考研数学真题讲解:每日一练192天一、题目2011年考研数学真题二、解析考查:方程的根考查:含抽象函数记号的多元函数求偏导考研路上,你我同行。加油!
今天小编整理了下考研数学一的试卷题型以及知识点,在准备2021年研究生考试的可以认真看下。数学一是高等数学、线性代数、和概率论与数理统计都要考,下面分三个部分来讲解。一、高等数学部分高等数学部分呢,试卷一般是有8个小题左右属于高等数学的范围,也就是选择填空,随机分布。常考的知识点有以下部分,大家可以参考下,有助于复习时寻找侧重点。1. 每年数学第一题通常都是已知极限求参数或者求另一个函数的的极限,这个多练拿到分通常不是问题。2. 下一道题,一般考函数的间断点,连续性,或者无穷小量阶的比较。3. 导数,导数这块小题出题通常是考求导,考导数的定义,或者导数的特性,诸如极值点拐点等,既有纯文字额出题形式,也有图形题。比如给出一个二阶导数的函数图像,判断拐点,极值点,单调性等。这个选择题一般不难,但很容易出错,主要是极值店和拐点的定义一定要仔细弄清楚。4. 方程的根,通常问方程根的个数。5. 积分,积分这块知识点多,出题的类型也比较多,有考求原函数、变限积分求导、比较定积分的大小,积分的敛散性(包括反常积分),积分敛散性这一块有很多人拿不到分,主要是敛散性很多判别方法,你购买的资料不一定会全部罗列出来,所以这个知识点一定要去看一下原课本(推荐同济高等数学第七版)6. 方向导数、梯度、旋度、散度。这个知识简单,出题也不难,但历年出现次数不多,但只要出现,一般都可以拿到分。7. 多元函数,这块出题也比较多,比重也大,一般会考求复合函数、隐函数的偏导数或全微分,然后就是重积分,重积分的比大小,交换积分次序是常考的类型。偏导数的连续性,是否可微、是否存在是个难点,要仔细区分和一元函数相关性质之间的区别与联系。8. 级数部分,通常考敛散性,收敛半径、收敛域、和函数、函数的展开以及傅里叶级数。9. 微分方程,一般考方程解的结构和性质,注意是解的结构,有很多人一看到题就先去解微分方程,有时候还解不出来,浪费时间,一定要先从结构上面下手,可能一下就出来了答案。接下来是数一高等数学部分的大题部分,一般是5个大题属于高等数学范围。1. 函数极限的计算,数列极限,极限的四则运算,夹逼准则,单调有界以及用定积分定义求极限,都是历年常考的点,单调有界这块比较难,往年会出在证明题中,难度系数较大,需要多做练习。2. 微分中值定理,主要就是罗尔定理,拉格朗日中值定理,泰勒方式是常考的点,柯西中值定理也出现过,但考的次数较少。几个常用的泰勒公式需要背诵。出题的时候经常是综合性的需要多个定理同时用,比如证明摸个等式的时候,既要用到罗尔定理也要用到拉格朗日中值定理。当然还有个积分中值定理是大家比较容易忽略的知识点。3. 一元函数积分学,主要考使用换元法,分部积分法,积分变限函数求导,证明某个积分等式或不等式以及定积分的应用,考定积分的应用题可能会有难度,尤其是非理工科专业又要考数学的同学们,因为这类应用题中会涉及到型心、质心等概念,不过只要掌握微元法,也是很容易理解的。4. 多元函数微积分,多元函数的微分学部分会比较容易,主要包含复合函数、隐函数、极值和最值等函数特性,求偏导数,方向导数和梯度。方向导数和梯度大家不要不重视,往年也经常出现,不过一般只考一道小题。积分部分就复杂多了,二重积分、三重积分、曲线和曲面积分都是常考点。5. 微分方程,主要包含一阶微分方程,可降阶的高阶微分方程,常系数线性微分方程,和微分方程的应用。微分方程的应用会较难,但只是难在列出微分方程,只要方程一列出,一切问题迎难而解。6. 无穷级数,包含数项级数、幂级数、傅里叶级数,这块是数一要考的,数二不考,难点也在幂级数中的收敛半径收敛域,求和函数等。二、线性代数线性代数部分的题通常不会很难,小题3道,大题2道。先看小题部分。1. 行列式的计算,抽象行列式是难点。2. 矩阵的运算,加减,相乘,求n阶,矩阵的逆,伴随矩阵等。3. 判断线性相关、无关或者线性表示,这个得分不高,要多注意。4. 矩阵的初等变化,以及矩阵的秩、向量组的秩、等价向量组。5. 判断两个矩阵是否相似、合同。