2020考研初试之后就接近尾声了,此时,2021考研的学子们需要开始准备复习,至少复习的计划需要安排上了,精细化计划下之后一年之中每个月需要复习到哪一步,每周需要复习完成哪些内容,每天需要复习哪些内容,越精细越好,同时,要培养自己的自律习惯,严于律己嘛。2020考研数学三真题及答案解析:来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)
声明:本试题来自网络,如果有错误欢迎大家指正。试题答案稍后会录取更新。由于数学试题的特殊性,一些计算符号和数学单位无法直接在百家号发布,只能以图片版的形式发表。如果看不清楚的话,大家可以给我留言。我单独给你发题往期精彩内容:2021年考研政治单选题真题及答案(部分)2021年全国硕士研究生入学统一考试英语(一)试题2021考研管理类联考综合能力逻辑真题及答案(部分)#考研数学#
大家好,我是老梁!今天继续推出《30年考研数学真题分类解析》专题三:极限基本理论。极限理论是考研高等数学最不容易掌握的内容,定理繁多,扩展性较强,出题点基本上是理论的扩展部分,如四则运算、复合函数法则的扩展,极限性质的扩展等。由于这部分真题题目较多,篇幅过长,因此知识链接部分只列出了与题目相关的部分,其它部分可参考老梁的其他文章。知识点链接一、极限的性质1、收敛函数(数列)的有唯一极限。2、极限保序性:二、极限四则运算一些扩展三、归结原则四、连续函数极限复合运算五、夹逼准则六、单调有界原理单调有界数列必收敛;数列收敛必有界;收敛数列不一定单调.真题及解析【评注】极限理论是高等数学的基础,后续所有部分,如连续、导数、积分及级数等都建立在极限的基础之上。极限理论知识点掌握的牢固与否直接影响后续知识的掌。而且极限理论在考研数学中是高频考点,既以选择题的形式单独出现,又常常和其它知识点结合起来,因此同学们一定要重视极限理论的复习。下期预告:30年考研数学真题分类解析|专题四:函数极限计算(一)
2019考研,考研数学与2018/12/23上午11:30结束,考研学子考完试最关心的就是自己的考试答案,以便及时了解自己的考研情况,所以小编今天就来带大家看看2019考研数学三真题详细信息!数学三真题与张宇老师教材对比张宇老师进行直播讲解数学真题,第一时间了解数学三真题答题情况2019考研数学三真题解
考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!
历年的研究生考试当中,考研数学都是很多考生的拦路虎。而在考研数学中,概率统计部分又是部分同学的老大难。为了帮助考研同学更好的迎接新一年的研究生考试,小编整理过去十年的数学考研真题。经过小编认真研究,现将历年真题中存在一些规律,进行归纳总结,希望能够对正在考研复习的2020年考生有所帮助。一、2010年~2019年考研数学一概率统计中出现的主要知识点根据2018年最新的考研数学大纲,数学一考查的内容一共包含八章内容,这八章内容在一般的概率统计教材应该都是可以找到的。如图:考研数学的大纲近十年来基本上没有发生什么大的变化,小编估计2020年也不会发生很大的变化。所以,在目前阶段我们完全可参照2019年的考研大纲有针对性的进行复习。通过对近十年的考研真题的分析,研究生考试中的题目实际上是有一定的侧重点和规律性的。由于篇幅所限,在此小编简要介绍常考知识点和侧重点,详细介绍另文介绍。第一章,随机事件和概率是整个考研数学概率统计的基础,本章的知识点都是一些基本的定义和运算。一般情况,这一章的知识点不会单独拿出来考一个大题,考查形式都是融合到了后面各章知识点来考查。第二章随机变量及分布是作为第三章多维随机变量及分布的基础。因此在这两章中,考试题目主要出现在多维随机变量这一部分。多维随机变量这一章是研究生考试出题的重点章节,可以说每年必考,每年只是考试形式的改变而已。