历年的研究生考试当中,考研数学都是很多考生的拦路虎。而在考研数学中,概率统计部分又是部分同学的老大难。为了帮助考研同学更好的迎接新一年的研究生考试,小编整理过去十年的数学考研真题。经过小编认真研究,现将历年真题中存在一些规律,进行归纳总结,希望能够对正在考研复习的2020年考生有所帮助。一、2010年~2019年考研数学一概率统计中出现的主要知识点根据2018年最新的考研数学大纲,数学一考查的内容一共包含八章内容,这八章内容在一般的概率统计教材应该都是可以找到的。如图:考研数学的大纲近十年来基本上没有发生什么大的变化,小编估计2020年也不会发生很大的变化。所以,在目前阶段我们完全可参照2019年的考研大纲有针对性的进行复习。通过对近十年的考研真题的分析,研究生考试中的题目实际上是有一定的侧重点和规律性的。由于篇幅所限,在此小编简要介绍常考知识点和侧重点,详细介绍另文介绍。第一章,随机事件和概率是整个考研数学概率统计的基础,本章的知识点都是一些基本的定义和运算。一般情况,这一章的知识点不会单独拿出来考一个大题,考查形式都是融合到了后面各章知识点来考查。第二章随机变量及分布是作为第三章多维随机变量及分布的基础。因此在这两章中,考试题目主要出现在多维随机变量这一部分。多维随机变量这一章是研究生考试出题的重点章节,可以说每年必考,每年只是考试形式的改变而已。第四章随机变量的数字特征,这部分内容也是作为基础,重点在掌握基本的概念和性质。本章的知识点,不会单独考查,主要有两种考察形式:1.作为大题中计算完成之后,顺带着求个期望或者方差;2.作为计算题计算过程中需要用到的知识点。第五章.大数定律和中心极限定理,这一章的知识点不太容易出现在大题中,所以在以往的真题中,近十年只有一年的题目中用的了大数定律,其余各年本章知识点没有考查过。第六、七、八章是统计部分,这三部分重点在第七章参数估计。而参数估计这一章中,重点又在点估计的两种方法:矩估计法和最大似然估计法。近十年的研究生考试中,矩估计考了三次,最大似然估计法考了九次,几乎年年必考。最大似然估计法是概率统计所有知识点中考查次数最多的一个。而区间估计和假设检验则考查相对较少,近十年中各考查了一次,而且还是填空和选择的形式。二、近年考研数学一概率统计主要知识点的考查趋势小编将近十年的考研真题做了统计,考研数学的考试题目仍然是以考查基础为主。随便拿出哪一个题目来看都没有超纲或者特别难、怪的题目。比如多维随机变量和参数估计这两部分是每年的考试重点,几乎每年必考。小编以这两章的题目为例给大家解析,为什么考查的就是基础知识,很多同学却不会做呢?多维随机变量中考查的题目,在考研大纲中要求的就是二维随机变量,实际考查的也是二维随机变量。在前些年考试考查的都是单纯的离散型随机变量或者连续型随机变量,也就是题目当中的二维随机变量的两个随机变量类型相同。类型相同的二维随机变量是平时连续较多,相对简单的题目。而近年来,考查的二维随机变量更多的是一个是离散的,另外一个是连续的。这类二维随机变量在日常学习中较少遇到,这给考试学生增加一定的难度。参数估计这一章的知识点考查的内容和形式相对固定,也是考查重点之一。前面小编介绍过,参数估计这一部分的最大似然估计几乎是每年必考,并且形式固定。近十年考题中,这个知识点考查了九次,全部都在整张数学试卷的最后一题(23)。并且,在这九次考查中,问题几乎完全一样:求相关参数的最大似然估计。方法也基本一致:除去2015年另外的八年完全可以按照常规方法求出来。所用的方法大家都非常熟悉:1.写出似然函数;2. 对数似然函数;3. 求最大值(求导数等于零);4.解出相关参数。