20020考研数学全程复习规划一、考研数学的基本概况针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三。招生专业须使用的试卷种类规定如下:1.须使用数学一的招生专业(1)工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。(2)授工学学位的管理科学与工程一级学科。2.须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。3.须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。4.须使用数学三的招生专业(1)经济学门类的各一级学科。(2)管理学门类中的工商管理、农林经济管理一级学科。(3)授管理学学位的管理科学与工程一级学科。注:①以上内容摘自考研数学大纲,具体考数几以目标院校公布的专业目录为准。②数一、数三考高数、线代、概率,数二只考高数和线代。二、考试形式和试卷结构1.试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 2.答题方式 答题方式为闭卷、笔试. 3.试卷内容结构4.试卷题型结构各卷种试卷题型结构均为:单项选择题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,每题10/11分,共94分总计23题 总分150分三、整体复习规划考研数学总分150分,其在考研科目当中的地位不言而喻。总的来说,考研数学的学习分为四个阶段:第一阶段(3月——6月底)是基础复习阶段,此阶段的主要任务是夯实基础,训练数学思维,掌握一些基本题型的解题思路和技巧,为下一个阶段的题型突破做好准备。第二阶段(7月初——10月底) 是强化提高阶段,此阶段的主要任务是大量习题训练,熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。第三阶段(11月初——11月末)是冲刺串讲阶段,此阶段的主要任务是建立清晰的知识体系框架,在知识串讲过程中,找到自己的薄弱环节,利用最后的时间进行巩固,起到查漏补缺的目的。第四阶段(12月初——考前)是模考阶段,此阶段的主要任务是考前模拟训练,系统检测,让同学在实战中积累临场经验。注:以上规划主要根据历年同学复习情况以及成功经验所得,同学需根据自身实际情况灵活调整,复习的同时必须做到“讲练结合”,数学考试重在实践,切不可只看不练或者只盲目练习不总结。四、各阶段复习规划及要求考研数学总分为150分,分为数一、数二、数三、数农、自主命题。其中,数农参照数三(数三去掉无穷级数部分),自主命题参照数一。下面的复习规划以数一、二、三为例。数一和数三的分值分布为:高数82、线代34、概率34;数二的分值分布为:高数116、线代34。1.基础阶段 (3月~6月底之前)这一阶段以教材为基础,着重基础复习,基础扎实,至关重要。由于大学学习数学的时间与准备考研的时间相隔二年多,不可避免会忘了很多,所以必须先进行恢复式的复习,争取达到大学期末考试中等以上的水平。这个阶段可以以教材(高等数学同济6版或7版、线性代数同济6版、概率论浙大4版)和教材课后习题为主要复习资料,这样比较熟悉,效率较高。对基本概念,基本定理有一定了解(不一定理解很深刻),对一些重要的数学公式做到比较熟悉。报了考研课程的同学,根据老师所讲的基础内容进行复习即可。(注:基础阶段提醒笔记的重要性,尤其是看视频的同学,不记笔记看视频等于没有看,一定要认认真真地记笔记,包括知识点和例题,当然提前是一定要先听懂!)