第四章随机变量的数字特征,这部分内容也是作为基础,重点在掌握基本的概念和性质。本章的知识点,不会单独考查,主要有两种考察形式:1.作为大题中计算完成之后,顺带着求个期望或者方差;2.作为计算题计算过程中需要用到的知识点。第五章.大数定律和中心极限定理,这一章的知识点不太容易出现在大题中,所以在以往的真题中,近十年只有一年的题目中用的了大数定律,其余各年本章知识点没有考查过。第六、七、八章是统计部分,这三部分重点在第七章参数估计。而参数估计这一章中,重点又在点估计的两种方法:矩估计法和最大似然估计法。近十年的研究生考试中,矩估计考了三次,最大似然估计法考了九次,几乎年年必考。最大似然估计法是概率统计所有知识点中考查次数最多的一个。而区间估计和假设检验则考查相对较少,近十年中各考查了一次,而且还是填空和选择的形式。二、近年考研数学一概率统计主要知识点的考查趋势小编将近十年的考研真题做了统计,考研数学的考试题目仍然是以考查基础为主。随便拿出哪一个题目来看都没有超纲或者特别难、怪的题目。比如多维随机变量和参数估计这两部分是每年的考试重点,几乎每年必考。小编以这两章的题目为例给大家解析,为什么考查的就是基础知识,很多同学却不会做呢?多维随机变量中考查的题目,在考研大纲中要求的就是二维随机变量,实际考查的也是二维随机变量。在前些年考试考查的都是单纯的离散型随机变量或者连续型随机变量,也就是题目当中的二维随机变量的两个随机变量类型相同。类型相同的二维随机变量是平时连续较多,相对简单的题目。而近年来,考查的二维随机变量更多的是一个是离散的,另外一个是连续的。这类二维随机变量在日常学习中较少遇到,这给考试学生增加一定的难度。参数估计这一章的知识点考查的内容和形式相对固定,也是考查重点之一。前面小编介绍过,参数估计这一部分的最大似然估计几乎是每年必考,并且形式固定。近十年考题中,这个知识点考查了九次,全部都在整张数学试卷的最后一题(23)。并且,在这九次考查中,问题几乎完全一样:求相关参数的最大似然估计。方法也基本一致:除去2015年另外的八年完全可以按照常规方法求出来。所用的方法大家都非常熟悉:1.写出似然函数;2. 对数似然函数;3. 求最大值(求导数等于零);4.解出相关参数。另外,区间估计和假设检验在前些年没有考过,只是在2016年填空形式考查了区间估计。2018年考查了假设检验的相关内容。但是,即使这两年的考查中,只要理解的相关内容就可以很多写出结果,根本不需要那些繁琐的公式。三、在考研数学一考试中概率统计哪些知识点会成为测2020年考研考试的热点?根据以上整理的主要知识点和近十年主要考点,小编也斗胆预测一下2020年研究生考试那些知识点会成为考试的重点。首先,考查基础知识这样的主基调一定不会改变。就像第一、而章这样的基本知识章节,可能不会单独的出题目来考查,但是这些知识一定不会缺席。这些知识完全可以融合到其它知识点中去考查。换句话说,离开这些基本概念其它知识点的题目也不可能顺利完成。比如,多维随机变量的相关题目必然会用到一维随机变量掌握知识;数理统计的相关题目一定会用到随机变量的数字特征。所以,基础知识一定是考研学生复习的首要任务。具体的知识点,最大似然估计法过去十年考查了九年,根据统计知识,2020年考查的概率还是非常大的。另外,在考研数学概率论中计算完统计量之后,考查一下无偏性和有效性也是顺便的事情。区间估计和假设检验在早期从没有考查过,但是在近几年出现了两次,这是不是一种要加强考查这部分知识点的信号呢?当然,这只是小编个人见解和猜测,类似的规律大家都可以去从往年考研真题当中去寻找。四、如何复习应对考研数学一中概率统计相关题目呢?每个人的情况不尽相同,首先根据个人实际情况,趁着时间还来得及,制定详细的复习计划。在研究生考试中考查题目几乎都是考查我们日常学习中的基础知识点。