另外,区间估计和假设检验在前些年没有考过,只是在2016年填空形式考查了区间估计。2018年考查了假设检验的相关内容。但是,即使这两年的考查中,只要理解的相关内容就可以很多写出结果,根本不需要那些繁琐的公式。三、在考研数学一考试中概率统计哪些知识点会成为测2020年考研考试的热点?根据以上整理的主要知识点和近十年主要考点,小编也斗胆预测一下2020年研究生考试那些知识点会成为考试的重点。首先,考查基础知识这样的主基调一定不会改变。就像第一、而章这样的基本知识章节,可能不会单独的出题目来考查,但是这些知识一定不会缺席。这些知识完全可以融合到其它知识点中去考查。换句话说,离开这些基本概念其它知识点的题目也不可能顺利完成。比如,多维随机变量的相关题目必然会用到一维随机变量掌握知识;数理统计的相关题目一定会用到随机变量的数字特征。所以,基础知识一定是考研学生复习的首要任务。具体的知识点,最大似然估计法过去十年考查了九年,根据统计知识,2020年考查的概率还是非常大的。另外,在考研数学概率论中计算完统计量之后,考查一下无偏性和有效性也是顺便的事情。区间估计和假设检验在早期从没有考查过,但是在近几年出现了两次,这是不是一种要加强考查这部分知识点的信号呢?当然,这只是小编个人见解和猜测,类似的规律大家都可以去从往年考研真题当中去寻找。四、如何复习应对考研数学一中概率统计相关题目呢?每个人的情况不尽相同,首先根据个人实际情况,趁着时间还来得及,制定详细的复习计划。在研究生考试中考查题目几乎都是考查我们日常学习中的基础知识点。只是,有些知识点在考试中考查方式与我们平时学习的不太一样,导致不太习惯而已。所以,在复习中首先要重视相关的基础知识的理解,在充分理解的基础上,将考研题目和日常学习中的不同点找出来重点练习。比如,小编前面谈到过的混合型二维随机变量。另外,数量统计部分,大部分同学普遍感到公式多、大,不好记。实际上,数理统计大家也应该把重点放到基本概念的理解上,真正的理解了基本的概念和原理,公式自然就能够记住,甚至根本都不用去记忆哪些公式。比如,小编前面提到的区间估计和假设检验过去十年考查过两次,实际只要真正理解了相关的概念,根本不用公式直接就可以看出结果。因此,对于研究生考试中概率统计部分的复习,要具体情况具体分析。对于前四章的知识点(概率部分),主要以记忆相关公式,多练习为主;而对于后三章(数理统计部分),把重点放到理解上。
在我们之前的文章中和大家说过暑期数学的复习规划,其中说到了暑期数学应该有计划的进行刷题以提高自己做题的准确率和书写规范。那么这次我们还是请到了之前给大家做规划的145学长和大家说一下暑期到底刷哪本习题集,到底怎么刷。1、选取哪些习题集?暑假期间我主要做了四本习题集,分别是《李永乐660题》、《张宇1000题》、《张宇闭关修炼100题》、《汤家凤1800题》。给大家依次讲一下这几本练习册的特点和优劣:《李永乐660题》:全部是选择题和填空题,难度较低题量较少,适合刚开始刷题,对数学题还不够熟悉的同学进行练手。《张宇1000题》:里面有选择填空和简答题,题型覆盖比较广泛。难度分为两类,一类是简单题目,一类是拔高题目。综合来说这本习题集难度、题量、题型都比较全,很适合大家全程使用。《汤家凤1800题》:汤神的书和宇哥1000题很相似,都是覆盖面很广包含内容很全的习题集。不过汤神的这本书题量比较大,较适合基础较好,时间较为充裕的同学使用。《张宇闭关修炼》:这本书放在最后说是因为宇哥今年把这本书进行改版了。以前的闭关修炼只有一百道重点难题,现在的闭关修炼则是从36讲和1000题中挑出的题集合成一本书。