欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
2021考研数学真题及答案解析,附真题难度分析,国家线预测饮水

2021考研数学真题及答案解析,附真题难度分析,国家线预测

下面为数学一真题及答案解析下面为数学二真题及答案解析以下为数学三真题及答案解析考研过后,立即估分,准备复试。21考研难度如何?国家线会不会涨?扩不扩招?复试怎么开始准备?尽在28日晚8点的直播中04:28

胎息

2021年考研数学一试题及答案解析

所有试题及答案均来自网络,如有错误请留言指正,谢谢。一、选择题(本题共10小题,每小题5分,共50分。每小题给出的四个选项中,只有一个宣宣是符合题目要求,把所选选项前的字幕填在答题卡指定位置上。)选择题1-2题选择题3-5题选择题6-7题选择题8-9题选择题10题,填空题11题填空题12-14题填空题15-16题解答题17-18题解答题19题解答题20题解答题21题解答题21题解析解答题22题解答题22题解析#考研数学#

2021年考研数学一真题、解析

2021年考研数学一真题、解析2021 年全国硕士研究生入学招生考试数一试题一、选择题 :1-10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号里.

崔浩

2021考研全国硕士研究生招生考试数学一真题+答案

2021考研数学一真题解析文档 可私信小编免费领取,请联系:

谜之音

2021数学考研真题(整理版)

(本文源自新祥旭考研整理)

伦理

2021考研数学二真题及答案解析

2021年考研大部分专业已经结束了,只有一部分考试时间很长的专业课还在进行。下面是顺哥收集到的2021年考研数学二的真题及答案解析。如果有错误的话希望大家留言指正,感谢大家!相关文章推荐:2021年考研政治单选题真题及答案(部分)2021年全国硕士研究生入学统一考试英语(一)试题2021年考研英语二真题及答案解析选择题1-3选择题4-6选择题7-8选择题9-10填空题11-13填空题14-16解答题17-18解答题19-20解答题21解答题22解答题22解析#考研数学#

德溢乎名

2021年考研数学真题

2021年考研数学(一)题库【历年真题+章节题库+模拟试题】第一部分历年真题2019年全国硕士研究生招生考试考研数学一真题及详解 2018年全国硕士研究生招生考试考研数学一真题及详解 2017年全国硕士研究生招生考试考研数学一真题及详解 2016年全国硕士研究生招生考试考研数学一真题及详解 2015年全国硕士研究生招生考试考研数学一真题及详解 2014年全国硕士研究生入学统一考试考研数学一真题及详解 2013年全国硕士研究生入学统一考试考研数学一真题及详解 2012年全国硕士研究生入学统一考试考研数学一真题及详解 2011年全国硕士研究生入学统一考试考研数学一真题及详解 2010年全国硕士研究生入学统一考试考研数学一真题及详解 2009年全国硕士研究生入学统一考试考研数学一真题及详解 2008年全国硕士研究生入学统一考试考研数学一真题及详解 第二部分 章节题库 高等数学 第一章 函数、极限、连续 第二章 一元函数微分学 第三章 一元函数积分学 第四章 向量代数和空间解析几何 第五章 多元函数微分学 第六章 多元函数积分学 第七章 无穷级数 第八章 常微分方程 线性代数 第一章 行列式 第二章 矩 阵 第三章 向 量 第四章 线性方程组 第五章 矩阵的特征值和特征向量 第六章 二次型 概率论与数理统计 第一章 随机事件和概率 第二章 随机变量及其分布 第三章 多维随机变量及其分布 第四章 随机变量的数字特征 第五章 大数定律和中心极限定理 第六章 数理统计的基本概念 第七章 参数估计 第八章 假设检验 第三部分 模拟试题 全国硕士研究生招生考试考研数学一模拟试题及详解(一) 全国硕士研究生招生考试考研数学一模拟试题及详解(二) 全国硕士研究生招生考试考研数学一模拟试题及详解(三) 更多资料2021年考研数学(一)考试大纲解析2021年考研数学(一)全套资料2021年考研数学(一)考前冲刺班找学习资料就上畅学苑学习网,助您乘风破浪一次通关!

