欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
2021考研这几本书数学资料推荐给你,总有一款适合你莫为则虚

2021考研这几本书数学资料推荐给你,总有一款适合你

2020考研已经过去了4个月,不知不觉中今年也过去了1/3,而2021年的考研也只剩下了不到8个月。疫情尚未完全消除,除毕业生外其他年级开学更是遥遥无期,因此更需要个人在家努力做好备战。学校那么备战考研,辅导书是必不可少的。学长接下来为2021年的小伙伴简单总结了三个系列的数学辅导书,这三个系列也对应了三组不同的考研数学老师的风格。(1)张宇(狗头滑稽)系列丛书(哪里跑)张宇说起张宇,最出名的其实应该是他的讲课风格,幽默风趣段子频出,譬如“立即推,放弃考研”“点火公式”再加上天生喜庆的面容,因此深受同学们的喜爱。张宇张宇的讲课方式,据我很多同学反应,他的讲课更加注重方法的传授和对知识点的理解。他会以一种有趣的方式方法传授给你,但是他的讲课风格也会存在缺陷--缺少大量题目的练习。往往会听课听得懂,做题就不会了。他的代表书有《高数十八讲》、《线代九讲》、《概率论九讲》,以及《1000题等》。他的书题目偏难,尤其是模拟题,适合偶数年练习。(2)“布达鸟”汤家凤汤家凤操持着一口浓重的方言版普通话,讲课方式也是幽默诙谐,而且还带着一点暴躁,常常课上传授人生哲理。汤家凤汤家凤的讲课会包含大量的练习以及反复的做题,并且数学知识点覆盖全面,基础知识覆盖全。适合基础差或者刚刚准备的小白,但是他讲授的方法并不是那么让人接受。他的代表书有:《高数辅导讲义》《1800题》,他的书偏基础,体量大。(3)数学命题组三剑客,高数”武忠祥“,线代”李永乐“概率论”王式安“。三剑客这三位大佬都是参加过考研命题的老师,资历与能力不必担心,硬实力过硬。武钟祥李永乐王式安可能在讲课风格方面略显沉闷,但是内容绝对上乘,编写的书的质量也很高。代表书:《复习全书》、《高数辅导讲义》、《线代辅导讲义》、《概率论辅导讲义》、《660题+330题》内容质量高。以上就是我为大家总结的三组数学考研老师,请各位考研学子自行选择,合适自己的就是最好的。考研倒计时同学们也可以私信会回复”考研资料“,即可获取学长使用过的大量考研资料。另外,也可点击链接购买。

民生

2021考研数学大纲对比分析篇(考试内容与要求)

经文都考研老师仔细与2020考研数学大纲对比后发现,2021考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。2021考研数学大纲在考试内容与要求方面,共 36 处变动。其中高数部分变动 29 处,主要集中在数(三),线代变动 7 处。在这些变动中,约80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数(一)考试要求。另外题量减少,时间上基本更多的同学有保障啦,这方面是好事情。总体来看,2021考研数学大纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是2021考研数学大纲变动的部分。大纲知识点方面的变化并不大,特别数学一二几乎没有几处变化,主要数学三的要求变高了,几乎20%的知识点提高要求,与数学一公共部分的要求靠拢。考研最后,在距离考研还有100多天的时间,面对今年大纲的调整,2021考研同学们应该怎么复习和备考才能取得不错的成绩呢? 首先,必须有目标、有规划、有信心,树立必胜的信念以及必须学习、充分备考的心理状态,然后还要有一定的坚持力。再次,付出行动,努力学习,重点把握真题。最后的时间可以称之为黄金时间,需要高效地学习。在完成真题的基础上,还需要再去做一些模拟题,适应大纲新变化,合理分配时间与调整生物钟。最后,文都考研所有老师预祝所有2021考研的同学金榜题名。

非大愚也

2021考研数学大纲解析及后续复习建议

自从数学(三)和数学(四)合并后,考研数学大纲一直没有新的变化。但是2021考研数学大纲变化比较大,也让数学直接站在了大纲变化的C位。不光考点内容与要求有所变化,就考卷各题型题量与分值也有较大调整。随文都考研小编一起来看下吧。1、考卷各科目所占比与题量分值调整(1)数一、二、三试卷各科目所占比例变化(2)各题型题量与分值变化数学总体题量由之前的23道题目变为了22道题目,其中选择题增加为10道,每道题分值为5分,填空题题目数量没变,但是每道题分值增加为5分,解答题总分值降到70分,题目数量也降低到6道。注意注意:①客观题题量增加,分值也增加到每道题5分。这说明了,选择题增加对考生的基本功要求增加。数学的选择题只有0分和5分这两个分值,每一道题的选择题都非常重要。在过去解答题目数量多,就算大家计算结果有误,也会有过程分,但是选择题占比大后,得分更难,对同学们的计算能力以及各概念理解能力也要求更高。②填空题虽说题量没变,但分值增加到每题5分。这就要求大家对计算的精准度要求更高,结果的重要性提升。③解答题题量变少,这对考生来说不是好事。这就意味着考查的综合性提高,计算复杂度也会提升。解答题的命题点会向后迁移。