只是,有些知识点在考试中考查方式与我们平时学习的不太一样,导致不太习惯而已。所以,在复习中首先要重视相关的基础知识的理解,在充分理解的基础上,将考研题目和日常学习中的不同点找出来重点练习。比如,小编前面谈到过的混合型二维随机变量。另外,数量统计部分,大部分同学普遍感到公式多、大,不好记。实际上,数理统计大家也应该把重点放到基本概念的理解上,真正的理解了基本的概念和原理,公式自然就能够记住,甚至根本都不用去记忆哪些公式。比如,小编前面提到的区间估计和假设检验过去十年考查过两次,实际只要真正理解了相关的概念,根本不用公式直接就可以看出结果。因此,对于研究生考试中概率统计部分的复习,要具体情况具体分析。对于前四章的知识点(概率部分),主要以记忆相关公式,多练习为主;而对于后三章(数理统计部分),把重点放到理解上。
历年考研真题是考研数学复习的重要练习参考资料,并且通过对历年考研数学真题的练习,还可以从中总结掌握考研数学的一些命题规律以及考察重点,提高复习的效率。为此,小编根据恩波数学老师经验,整理了一些关于考研数学的命题规律,希望可以给2021考研的同学们带来一些帮助。一、重视计算最近这些年命题专家一直在强调计算,这说明考研数学考试的计算,不仅仅是简单的数字计算,而是对概念和算理的一个考察。从历届恩波集训营的同学表现上可以发现,同学们在计算上的共性就是:计算能力弱以及算的慢。这两个原因导致很多同学面对数学计算就沉不住气,这一点需要同学们注意。二、三个基本考研数学70%的题是考察的是三个基本:基本概念、基本理论、基本计算。考研数学基础知识的考察要求既全面又突出重点,注意层次,重点知识是学习支撑体系的主要内容,考察时要达到较高的比例并要达到必要的深度。重点内容重点考,还要达到一定的深度。三、应用一定考继续加强应用性的考察,应用性是数学学科的特点。解答数学应用题是分析问题和解决问题能力的高层次的反应,反应出考生的创新意识和实践能力,所以实践中应该有所体现。数一数二的同学应该重视的是物理应用与几何应用。数三同学应该重视的是经济应用与几何应用,这一点希望大家要加强。四、注重本质以及定理的适用条件强调数学考察三基,注重对概念本质的考察,考察大家对数学的理解和掌握,淡化对特殊的结题技巧的考察,往往注重定理的结题和应用,往往不看定理的前提,这是不注意的地方。比如说在一点存在导数,不能用罗贝塔法则,这个法则是在这一点的零域内,这需要辨析,这就可以拉开差距。考研数学的复习一定是需要多做多练,题海战术是考研数学最有效的复习方式,只有通过不断练习来巩固掌握知识点,才能真正地学好数学。
在我们之前的文章中和大家说过暑期数学的复习规划,其中说到了暑期数学应该有计划的进行刷题以提高自己做题的准确率和书写规范。那么这次我们还是请到了之前给大家做规划的145学长和大家说一下暑期到底刷哪本习题集,到底怎么刷。1、选取哪些习题集?暑假期间我主要做了四本习题集,分别是《李永乐660题》、《张宇1000题》、《张宇闭关修炼100题》、《汤家凤1800题》。给大家依次讲一下这几本练习册的特点和优劣:《李永乐660题》:全部是选择题和填空题,难度较低题量较少,适合刚开始刷题,对数学题还不够熟悉的同学进行练手。《张宇1000题》:里面有选择填空和简答题,题型覆盖比较广泛。难度分为两类,一类是简单题目,一类是拔高题目。综合来说这本习题集难度、题量、题型都比较全,很适合大家全程使用。《汤家凤1800题》:汤神的书和宇哥1000题很相似,都是覆盖面很广包含内容很全的习题集。不过汤神的这本书题量比较大,较适合基础较好,时间较为充裕的同学使用。《张宇闭关修炼》:这本书放在最后说是因为宇哥今年把这本书进行改版了。以前的闭关修炼只有一百道重点难题,现在的闭关修炼则是从36讲和1000题中挑出的题集合成一本书。比较适合时间不够想要抓住重点复习的同学。