比较适合时间不够想要抓住重点复习的同学。学长建议:因为我数学基础比较好,时间也比较充裕,所以去年做题比较多。大家如果时间不是很充足的话,可以选择两本书进行练习即可。其中张宇1000题和汤家凤1800题大家任选其一即可,二者的重复度还是很高的。如果大家有其他的练习册推荐,也可以在下方评论区留言。2、习题集应该怎么刷?大家在进行刷题的过程中应该分出步骤和阶段。第一阶段:不计时间以完全掌握知识点和题型。开始做题的时候能大家会出现做题的第一个难关,就是不适应。难以将所学知识灵活的应用到题目的解答上面。这个时候大家不要着急追赶准确率和做题速度,应当静下心来把每道题的知识点、题型、易错点、解题套路详细整理。我用下面这道题为例给大家演示一下:第二阶段:进行专项题型突破。在大家完成了第一阶段的刷题之后,应该对数学题有一个初步的了解,同时也适应了数学的出题方式。在第一阶段之后,大家会对自己哪部分知识点掌握的还不够充足、做题容易在哪里出错会有一个清晰的认识。因此我们的第二阶段刷题就是要集中突破这些薄弱点,不足我们的短板。这一块的习题在做的过程中要不断的回顾基础知识点,同时熟悉出题思路和常见答题套路,具体步骤和第一阶段类似我就不赘述了。第三阶段:综合训练、计时完成。在弥补自己的薄弱点之后,大家就可以开始进行各种题型的综合训练了。这一阶段的习题大家可以从以往做过的习题中自行选取,也可以利用真题或者模拟题进行训练。在联系的时候要注意控制时间,在做对的基础上提高做题速度。真题每套应该在两个半小时内完成,这样大家在考场上才能游刃有余。3、遇到难题怎么办?大家在进行刷题的过程中会遇到不少的难题,如果感觉自己实在解答不出来,可以直接翻阅答案解答。但是大家要注意,翻阅答案解答对的过程是为了让大家了解难题的解题思路和知识点是如何复合在一起进行考察的,一定不要做完就过去了。难题在类型上主要分为:知识点复合型、思路清奇型、计算困难型。除了第二种在出题思路上难为大家的题目比较难突破外,其余两种都可以通过拆分题目和逻辑的推导进行解答。大家在练习过程中要注意积累这部分习题的解答经验。同时在刷题过程中大家应该准备一本错题本进行记录。(如果不知道怎么整理错题本的同学可以查看我们以往的推文:数学,如何整理错题笔记?140分学长总结的模板,拿去直接用!)数学的练习重在积累,在大家刷题的过程中一定要记住时刻回顾和整理自己的做题套路、知识点等细节。我们是为了更快更准的答卷而刷题而非为了刷题而刷题。今天的干货分享就到这儿啦,希望对大家的暑期数学复习能够有所帮助。
大家好,我是老梁考研数学!这两天学校期末事情多,使得《真题一题多解系列》断更时间较长,抱歉!今天老梁继续给大家推送《考研数学真题分类解析系列》第008期,选择一道幂指函数极限计算的客观题,对于客观题,除了通用解法之外,特殊值法也上常常采用的方法,除了对函数采用特殊值,也可对参数采用特殊值。真题及解析【例008】(2010数1)【分析一】这是一个1的无穷幂指型未定式极限的计算,常用下列简便公式:【解法一】【分析二】将极限式中分式项倒数变形、再利用乘积的四则运算,简化计算。【解法二】【分析三】由于是客观题,且极限式含有参数,因此可对两个参数取特殊值排除错误选项。【解法三】【评注】特殊值法,选取特殊值的原则是能区别选项,如本题也可选b=-a=1。总结(1)解法一是解决幂指函数未定式极限的通用方法,在本题的三个解法中是最费时的方法;(2)如果一个极限式所含分式“头重脚轻”,即分子为单项式而分母为几个单项的和,这时一般可采取倒数的方法简化计算;(3)若客观题含有抽象函数或参数,则可使用特殊指法,对函数或参数取不同的值来排除错误选项(选择题)或直接得到结果。方法总结 归纳题型奇思妙解 就找老梁往期回顾考研数学|两类含有限加和幂指型未定式极限计算|无穷大(小)替换考研数学|真题一题多解系列,精选007|已知极限反求未知参数考研数学|真题一题多解系列,精选006|中值问题考研数学|真题一题多解系列,精选005|5种方法30年考研数学真题分类解析|专题三:极限基本理论
