研数学真题 线性代数证明题二、解析真题1解析真题2解析考研路上,你我同行。加油!
考研数学真题讲解:每日一练191天一、题目2011年考研数学真题二、解析考查知识点:含变限积分极限的计算考查知识点:不等式的证明、数列收敛证考研路上,你我同行。加油!