数学基础阶段的复习需要全覆盖式学习,要考的每个科目,所涉及到的知识点一定要全面学习,当然在学习过程中也可以根据自己的考试范围,在复习时有所选择的进行学习,例如考数三的同学曲面积分和三重积分是不考的,基础阶段这部分内容可以先跳过,如果后期时间充裕再看这部分内容。2.强化阶段(7月初~10月底)基础打好的前提下,此阶段为成败的关键阶段。它要求从原来大学学习的水平提高到考研所需要的水平,这两者之间的差距是相当大的。复习资料以高昆轮、代晋军的笔记和辅导书(与强化课程匹配的资料)为主,这时候认真听高教考试在线的强化课程是很有帮助的,把考研大纲的要求和历年真题的内容有机地结合起来,加深对概念的理解和加强对方法、技巧的掌握。在这个阶段要认真听课,跟着课程上线进度去复习。目前同学中存在最大的问题是参加强化班之前的准备不足,有些同学参加强化班时不但基础阶段要求没有达到,甚至连最基本的概念和数学公式都不知道,这样效果非常差。因此就要求各位同学在基础阶段一定要打好基础,常用公式和概念在基础阶段一定要记牢。当然针对目前同学的实际状况,考研数学考题比最难的1998年,2001年和2005年的难度有很大的降低,但比起大学期末考试的考题的难度仍有本质的区别。尤其是根据这两年的考研数学命题情况特点:重基础、综合性强、计算量大,这些一贯特点外,在近几年的考研数学考察中,逐步加深了对数学题目综合性和灵活性的考察,除了知识的积累外,要求同学注重对方法的总结和能力的培养,从而做到活学活用,进一步增加了考试的难度。因此同学复习考研数学的学习方法也要有一定的改变,一定要从“套公式,做习题”那种学习方法改变为不断加深对概念的理解,不断提高对方法和技巧掌握的程度,多分析,多思考,提高综合运用的能力。对数学概念决不是“懂”与“不懂”那么简单,而是不断加深理解的过程。对数学方法和技巧也不是“会”与“不会”那么简单,而是不断加强掌握和运用的能力,所以同学在强化班学习时一定要用心学习老师讲解的概念和分析例题中方法技巧的分析方法,逐渐用到自己学习中去,提高自己学习数学的能力。强化班由于时间和条件限制,只能突出重点,不可能太全面,太丰满。所以强化班结束后,同学应集中一段时间,“趁热打铁”消化强化班全部有关内容,以此为核心,再进一步复习其它考研参考书和“历年考研真题”达到全面和丰满的效果。3.冲刺阶段(11月初~11月末)冲刺阶段为查漏补缺的阶段,复习资料以历年真题和强化阶段复习资料为主。冲刺阶段两大内容,一方面把学过的内容贯通起来更好地全面掌握,另一方面做一些“模拟考题”,主要起测试作用,看自己哪些部分掌握还有不足之处,有针对性地在最后阶段再加强一下。不要把“模拟考题”当做例题来看,或者做猜考题。数学复习一定要处理好全面与重点的关系。冲刺阶段的模拟练习,一定要严格按照研究生考场考试时间来(数一、数二、数三的考试时间一般为上午的8:30~11:30,共计180分钟,3小时),严禁练习时间随意走动、吃零食,超时做题,养成良好的考场习惯。4.模考阶段(12月初~考前)此阶段的主要任务是考前模拟训练,系统检测,让同学在实战中积累临场经验,除此之外,还要有重点的查漏补缺,对于前几阶段的练习中尤其是错过三遍以上的题目要重点进行练习和分析,总结规律和方法重点提升,但注意一定要有重点的看,不可贪多。五、复习中值得注意的问题1、全面与重点考试大纲中提到的内容和要求都应该复习,决不要因为估计“不会考”而放弃复习有关内容。考试大纲中“理解”的内容和用“掌握”的内容表示要求高,而用“了解”的内容和用“会”的内容表示要求低。对于要求高的内容一定要更深入更细致地去复习。考试大纲中没有规定每一部分内容出题的多少和难易的程度,这一点每年都会有所变化,切不可主观臆断的猜测。例如数学一的考试内容中关于傅里叶级数的部分并不是重点,其他年份很少涉猎,但是2008年居然考了一道大题,这种“反常”的现象就是命题组为了避免猜考题而采用的措施。