学长建议:因为我数学基础比较好,时间也比较充裕,所以去年做题比较多。大家如果时间不是很充足的话,可以选择两本书进行练习即可。其中张宇1000题和汤家凤1800题大家任选其一即可,二者的重复度还是很高的。如果大家有其他的练习册推荐,也可以在下方评论区留言。2、习题集应该怎么刷?大家在进行刷题的过程中应该分出步骤和阶段。第一阶段:不计时间以完全掌握知识点和题型。开始做题的时候能大家会出现做题的第一个难关,就是不适应。难以将所学知识灵活的应用到题目的解答上面。这个时候大家不要着急追赶准确率和做题速度,应当静下心来把每道题的知识点、题型、易错点、解题套路详细整理。我用下面这道题为例给大家演示一下:第二阶段:进行专项题型突破。在大家完成了第一阶段的刷题之后,应该对数学题有一个初步的了解,同时也适应了数学的出题方式。在第一阶段之后,大家会对自己哪部分知识点掌握的还不够充足、做题容易在哪里出错会有一个清晰的认识。因此我们的第二阶段刷题就是要集中突破这些薄弱点,不足我们的短板。这一块的习题在做的过程中要不断的回顾基础知识点,同时熟悉出题思路和常见答题套路,具体步骤和第一阶段类似我就不赘述了。第三阶段:综合训练、计时完成。在弥补自己的薄弱点之后,大家就可以开始进行各种题型的综合训练了。这一阶段的习题大家可以从以往做过的习题中自行选取,也可以利用真题或者模拟题进行训练。在联系的时候要注意控制时间,在做对的基础上提高做题速度。真题每套应该在两个半小时内完成,这样大家在考场上才能游刃有余。3、遇到难题怎么办?大家在进行刷题的过程中会遇到不少的难题,如果感觉自己实在解答不出来,可以直接翻阅答案解答。但是大家要注意,翻阅答案解答对的过程是为了让大家了解难题的解题思路和知识点是如何复合在一起进行考察的,一定不要做完就过去了。难题在类型上主要分为:知识点复合型、思路清奇型、计算困难型。除了第二种在出题思路上难为大家的题目比较难突破外,其余两种都可以通过拆分题目和逻辑的推导进行解答。大家在练习过程中要注意积累这部分习题的解答经验。同时在刷题过程中大家应该准备一本错题本进行记录。(如果不知道怎么整理错题本的同学可以查看我们以往的推文:数学,如何整理错题笔记?140分学长总结的模板,拿去直接用!)数学的练习重在积累,在大家刷题的过程中一定要记住时刻回顾和整理自己的做题套路、知识点等细节。我们是为了更快更准的答卷而刷题而非为了刷题而刷题。今天的干货分享就到这儿啦,希望对大家的暑期数学复习能够有所帮助。
今天小编整理了下考研数学一的试卷题型以及知识点,在准备2021年研究生考试的可以认真看下。数学一是高等数学、线性代数、和概率论与数理统计都要考,下面分三个部分来讲解。一、高等数学部分高等数学部分呢,试卷一般是有8个小题左右属于高等数学的范围,也就是选择填空,随机分布。常考的知识点有以下部分,大家可以参考下,有助于复习时寻找侧重点。1. 每年数学第一题通常都是已知极限求参数或者求另一个函数的的极限,这个多练拿到分通常不是问题。2. 下一道题,一般考函数的间断点,连续性,或者无穷小量阶的比较。3. 导数,导数这块小题出题通常是考求导,考导数的定义,或者导数的特性,诸如极值点拐点等,既有纯文字额出题形式,也有图形题。比如给出一个二阶导数的函数图像,判断拐点,极值点,单调性等。这个选择题一般不难,但很容易出错,主要是极值店和拐点的定义一定要仔细弄清楚。4. 方程的根,通常问方程根的个数。5. 积分,积分这块知识点多,出题的类型也比较多,有考求原函数、变限积分求导、比较定积分的大小,积分的敛散性(包括反常积分),积分敛散性这一块有很多人拿不到分,主要是敛散性很多判别方法,你购买的资料不一定会全部罗列出来,所以这个知识点一定要去看一下原课本(推荐同济高等数学第七版)6. 方向导数、梯度、旋度、散度。这个知识简单,出题也不难,但历年出现次数不多,但只要出现,一般都可以拿到分。