考研数学过程中,哪些题一定要做呢?请看下面:李正元李永乐复习全书 反复做吧,2遍以上基础过关660 专门攻克小题的经典之作 1-2遍线代辅导讲义 比复习全书的线代框架清晰些,可以先做线代讲义,再做复习全书线代 1-2遍全真模拟经典400题 经典的难题,强推 2-3遍最后冲刺超越135分 以50多个专题的方式回顾了下基本知识点 难度与复习全书类似,很多题直接照搬,有时间可以做做数学三往年真题 真题是最贴近考试的,到了12月份那些依然在400题和复习全书中遨游的同学应该反复做往年真题了。研究真题很有必要,李永乐的往年真题解析或者数学三大纲解析都可以,最后面也有真题的分类解析,效果相当不错,2-3遍。TIPS:数学就是一个体力活,不断做题,总结错题和不会的题,反复做,直到会为止。到后期基本做成条件反射,考场上看到题都知道怎么下笔。后期好好总结真题,你会发现题型都是固定的,就是那几种。尤其是线代,概率,就2到3种题型,年年反复考。微分中值定理的证明,文登笔记高数这块很不错,基本是复习指南这本书的精华。可以不用报班,找上一届同学借下笔记复印就好。不推荐全程班,太浪费时间。最多报一个暑期强化班。数学要长期做题保持状态,三天不做手就生。“长流水、不断线”。后期我是头天上午定3个小时做题,第2天对答案。切记眼高手低,只看不做。 考试时遇到不会做的也要把步骤写上,有步骤就有分。比如我今年数学错的那个证明题,答案是4步求导,开始我求了三步,后面脑袋一热用笔划了,就白白少了6分。
大家好,我是老梁考研数学!今天老梁继续给大家推送《考研数学真题分类解析系列》第六期,精选了一道拉格朗日中值定理的中值极限问题。真题及解析【例006】(2001数1)【证明】(I)由拉格朗日中值定理,下面证明θ的唯一性。导数方程根的唯一性的证明一般有两种方法:函数单调法和罗尔定理法。【评注1】(I)问的证法二并没有利用到二阶导数“连续”的条件。(II)证法一:由(I)问,有【评注2】本法证明也没有用到二阶导数连续条件。证法二:由拉格朗日中值定理,由(I)问,又由泰勒中值定理,结合(*)和(**)两个式子,有【评注3】本法证明中用到了二阶导数连续这个条件。证法三:根据麦克劳林公式,故由(I)问,【评注4】本法证明也没有用到二阶导数连续条件。总结从本题第(I)问的证法二中和第(II)问的证法一、三中都可以看出,本题的条件“二阶导数连续”可减弱为“二阶可导”;一般来说,皮亚诺型余项的泰勒公式条件弱于拉格朗日型余项的泰勒中值定理的条件;在对函数在某个区间上(整体)考虑问题时,一般使用拉格朗日型余项的泰勒中值定理,而在求极限、极值点与拐点判定等局部问题中,用皮亚诺型余项的泰勒公式(麦克劳林)可能更简单,方便一些。方法总结 归纳题型奇思妙解 就找老梁往期回顾考研数学|真题一题多解系列,精选005|5种方法考研数学|真题一题多解系列,精选004|反用等价无穷小考研数学|难点突破!递推数列单调有界原理方法之有界性证明考研数学|真题一题多解,精选003|∞-∞型未定式移位变形小技巧考研数学|极限可用夹逼准则计算的n项和数列,就这3种类型!
考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!