2、看与做对于复习资料,我们强调不能光看不做或者盲目做题而不总结,但是对于基础较差的同学,要求开始看书就立马自己动手做题还是很困难的,而且也不太现实,所以看与做应该相互结合,它的目的是不要停留在表面上“懂”和“会”而要深入一些去“理解”和“掌握”。对于具有一定基础的同学,最好是把复习资料中的例题当做习题去做,去分析,然后再看复习资料进行总结。当然考研数学的复习和其他学科一样也不能单纯地去“做题”,应该多思考多分析一些问题,例如题目中给出已知条件是什么,要求的结论又是什么,总的解决的思路是什么,用到的方法、技巧又有哪些。长期这么做,就把自己的能力有所提高,这是非常关键的。3、快与慢复习进程的快与慢,是一定要以复习质量为前提的,决不能一味图快而停留在表面上了解。有些同学重复复习了四、五遍,实际上还没有真正理解和掌握有关内容和方法,这样效果很差。各位同学要根据自身的基础程度,确定合理的目标,合理把控自身复习节奏的快慢,最好订一个有一定弹性、留有余地的计划,做到心中有数,而不是每天只一味的追求进度,而乱了自己的节奏。原则上第一遍复习一定要慢一些,扎实一些,否则不容易深入。整个复习过程,一定要从自己的实际出发,避免“眼高手低”。4、提前准备与重考有些同学提前一年,甚至两年就开始进行考研准备,当然这样的同学总的说来比较主动,值得我们去学习,但也要设定好目标,制定一些合理计划,免得复习时间太长而放松。另外,有些同学已经考过一次或多次,准备再考,从时间上来说是比较充裕,但特别需要做好心理上的准备,二战、三战甚至是四战、五战,作为考生而言,需要承受很大的压力,有不少同学由于情绪上有波动,患得患失,不容易精力集中,也有些同学选择一边工作一边准备再考,这样复习时间和精力就不容易得到保证。所以考研目标要明确,不能犹豫,措施要切实,不要抱侥幸心理,否则不容易达到目的。5、复习方针“改造知识结构 ,改变思维习惯”,每年都说,可以说是老生常谈。但是我们并没有对它失去新鲜感,反而是越来越想说。几年来和考研同学们的接触越来越多,交流越来越深入,对学校的数学课程教学情况和考研要求的脱节了解更加深切了。同学普遍对考试真题不适应,觉得不是他们学习时所做的那些计算题。本来计算并不是数学的全部,也不是主要内容。逻辑推理才是数学能力的主要体现。特别是线性代数这样概念性强,比较抽象的课程,理解概念和会推理更加重要。线性代数中计算题型虽然也不少,但是它们的方法死板,没有什么技巧,也不体现概念。因此计算题考不出能力,只能看出会不会和细心不细心。考研作为人才选拔性的考试,考研命题小组当然不能都出这样的题,数学概念考察应该作为主要目标。过去有同学说怕客观题(选择题和填空题),因为一般这类题都是考概念的。其实从这几年的考题看,解答题也离不开概念考查,论证题不必说了,就是计算题也往往加进了概念的考查,加重了基础概念考核的同时,也增加了考试题目中的灵活性和综合性。考研数学真题考核目标既然是概念,就应该从概念上来找到解法。也就是在概念上对题的条件和要求进行分析,找出简捷的解题途径。把关注点从计算题型到概念的转移并没有多大的困难。毕竟这些理论知识在课堂上都是讲了的,至少它们的大多数在任何教材都是有的,只是做题时不用,考试不考,因而不重视,印象淡薄而已。认识到了,认真去复习,都是可以检得回来的。也可以选择一个重视概念的辅导班,由辅导老师帮助你复习,整理。不过不要过分依赖辅导班。归根结底数学能力的提高要靠自己。特别要提醒一句,在听辅导班课程之前一定自己先要有准备,准备越充分,听课效率越高。考研数学的要求是绝大多数同学都能达到的。考研之路漫漫其修远兮,有努力、有汗水,还有坚持,当然还有些许的的运气,如果你能不忘初心,一如既往的努力,肯定能取得优异成绩!在此预祝各位同学2020备考成功!