6. 已知相似求参数,求线性方程组的解。7. 二次型,判断是否正定(涉及正负惯性指数)大题一般两道1. 方程组或者矩阵方程,通常是含参数的,求参数,线性表示。2. 相似形,通常也是2到3问,求秩,求相似形,求n阶,注意实对称矩阵。3. 二次型,用配方法化二次型或者判断是否正定或者合同。三、概率论与数理统计通常是3个小题和2道大题1. 概率计算,包括常用分布和常用的概率公式。2. 互不相容、互相独立、不相关,包含常用的期望和方差公式3. 随机变量的分布函数、概率密度。4. 数字特征、切比雪夫不等式、大数定律和中心极限定理。5. 抽样分布x、t、F的典型模式6. 区间估计和假设检验,这块考的极少,也经常很多人不怎么复习,目前只有08年考过一次假设检验,选择题最后一个。大题部分1. 随机变量的函数分布,包括一维和多维,一维比较容易掌握,多维主要考的有离散型、连续型、或者两者综合。2. 数字特征,一般都是求期望、方差、协方差、相关系数等。3. 参数估计,包括矩估计和最大似然估计。但通常也是结合分布和数字特征一起出题。好了,三大部分就总结到这里,这主要是数学一的,当然线性代数部分数学一二三都通用,概率部分只有数学一三有,希望这份整理对大家有帮助。
2010-2019年 考研数学一二三真题 逐题精讲视频已出!!!考研数学真题讲解:每日一练227天一、题目二、解析考研路上,你我同行。加油!关注“泰笛牛考研数学”,一次性获得完整历年考研数学真题资料!还可以免费享受在线答疑!关注能考140+分哦~
考研数学真题讲解:每日一练191天一、题目2011年考研数学真题二、解析考查知识点:含变限积分极限的计算考查知识点:不等式的证明、数列收敛证考研路上,你我同行。加油!
考研的历年真题逐渐成为了大家备考的一个风向标,通过做真题,大家可以深刻地去体悟出题人的考核思路,让大家在复习的时候能有所参考,不至于学得稀里糊涂。那么,如何利用历年真题更高效呢?下面文都网校给大家分享一些学长学姐们总结的经验。2021考研历年真题1.利用真题,快速融入考研复习氛围考研初期,21考研人还不清楚考研的方式和难度,通过做一遍各科的真题,就会很快了解自身的差距在哪里了,也能让自己更警醒一些,重视考研复习的每一个阶段。同时也能让你了解到你的基础是否扎实。2.利用真题,反复检测自己的复习进度考研的每一个阶段,都要给自己分配好总结检验的时间,每月至少1次,这样能最快的暴露出你的盲点和弱点。为你下一步的总结奠定了基础。同时,也可以让你更加熟悉考核的重点。3.利用真题,预测把握命题的规律如果你前几点做得足够好了,那么更进一步的标志就是你突然发现,这些考题的命题规律是有迹可循的,虽然每年都会反押题,但是,还是有不少老师很容易就猜到了命题方向,这不是他们有多么神秘,无他,唯手熟尔!就比如文都网校的考研英语名师何凯文老师,几乎每年都能猜中命题方向,这就是经验的厉害之处。其实大家如果历年真题做得足够多,理解得足够深入,也可以有大致的方向判断。这样也可以减少你将时间用在不考核的内容上面。4.利用真题,做查漏补缺尤其是在最后几个月的复习里,由于学习内容太繁杂,你已经没有时间去做很系统的检测了,做做历年真题或者模拟题成了你唯一的检测手段。主要是这时候的心态一般都不稳定,记不住知识点,焦虑等。所以,做做真题不但能快速知道自己哪里不足,还能熟悉考场的做题时间分配。2021考研备考5.利用真题,可以为你打开解题思路每一道题都会有一个最佳的解题方法,节省时间,考核重点。历年真题做得多了,大家会熟悉很多的解题技巧,如果你善于总结,那么你会得到很多意外的惊喜。比如20考研初试的数学普遍很难,但是,如果你平常懂得总结解题技巧,你就会很快地将难题分解,联想。即使你不能保证完整做出,那么其中的大部分过程,你还是能写出来的,步骤分应该能拿得到的。分享了这些经验,也是希望2021考研人能重视历年真题,早早的就应该将这些资料搜集齐全,方便后续的复习。更多免费的学习资源可以去文都网校那里去查看。
考研数学真题讲解:每日一练177天一、题目2008年考研数学真题 线性代数证明题二、解析真题1解析真题2解析考研路上,你我同行。加油!