三日三夜

2021考研数学三真题及详解(初试后更新2021真题)

考研数学三2020真题及详解初试后更新2021考研数学三真题

龟长于蛇

2021考研数学一参考答案

2021研究生入学考试考研数学试卷(数学一)一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.1. 在处(A)连续且取得极大值 (B)连续且取得极小值 (C)可导且导数为零 (D)可导且导数不为零2. 设函数可微,且,,则(A) (B) (C) (D)3. 设函数在处的3次泰勒多项式为,则(A) (B) (C) (D)4. 设函数在区间上连续,则(A) (B)(C) (D)5. 二次型的正惯性指数和负惯性指数依次为(A) 2,0 (B)1,1 (C)2,1 (D)1,26. 已知记若两两正交,则依次为(A) (B) (C) (D)7. 设为阶实矩阵,下列不成立的是(A) (B)(C) (D)8. 设为随机事件,且,下列为假命题的是(A)若,则(B)若,则(C)若,则(D)若,则9. 设为来自总体的简单随机样本,令,则(A)是的无偏差估计,(B)不是的无偏差估计,(C)是的无偏差估计,(D)不是的无偏差估计,10. 设是来自总体简单随机样本,考虑假设检验问题:表示标准正太分布函数,若该检验问题的拒绝域为,其中,则,该检验犯第二类错误的概率为(A) (B) (C) (D)二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11. 12. 设函数由参数方程确定,则 13. 欧拉方程满足条件的解为 14. 设为空间区域表面的外侧,则曲面积分 15. 设为3阶矩阵,为代数余子式,若的每行元素之和均为2,且,则 16. 甲、乙两个盒子中有2个红球和2个白球,选取甲盒中任意一球,观察颜色后放入乙盒,再从乙盒中任取一球,令分别表示从甲盒和乙盒中取到的红球的个数,则与的相关系数为 三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸指定位置上.17. (本题满分10分)求极限18. (本题满分12分)设,求级数的收敛域及和函数.19. (本题满分12分)已知曲线求上的点到坐标面距离的最大值.20. (本题满分12分)设是有界单连通区域,取得最大值的积分区域记为(1) 求的值.(2) 计算,其中是的正向边界21. 设矩阵(1) 求正交矩阵,使为对角矩阵(2) 求正定矩阵,使,为3阶单位矩阵.22. 在区间上随机取一点,将该区间分成两段,较短一段的长度记为,较长一段的长度记为.令.(1) 求的概率密度;(2)求的概率密度;(3)求.2021考研数学试卷答案速查(数学一)一、选择题(1)(D) (2)(C) (3)(A) (4)(B) (5)(B) (6)(A) (7)(C) (8)(D) (9)(C) (10)(B)二、填空题(11) (12) (13) (14) (15) (16)三、解答题(17)原式(2分)(4分) (7分) (9分)(10分) (18)(1) 设,,则收敛区间为,收敛区间为(3分)时,,级数发散时,,级数收敛所以级数的收敛域为.(4分)(2)(6分)则,因为,所以,因为,所以(9分)因此时,当时,和函数连续,所以所以,(12分)(19) 根据题意,目标函数为,约束条件是以及(2分)设(6分)解得或者(10分),因此距离的最大值为(12分)(20)(1)根据题意,易知(4分)(2)补充曲线(顺时针方向)由高斯公式可知,其中为和围成的封闭区域.(8分)根据高斯公式其中是围成的封闭区域.所以(12分)(21)(1)令,解得(2分),解得,解得(4分)将进行施密特正交化可得(6分)将单位化,可得可得正交矩阵,使(8分)(2)因为可知,因为为正定矩阵,所以(12分)(22)易知,且在上服从均匀分布;(Ⅰ)的概率密度. (4分)(Ⅱ)的分布函数:时,;时, ;的概率密度为. (8分)(Ⅲ)

蛐蛐

2021年考研数学二真题、解析

2021年考研数学二真题、解析2021 年全国硕士研究生入学招生考试数二试题一、选择题 :1-10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号里.