经文都考研老师仔细与2020考研数学大纲对比后发现,2021考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。2021考研数学大纲在考试内容与要求方面,共 36 处变动。其中高数部分变动 29 处,主要集中在数(三),线代变动 7 处。在这些变动中,约80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数(一)考试要求。另外题量减少,时间上基本更多的同学有保障啦,这方面是好事情。总体来看,2021考研数学大纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是2021考研数学大纲变动的部分。大纲知识点方面的变化并不大,特别数学一二几乎没有几处变化,主要数学三的要求变高了,几乎20%的知识点提高要求,与数学一公共部分的要求靠拢。考研最后,在距离考研还有100多天的时间,面对今年大纲的调整,2021考研同学们应该怎么复习和备考才能取得不错的成绩呢? 首先,必须有目标、有规划、有信心,树立必胜的信念以及必须学习、充分备考的心理状态,然后还要有一定的坚持力。再次,付出行动,努力学习,重点把握真题。最后的时间可以称之为黄金时间,需要高效地学习。在完成真题的基础上,还需要再去做一些模拟题,适应大纲新变化,合理分配时间与调整生物钟。最后,文都考研所有老师预祝所有2021考研的同学金榜题名。
考研数学有三种,分为数学一、数学二、数学三。数学一是报考理工科的学生考,考试内容包括高等数学,线性代数和概率论与数理统计,考试的内容是最多的。数学二是报考农学的学生考,考试内容只有高等数学和线性代数,但是高等数学中删去的较多,是考试内容最少的。数学三是报考经济学的学生考,考试内容是高等数学,线性代数和概率统计。高数部分中,主要重视微积分的考察,概率统计中没有假设检验和置信区间。有些人认为数一考得比较全面,高数,线代,概论都考,题目偏难、不好学。认为数一比数三难很多,其实不然,注重的领域不同,所以难度无法进行比较。数一题目涉及范围广,而且有时需要形象思维,难度也不低。数三虽然大纲内容比数一少,但题目精,难度不是想象中的那么简单。综观近几年的试题特点,小编了解到,考研数学的基础性和综合性强,且有一定的灵活性,出题难度一般是中等偏上为主,考研数学非常难的,所以还是尽早复习为好!一、基础阶段(4—6月)这个阶段的复习重点是要以打好基础、吃透教材为主,弄清每一个知识点,熟练掌握书中的例题、习题。数学资料有两类,一类是复习教科书,一类是考研辅导专家针对考研而编写的资料。教科书应是深广度适当,叙述详略得当,通俗易懂,便于自学的正规出版物,如浙大版的《概率论与数理统计》(第三版),同济版的《线性代数》(第三版)或北大版的《高等代数》;辅导书的选择应该严格按照考试大纲进行,选择的资料要紧扣考纲,不要购买含大量超纲内容的考研辅导资料。大家应根据需要选择适合自己的资料。需要注意的是,资料不在多,关键在看透、掌握,这一阶段的任务是主攻教材和课本,达到基础知识的了解和掌握。高等数学考查还是以考查考生的基本知识和基本技能为住,考卷中偏题和怪题不是很多,所以考生先要从基础学起,先把教材中的一些概念、定理、公式复习好,牢牢地记住,并在此基础上选择一些题目进行强化。如果基础不是非常好,建议可以报个考研辅导班,在老师的带领下将所学的知识进一步强化巩固。二、强化训练阶段(7—9月)这一阶段的主要任务是要全面地掌握各类知识点,并且详细地做笔记,达到题型健全和题量广泛的目的。数学只有通过做大量的题目才能有质的飞跃。基础阶段高数主要做教材上的习题及课后练习题,做一本书尽量做好详细的计划,当然做计划也是有技巧的:每天完成一章。也需要大家去大量刷题,巩固基础阶段知识点,建立知识体系,熟练掌握常考题型并作出总结。在刷题的同时,一方面巩固前一阶段的知识点,另一方面得总结出常考题型解法。