文| 陈小兵欢迎关注:说教育考研党艾特宇哥果然如当时“泄题风波”刚出来有人说的一样,如果泄题不成立,这肯定成为该团队宣传的最大的噱头。区区180分钟能搞到88分以上到手,厉害啊。不知道今年又有多少学子拿钱去上一个所谓的面授课、押题课,又不知道今年到底能不能押中?个人认为数学不存在押题这个说法,你要说政治押中材料,英语押中阅读材料,我觉得是可以理解的,但是数学就呵呵哒。把利益建立在千万学子的前途与国家的建设上,押题其实本身就存在问题。成了考研数学大神?当事情没有发生在自己身上的时候,我们永远可以以一个局外人的身份或许还会带着看热闹不嫌事大的态度去围观,但是如果我们所有人都这样,用不了多久别人也会以局外人的身份来看你这个当事人。没有别的意思,只是看到这个宣传真的被恶心到了。短短半年之内,考研数学泄题,大学生英语竞赛泄题,专四泄题。如果以后长期出现这样的状况,国内上大学的孩子不知道三观会变成什么样子!揭秘考研数学?听说经历了2018考研数学的人,愤怒完的反应是明年去听某某老师的课。教育系统烂掉了,真是摧毁年轻人的心性,庆幸自己不用经历这种考验人性的事情,因为“渣编”考不上研究生,也不配考研究生。什么是公平?没有人知道,但我们仍为此奋斗。因为一直努力的人付出的时间与精力不允许被践踏!正义之剑永远悬挂在奸诈之人的头上!考研党的无奈有一句话说的好,当你没有足够的权力去改变一件事情的时候,你再怎么抱怨也不会有人去理睬你,有时候道理是行不通的,权力强制手段才是解决问题的关键。“数学泄题”,“三色幼儿园”,“大学性侵”对于爱蹭热度的小编来说,不过是白驹过隙,这就是教育的悲哀。我不想再和这群丑恶的嘴脸争了,等我有一天真正拥有权力的时候,会让他们知道道理不如权力时的痛苦滋味。
大家好,我是老梁!今天继续推出《考研数学真题一题多解系列》第二期!本期为大家精选了一道2019年考研数学一、二、三试卷共同的一道题,是一道无穷小量比较的问题。无穷小量比较问题是考研数学高频考点之一,每一年都会考(尤其是数学二)。通常以客观题(多数选择题,少量填空题)的形式出现,也会以主观题的形式出现。经常出现的有两种题型:一是无穷小量关系的比较,即将若干个无穷小量(通常是三个)放在一起,比较谁是谁的高阶、低阶、同阶、等价无穷小量等,二是已知两个无穷小量的关系(例如高阶、低阶、同阶、等价等等),然后把无穷小量中所含的参数反求出来。不管是哪种考法,其解决方法都是类似的,即洛必达法则法,泰勒公式法及无穷小等价公式法等。对于客观题,有时还可以根据函数、极限相关的知识点或技巧解决。先看真题,这是第二种考法。已知两个无穷小量的同阶关系,反求无穷小量中所含的参数的问题,难度并不大,利用常规方法就可以解决。【例002】(2019数一、二、三)【分析一】常用的方法就是定义法和无穷小等价公式法。(1)定义法根据无穷小同阶的定义写出下面的极限式然后利用求极限的方法:洛必达法则、泰勒公式等计算其极限。(2)无穷小等价公式法利用已知的无穷小等价关系,将两个无穷小都等价于同一个幂函数无穷小,然后再求参数。【分析二】上述两种方法都是常规方法,然而有时客观题常常需要根据本题条件及选项的特点采取非常规方法,如排除法。本题即可根据函数(无穷小)的奇偶性以及两个等价无穷小的性质排除掉错误选项,从而得到正确选项。【评注】本题难度不大,对于无穷小比较问题,解法一和解法二,洛必达法则,泰勒公式法及等价无穷小这三种方法最为常用,其中解法二简单,但要记住此等价公式。解法三,利用函数奇偶性质和两个等价无穷小之差一定高阶无穷小性质求解这类问题,则比较新颖。实际上,无穷小比较的本质上还是函数极限的问题,因此函数的性质(四大特性)及极限的性质(保号性,有界性等)都可以用来解决这类问题。同学们这些方法,都get到了吗? 如果是你,会用哪些方法解题呢?欢迎留言分享。相关链接考研数学|真题一题多解系列,精选001考研数学|上岸985,等价无穷小要掌握到什么程度?考研数学,一文搞懂无穷小可以等价替换的5个情形考研数学|变限积分函数无穷小的等价性