文|冷丝栏目|丝说考研2017年的全国研究生入学考试初试,公共科目高等数学试卷中,很多所谓考研备考专家专家对一道很重要的试题解答出现错误,这也导致很多备考生跟着出错。冷丝今天想说的话题是:考研试卷除了政治和英语公共课,官方公布标准答案,其他试卷有参考答案,但均未通过官方渠道进行公布。因此,无论是文科还是理科,考研一族备考时需要找准找对资料,千万不要因此而出大的差错。研究生入学考试考场冷丝在这里友情提醒,我接下来的解释涉及很多专业性问题,很多读者可能看不懂,这个不要紧,本文主要是通过展现一些错误,让你理解:一些考试中的典型错误为什么经常出现,源于部分教材存在瑕疵,部分教师的专业素养或多或少有问题,而备考生需要瞪大眼睛辨别,敢于质疑,不要迷信,并且要学会辨别一些辅导机构、辅导教材是否权威。网上流传的错误答案被当成权威解答,典型错误具有代表性。2017年全国硕士研究生入学统一考试《数学(一)》试题,第18题的解答,很多网站上流传的解答是错误的,据专家介绍,这种错误是高等数学教师在课堂上经常遇到的问题,也是学生经常出错的难题。原题是这样的:而网上广为流传的错误答案是这样的:从上面的解答可以看到函数F(x)需要存在3个不同的零点,而上面解答中得到了3个零点分别是0,ξ和ξ1,忽略了ξ和ξ1可能是同一个点,这样的证明是错误的。课堂教学中存在的类似问题,柯西中值定理的证明,比如,同济版本《高等数学》(第六版)中的柯西中值定理结论如下,在(a,b)内,至少有一点ξ,这样的等式才会成立:很多学生在使用这个教材是会问,能否在等式左侧的分子与分母中分别用拉格朗日中值定理?显然不行,这是为什么呢?因为,学生犯了拉格朗日中值定理中的不一定是同一个值的错误。即使是同一个值也要给出严格证明,ξ只是在(a,b)内的一个点,而在(a,b)内存在数不尽的不可数的点。同济办教材《高等数学》(第六版)习题中的习题,许多学生在用罗尔中值定理证明f’=0也是错误的。那么,这道入学考试真题的正确答案是怎样的呢?因为f(x)在[0,1]上二阶可导,所以,f(x)在[0,1]上是连续的,因此,可以这么解答:这个答案应该是很详细了,一看就明白。还有一个问题,很多学生为什么会出错呢?怎样避免错误。除了部分教材存在瑕疵之外,最重要的问题是,高等数学的学习内容不连贯,存在知识盲点。许多高校在安排学生学习同济版本《高等数学》(第六版)等教材时,没有让学生事先学习“实变函数”中实数论的相关内容,这样导致学习内容的脱节。比如,实数具有有序性——就是任何两个或多个实数之间一定可以比较大小。所以,在同一个问题中出现两个或多个实数时要有明确的大小顺序关系,学生要掌握有序性。天津市考点再如,有理数与无理数的关系是稠密的——任何一个有理点的任何小的邻域内都有不可数个无理点,反之,任何一个无理点的任何小的邻域内会有无数、但可数个有理点,即我们所说的"稠密性"。当然,还涉及有其他一些高等数学知识,你如果没有学,在考研中遇到这样的问题,肯定会出错。这些基础知识,学生没有学习,在遇到实数间的比较,区间中有理点与无理点个数的多少和它们之间的关系时,出错就是一件很正常的事情了。特别需要提出的是,部分年轻教师由于缺乏上述的基础知识,特别是对狄利克雷函数本质的理解等等,那么,他们在教学生时,就会让学生跟着他一起出错。研究生入学考试现场确认冷丝最后还想说,教师的任务责任重大,自己的一个小错或者知识盲点会导致无数个学生跟着出错。同时,无论是哪一个阶段的教材编写,也无论是什么课程,编写者要精益求精,出现错误要及时更正,否则,很多人也会跟着教材出错。(感谢:本文参考了张德存教授的观点)。多选|你觉得考研难度如何?竞争激烈,难度大试题难度大,复习辛苦考试内容多,复习难度大复习时间长,难以坚持打开百度APP进行投票