7. 多元函数,这块出题也比较多,比重也大,一般会考求复合函数、隐函数的偏导数或全微分,然后就是重积分,重积分的比大小,交换积分次序是常考的类型。偏导数的连续性,是否可微、是否存在是个难点,要仔细区分和一元函数相关性质之间的区别与联系。8. 级数部分,通常考敛散性,收敛半径、收敛域、和函数、函数的展开以及傅里叶级数。9. 微分方程,一般考方程解的结构和性质,注意是解的结构,有很多人一看到题就先去解微分方程,有时候还解不出来,浪费时间,一定要先从结构上面下手,可能一下就出来了答案。接下来是数一高等数学部分的大题部分,一般是5个大题属于高等数学范围。1. 函数极限的计算,数列极限,极限的四则运算,夹逼准则,单调有界以及用定积分定义求极限,都是历年常考的点,单调有界这块比较难,往年会出在证明题中,难度系数较大,需要多做练习。2. 微分中值定理,主要就是罗尔定理,拉格朗日中值定理,泰勒方式是常考的点,柯西中值定理也出现过,但考的次数较少。几个常用的泰勒公式需要背诵。出题的时候经常是综合性的需要多个定理同时用,比如证明摸个等式的时候,既要用到罗尔定理也要用到拉格朗日中值定理。当然还有个积分中值定理是大家比较容易忽略的知识点。3. 一元函数积分学,主要考使用换元法,分部积分法,积分变限函数求导,证明某个积分等式或不等式以及定积分的应用,考定积分的应用题可能会有难度,尤其是非理工科专业又要考数学的同学们,因为这类应用题中会涉及到型心、质心等概念,不过只要掌握微元法,也是很容易理解的。4. 多元函数微积分,多元函数的微分学部分会比较容易,主要包含复合函数、隐函数、极值和最值等函数特性,求偏导数,方向导数和梯度。方向导数和梯度大家不要不重视,往年也经常出现,不过一般只考一道小题。积分部分就复杂多了,二重积分、三重积分、曲线和曲面积分都是常考点。5. 微分方程,主要包含一阶微分方程,可降阶的高阶微分方程,常系数线性微分方程,和微分方程的应用。微分方程的应用会较难,但只是难在列出微分方程,只要方程一列出,一切问题迎难而解。6. 无穷级数,包含数项级数、幂级数、傅里叶级数,这块是数一要考的,数二不考,难点也在幂级数中的收敛半径收敛域,求和函数等。二、线性代数线性代数部分的题通常不会很难,小题3道,大题2道。先看小题部分。1. 行列式的计算,抽象行列式是难点。2. 矩阵的运算,加减,相乘,求n阶,矩阵的逆,伴随矩阵等。3. 判断线性相关、无关或者线性表示,这个得分不高,要多注意。4. 矩阵的初等变化,以及矩阵的秩、向量组的秩、等价向量组。5. 判断两个矩阵是否相似、合同。6. 已知相似求参数,求线性方程组的解。7. 二次型,判断是否正定(涉及正负惯性指数)大题一般两道1. 方程组或者矩阵方程,通常是含参数的,求参数,线性表示。2. 相似形,通常也是2到3问,求秩,求相似形,求n阶,注意实对称矩阵。3. 二次型,用配方法化二次型或者判断是否正定或者合同。三、概率论与数理统计通常是3个小题和2道大题1. 概率计算,包括常用分布和常用的概率公式。2. 互不相容、互相独立、不相关,包含常用的期望和方差公式3. 随机变量的分布函数、概率密度。4. 数字特征、切比雪夫不等式、大数定律和中心极限定理。5. 抽样分布x、t、F的典型模式6. 区间估计和假设检验,这块考的极少,也经常很多人不怎么复习,目前只有08年考过一次假设检验,选择题最后一个。大题部分1. 随机变量的函数分布,包括一维和多维,一维比较容易掌握,多维主要考的有离散型、连续型、或者两者综合。2. 数字特征,一般都是求期望、方差、协方差、相关系数等。3. 参数估计,包括矩估计和最大似然估计。但通常也是结合分布和数字特征一起出题。好了,三大部分就总结到这里,这主要是数学一的,当然线性代数部分数学一二三都通用,概率部分只有数学一三有,希望这份整理对大家有帮助。