还有题目不可能只刷一遍,而是一个反复刷的过程,为了提高效率大家可以把解决了的题目标记起来,直到所以题目都被标记完,也就刷得差不多了。经过长期刷题后,如果对这个专题能锻炼出"条件反射式"的状态,那么你就已经很强悍了。三、巩固提高阶段(10—11月)这一阶段是通过真题和模拟题的训练和分析来完成;最后一个阶段是冲刺阶段,这一阶段的时间一般较短,主要是做一些题目来达到稳定能力和水平的目的,并且再次地强化之前所记忆的知识点。有很多知识点是每年必考的,所以大家一定要重视这类知识点。每个知识板块的核心问题必须掌握好。这些掌握好了,证明题都不用太担心。很多同学做完真题后第一个就是去看成绩,其实这个不是重点,重点是找到你的漏洞,然后及时补救。从现在起尽量将数学的复习时间固定到早晨的9点到12点,另外在做数学练习时尽量是以整套题来作为训练,不要将时间分散,在做题中注意记录选择与填空、高数大题、线代概率大题这三部分的答题时间。有意识地通过训练将选择填空用时控制在一个小时内。大题整体用时要设法控制在一个半小时内,既是留出时间检查,也是避免时间紧张造成的疏忽失分。四、冲刺阶段(12月)这个阶段一定要赶紧看错题,要及时查漏补缺,每晚睡觉之前,把当天错的知识点简记一下,定期拿出来翻翻。在考试之前,要回归最基本的概念、公式、性质和定理,把一些以前做错的题目再拿出来做一做,攻破难点。复习的时候要经常回头总结,比如复习完高数的极限,求导,积分这几章的时候就要回头总结一下,做下笔记,比如解题的技巧等等,然后再继续看下面的章节。总之就是要将关系比较紧密的章节作为一个单元来复习,每个星期都要将所学过的知识点再看一次。
2021考研数学大纲已发布,数学的考研大纲总的来讲题型变化比较大,知识范围只是微小的变化。广大考生心里或多或少都有些慌张,不知道自己以前的复习是不是有效,不知道以后该如何复习,那么在此文都考研小编就系统讲解一下:大纲变了,后续该如何复习?21考研数学大纲新变化,复习要有新规划(上)数学第一点,要学会构建知识框架,文都考研小编见过很多考生,到最后考试阶段,知识体系还没有构建出来,只有有了自己的知识体系,才能灵活运用。一道综合性题目,并不是一个知识点就能够解决的,需要多个知识点相配合。知识体系的构建就帮助了同学们把每一个知识点都能够紧密联系起来。再做综合性的题目就会游刃有余。第二点,做完题学会思考和反思,很多同学做完题就完了,最多再对一下答案。可是,这么做题,永远也提升不了解综合题的能力。所以建议大家,题目做完之后要反思,反思这个题目融合了多少知识点,融合了哪些知识点,考到了什么样的解题技巧,考到了学生什么样的能力。再反思你如何提高这些能力,这个叫学会做完题目反思。那么什么叫学会思考呢,就是拿到一道题目,别慌着做,拿到一道题目,你能想到什么样的知识点,你能想到什么样的技巧,由已知条件,你能联系起来怎样的知识体系。题目跟你以前做的什么题目有相似之处,又有什么样的区别。这叫学会思考。并且做完题目,你还可以问问自己,如果让你对题目进行改编,你能改编成什么样的题,融合的知识点更多。第三点,要做系统的考场还原化测试,就是要把上午9点-12点这个时间段用来完成一个模拟卷的测试,一定要规定时间,把这个测试当考研考试来对待。然后测试完之后,找自己的不足,和可以提升的地方,总结题目,总结技巧。这种测试每周都要至少一次。这样在考场上才不会慌张,才能发挥正常水平。第四点,要把真题研究透彻,尽管考纲变了,但是绝大部分内容是没变的,改变的只是很少很少的部分,所以,真题依然具有最强的研究价值。每套真题先自己做一遍,然后总结一遍。然后再每一道题每一道题的研究,研究题目考了什么样的知识点,考了哪些技巧,考了哪些能力,等等。每套真题至少做两遍,每周至少做两套真题。相信把握好了这四点,同学们的考研数学复习将会非常的高效和有效,最后文都考研预祝大家考出一个好成绩。