大家好,我是老梁考研数学!今天老梁继续给大家推送《考研数学真题分类解析系列》第007期,精选了一道已知极限反求未知参数的问题,也叫作极限的反问题。一般来说,不同类型的问题(如0/0型,∞/∞型,∞-∞型等)采取的方法也有所不同。总体思路是根据已知极限利用极限存在性质、运算性质以及相关的计算方法(洛必达法则,泰勒公式,无穷小等价替换等)推出未知参数应该满足的条件,进而求得未知参数。真题及解析【例007】(1994数2)【分析一】这是个0/0型未定式,可利用洛必达法则以及下列性质分析: 【解法一】由洛必达法则,继续使用洛必达法则,选(A)。【分析二】极限式除了对数函数,就是幂函数,因此宜采用泰勒公式求解。【解法二】由泰勒公式,选(A)。【分析三】仍采用泰勒公式,但将极限式变形。【解法三】由题设,由泰勒展式的唯一性,选(A)。【分析四】由于是客观题,且带有参数,故也可采用排除法。【解法四】排除法。选(A)。总 结对于0/0型带有参数的极限式,通常有三种处理方法:利用已知极限式分母(或分子)的极限,推出分子(或分母)的极限,从而确定参数满足的方程;利用洛必达法则,泰勒公式,无穷小等价替换等处理极限;利用分类讨论法,对参数选取不同的值,使之满足已知极限式或排除错误选项。对于其他类型的带有参数的极限式处理方法,后文陆续推出。方法总结 归纳题型奇思妙解 就找老梁往期回顾考研数学|真题一题多解系列,精选006|中值问题考研数学|真题一题多解系列,精选004|反用等价无穷小考研数学|难点突破!递推数列单调有界原理方法之有界性证明考研数学|方法总结,递推数列单调有界原理方法之单调性证明考研数学|真题一题多解,精选003|∞-∞型未定式移位变形小技巧
在我国,高考是决定着无数学子未来命运的大事儿,因为高考成绩的好坏,直接决定着考生能够考上一所什么样的大学,而大学的水平如何,又影响着毕业生未来的工作!可是由于我国大学扩招严重,现在大学毕业生的数量达到历史新高,这几年就业市场不景气,工作越来越难找,所以很多学生为了能够找到一份好工作,只能通过提高自身学历来增加就业筹码!所以2019年考研报名人数将近300万!昨天和今天是考研的时间,经过昨天英语考试,估计很多同学的心都凉了,英语太难了,作文的题目都不认识,英语作文跑题的同学一大片!那么,今天的专业课考试怎么样呢?今天上午数学专业课考试刚刚结束,大部分同学都是笑着走出考场的,因为今年的数学题目并不是很难!甚至有的网友说自己150分没问题。可是,2019年考研的数学真的就这么简单吗?其实并不是这样的!总体来看,今年考研数学比去年考研数学难度有所下降,毕竟像去年那么难的数学,不会轻易地碰到!可是,今年考研的数学,不少知识点很偏僻,往年不经常考到,所以很多同学都没有关注它们,如果复习的不够深入,今年的数学想要拿高分真的不容易,明明每一道题目都见过,都知道,就是想不起来,做不出来!真的急死人。看来同学们真的不能够掉以轻心,对待接下来的考试要更加的认真。2019考研数学刚刚结束,网络上就流传出来部分题目的答案,大多都是考研机构给出来的,不少心急的同学,已经抢先一步,对上答案了!不过,因为下午还有考试,无论答案结果如果,都会影响下午考试,所以老师奉劝各位考生,考过以后,千万不要对答案,考成什么样就是什么样!你有考试以后对答案的习惯吗?你觉得今年考研数学知识点偏僻吗?欢迎留言讨论