自从数学(三)和数学(四)合并后,考研数学大纲一直没有新的变化。但是2021考研数学大纲变化比较大,也让数学直接站在了大纲变化的C位。不光考点内容与要求有所变化,就考卷各题型题量与分值也有较大调整。随小编一起来看下吧。一、考卷各科目所占比与题量分值调整(1)数一、二、三试卷各科目所占比例变化(2)各题型题量与分值变化数学总体题量由之前的23道题目变为了22道题目,其中选择题增加为10道,每道题分值为5分,填空题题目数量没变,但是每道题分值增加为5分,解答题总分值降到70分,题目数量也降低到6道。注意:①客观题题量增加,分值也增加到每道题5分。这说明了,选择题增加对考生的基本功要求增加。数学的选择题只有0分和5分这两个分值,每一道题的选择题都非常重要。在过去解答题目数量多,就算大家计算结果有误,也会有过程分,但是选择题占比大后,得分更难,对同学们的计算能力以及各概念理解能力也要求更高。②填空题虽说题量没变,但分值增加到每题5分。这就要求大家对计算的精准度要求更高,结果的重要性提升。③解答题题量变少,这对考生来说不是好事。这就意味着考查的综合性提高,计算复杂度也会提升。解答题的命题点会向后迁移。二、考点内容与要求的变化今年考点内容基本没有删,只有增,接下来我们来看数一、数二、数三就考点内容的具体的变化体现在哪里?⑴数学一:反常积分增加反常积分敛散性的比较判别法、无穷级数增加积分判别法。⑵数学二:反常积分增加反常积分敛散性的比较判别法,二重积分增加二重积分中值定理。⑶数学三:反常积分增加反常积分敛散性的比较判别法,无穷级数增加柯西判别法、积分判别法。总之,对考点要求,内容细化、考查层次提高、数一数二数三差异与难度趋于平衡。小编就2021考研数学大纲的变化给予同学们几点复习建议,希望可以为同学们带来帮助。1、稳扎稳打、夯实基础:2021年考研对数学的要求会更高,大家基础一定要打牢。2、重视计算、理解概念、加强练习:数学计算差之毫厘,失之至少五分;概念理解不到位,客观题不易做对。3、各考点出题脉络总结,题型归纳,注意解题思想,进而形成思维定式。4、重视考研真题、把握命 题脉络,查缺补漏:2021考研数学整体的命 题思路不会有太大偏差,所以历年的考研试题仍然是大家需要掌握的。5、模拟考场、提前适应:按照今年的考研数学大纲出试题结构加强训练,提前适应试卷结构、考查内容,在做题时自己计算好时间,提前适应考研做题节奏。本文根据网络内容整理,如有侵权请联系删除。
2020年9月,期待已久的大纲终于来啦。2021考研数学大纲作为考研数学“风向标”,是各位准考生必须重视的一件事,更要及时了解考试大纲的变化,提前应对复习。文都考研文都考研小编提示各位考生们,可以通过以下方式获得考研大纲:教育部中国研究生招生信息网(研招网)文都考研网等在拿到2021考研大纲之后,同学们还要注意以下几点:仔细对比新旧大纲,关注新增考点,及时查漏补缺;重视考点细微变化,细节的调整可能会影响考试时的一些正确判断;认真总结考试重点,明确接下来的2021考研复习方向;根据2021考研大纲和真题,总结考试命题规律。如果感觉自己不能很好的把握考研大纲的变化及命题的方向,也可以多关注各位文都考研名师、文都考研官方微博、文都考研微信公众号,这些平台都会发布2021考研大纲比对的相关信息,比自己比对更快速、更高效、更准确。2021考研大纲的发布预示着2021考研复习进入到了白热化阶段,很多同学可能会兴奋于这个重要时间节点的到来,也会对未来的复习方向感到茫然无措。其实每年的考研大纲变化都预示着今年的考试重点会出现在哪里,所以同学们只要抓住大纲出现的变化,就相当于变相掌握了一部分考试重点。但在关注考试变化的同时,也要放平自己的心态,积极备考,按部就班地完成接下来的复习。
2020考研数学大纲发生了哪些变化?答案是:0。是的,你没有听错,相比于2019的考研大纲,考研数学一二三的所有科目加到一起没!有!变!化!试卷内容结构上:数学一、数学三中,高等数学、线性代数、概率论与数理统计占比依旧为56%、22%、22%。数学二中,高等数学、线性代数分别占比78%、22%。试卷题型结构上:永远的“869”,即8道选择、6道填空、9道解答。试卷分数上:选择、填空每题4分,共56分;解答题共94分。2020考研数学:怎么正确运用全新的考研数学大纲?今年的考研数学大纲“0”变化!2020年考研数学大纲可以说是2019年的大纲换了个“帽子”。不仅如此,2010-2019,十年的时间里,考研数学大纲只有一处知识点名称的变化。那么,该如何正确运用考研数学大纲这个“新古董”呢?明确考试范围:大纲上没有的一定不会考,大纲上有的不一定会考。毕竟考试只有23道题目,不可能覆盖大纲上的所有知识点。但是,凡是大纲上提到的知识点,考生一定要认真复习。明确重点与非重点:要求“理解”“掌握”的内容为考试重点和核心考点。要求“会”“会用”“会求”和“了解”的知识点都是非重点内容。非重点内容考试难度与几率较低,但考生也需要掌握。其实,只要考生能够坚持到最后,都能取得好成绩的。
自从数学(三)和数学(四)合并后,考研数学大纲一直没有新的变化。但是2021考研数学大纲变化比较大,也让数学直接站在了大纲变化的C位。不光考点内容与要求有所变化,就考卷各题型题量与分值也有较大调整。随文都考研小编一起来看下吧。1、考卷各科目所占比与题量分值调整(1)数一、二、三试卷各科目所占比例变化(2)各题型题量与分值变化数学总体题量由之前的23道题目变为了22道题目,其中选择题增加为10道,每道题分值为5分,填空题题目数量没变,但是每道题分值增加为5分,解答题总分值降到70分,题目数量也降低到6道。注意注意:①客观题题量增加,分值也增加到每道题5分。这说明了,选择题增加对考生的基本功要求增加。数学的选择题只有0分和5分这两个分值,每一道题的选择题都非常重要。在过去解答题目数量多,就算大家计算结果有误,也会有过程分,但是选择题占比大后,得分更难,对同学们的计算能力以及各概念理解能力也要求更高。②填空题虽说题量没变,但分值增加到每题5分。这就要求大家对计算的精准度要求更高,结果的重要性提升。③解答题题量变少,这对考生来说不是好事。这就意味着考查的综合性提高,计算复杂度也会提升。解答题的命题点会向后迁移。
每一个考研人都知道,考研大纲对于考研来说非常关键,正确解读考研大纲是考研成功的前提。小编为大家精心准备了考研数学大纲发布后的复习要点,欢迎大家前来阅读。考研数学大纲发布后的复习重点了解对这样的概念、这样的公式和这样的理论,我们只要知道它是怎么样的概念和公式、理论就够了,不需要对它进行更多的讨论,它是怎么来的,用它怎样解决什么样的实际问题的,这个可能应该在以后的问题来讨论,对了解只是知道这个概念它是怎么样的概念,这个公式是怎样的公式,这样的理论是什么样的理论就够了,比方说提到了这样的概念,你就能知道这是在哪个地方的,是哪个问题当中的概念,达到这样的程度就行了,这叫了解。理解这要比了解高一个层次了,我们不仅仅要知道这个概念,而且要知道来龙去脉,这个概念为什么要提出来,从哪一个方面提出来的,这是一个方面,再一个方面对这个概念提出了之后将来要解决什么我要知道,我要达到利用这个概念能够解决我们什么样的问题的目的,就要把这个概念真正做到理解。掌握是所有要求中级别最高的,我们不但知道这个概念、公式或定理,而且要知道它们的来龙去脉,如何推倒出来的,对于这些概念、公式或定理应该不但知道将来能解决什么问题,而且在出现不同题型考察这个知识点时要回灵活运用,达到熟练解决问题的程度。会用这样的词出来之后,这主要是对于某一个概念会用,对某一个结论会用,对某一个公式会用,只要会用这个结论、概念、公式就够了,而对这个概念是怎么来的,对结果是怎么推来的,不追究它的来历,只要会用就可以了,比方说这个公式只要会用了,可以拿它解决问题就可以了,至于是怎么来的不关心。考研数学高数必看的定理证明1、微分中值定理的证明这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。2、求导公式的证明2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。3、积分中值定理该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。4、微积分基本定理的证明该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。考研数学概率复习指导在文字叙述题上下功夫考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。会用公式解题概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。对概率论与数理统计的考点整体把握考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。心理上要重视考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的复习程度。概念不清,只会背不会运用;不能正确地选择概率公式去证明和计算;不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。分析有误,概率模型搞错。
大家好,今天天任启航学姐,给大家分享下,关于2021考研数学的备考复习。你还在为数学苦难吗?你还在为数学发愁吗?你还在为考研数学不知所措吗?那么,就认真来学习下这篇考研数学经验贴啊!考研数学在考研科目中属于难度较大的一类,相比仅靠提高词汇量就能提高的英语来说,难提高的数学成为了影响大家考研成功的重要因素。据天任启航老师统计,2019年考研学子的数学成绩平均分在62分左右,而2018年的考研数学成绩平均在76分左右,从数学成绩上来看,2019年的试题难度较2017年大,可想的出来20考研,到21考研数学的难度了。考研数学是一年简单一年难吗?考研数学的难易程度不能仅从学生的成绩上来看,要结合多方因素,纵看近几年的数学试题,高频题型依然是考查难点,极限计算、微分中值定理、二次型等这些高频考点就需要大家勤加练习,扎实基础,在有效时间内做到正确无误的解答。在考试大纲给出的范围里,除了这些高频考点,在2018年的试题中还出现了像“旋度、切平面方程、曲率、二阶差分方程、几何量随时间的变量率的实际应用问题”等非常规题型,这类低频考点计算量较大,对于基础不扎实、复习不好的同学来说,无疑增加了试题难度,因此不能单纯地认为考研数学题简单难易程度跟年份有关,试题难不难跟自己的复习程度是挂钩的。2021级学生考研该如何复习?一、了解考试大纲,根据试题范围制定复习计划。对于没有接触过考研的小白,要先看考试大纲,可以查看名师解读过的考研数学大纲,明确哪些是重难点及高频考点,从而进行自己的复习规划。二、重视题海战术,学会思考总结。提到练习数学,大多数人都会选择题海战术,只要多做题、见的题型多了才能会做题,但是很多同学做了不少题之后,再遇到类似题型仍然不会写,所以题海战术也是需要技巧的。天任启航老师建议大家,历年的考研真题是含金量最高的测试题, 选择真题练习,从真题中总结经验,相同题型及考点一定要多加练习,在正确的基础上提高效率;重视错题,及时总结错题经验,找出弱项,查漏补缺;刷题不图快,切勿写一遍题对答案后不了了之,大家一定要多刷几遍真题,而且对于二刷之后还是易错的试题要着重标记。三、注意全面复习。大家要注意近两年的考研数学真题,尤其是2018年,已经出现冷门知识、低频考点,因此,同学们在复习的时候一定要全面复习,冷门知识、小考点也要涉及到。四、保持积极学习的心态。学好数学也需要大家长期坚持刷题,不断积累错题,补齐弱项。对于基础相对较差的同学,天任启航老师建议大家报班学习数学,不要硬钻牛角尖,不仅浪费时间,最后还不一定搞懂,有限的时间内,学会追求质量和效率!考研加油!同学,祝您一战成硕!