夏雨

2021(大三)考研必备复习资料

考研复习资料英语类:单词:《考研词汇闪过》按照必考词、基础词、偶考词、超纲词的顺序背,有重点,背起来省时间,主要还便宜 。语法:即长难句,《长难句闪过》三步删减法快速破解长难句 。作文:英语一《写作160篇》英语二《写作宝中宝》写不出作文的小白必备,配合张国静的网课,三步作文法教你从不会写到写出作文靓句,重要的是已经13次命中作文原题,非常强大了 。真题:《考研真相》(英语一)《考研圣经》(英语二)英语基础薄弱必备书籍,讲解非常详细,不多说了,你们用了就知道啦。小提示:单词是英语的基础,一定要好好背,除此之外真题中的生僻词汇也要整理背诵;不管是哪一科,真题都是最宝贵的复习资料,英语真题至少做3遍以上。数学类:教材:同济第七版高数,浙大四版概率论,同济六版线性代数全书:李永乐复习全书 高数:张宇《18讲》汤家凤(数学功底肯定是非常雄厚的~极其重基础)线代:李永乐《线代讲义》(人称“线代王”,考研届地位是宗师级别的)概率:王式安或张宇的18讲(二选一)题目:张宇《1000题》李永乐《660题》(二选一) 真题:张宇《真题大全解》小提示:基础不好建议去听汤神的课,配套练习更基础一点基础阶段通过汤神的课配合复习全书,打一个不错的基础;强化阶段,通过宇哥的课强化达到升华的效果,相对适合基础比较好的同学数学至少复习2遍政治类:习题:肖秀荣的《知识点精讲精练》《1000题》真题:《肖秀荣历年真题》模拟卷:《肖8》《肖4》(冲刺阶段选择题至少两遍+背诵主观题)小提示:政治一般是在次年的暑假开始,也就是7、8两个月的暑期。这个阶段的任务是全面复习、打好选择题基础冲刺阶段大致是考研年的10月到11月,除了继续加强选择题的理解记忆,重点是结合当年的时政进行分析题的梳理和初步复习,是从全面复习转向重点复习次年的11-12月考前最后时期,这个阶段大部分的时间将用于背诵分析题的要点预测卷《肖8》《肖4》是必买的专业课:真题:报考学校指定教材+历年真题(官网会公布,特殊除外)专业课一般是没有答案的,需要大家自己整理答案,很多地方卖专业课资料,正版盗版先不说,答案的正确率有待考证。所以自己在两遍的复习后对照课本进行系统的答案整理,同时结合往年学长学姐留下来的宝贵资料对照,保证答案的正确性,直接影响复习的正确性,所以要学会自己验证答案的真伪,而不是一味相信别人。专业课是一门拿分相对容易的学科,关键是结合真题进行重点复习。好啦,以上给大家作为参考~

保护欲

2021考研数学大纲你看懂了吗?

相比往年,2021年的考研数学大纲可谓是发生了十年来最大的变动,接下来,我对2021年数学大纲的变动做一个具体剖析!一、数学整体变化剖析1、试卷内容占比调整2、试卷题型分值变动二、数学具体变动剖析1、数学(一)调整2、数学(二)调整(3)数学(三)调整通过上述改变内容可以看出,本次考研数学大纲变化共48处,其中高数占比较大,共29处,足以看出高数在看考研数学中的地位,因此,在后期复习考研数学的时候,同学们要注重考研数学的复习,尤其是大纲中变化的部分。

李籲

考研不翻车,大表哥教你选2021数学专业考研高等代数备考教材

数学专业的同学,如果考学硕,一般初试都要考《数学分析》《高等代数》这两门课,各150分。数学分析似乎没有太大的争议,华东师大第四版是不错的选择,也是大多数高校一直沿用的经典。关于高等代数,目前主要有以下四种教材:1北京大学数学系主编的第四版的高等代2 清华大学丘维声老师主编的高等代数3 复旦大学出版社出版的《高等代数学》4高校自编教材(一般为院校老师自编)同学们在备研的时候到底该用哪一本?大表哥隆重推荐3,复旦大学的高等代数第三版,因为这本教材由浅入深,开始紧紧抓住了代数的一条主线,线性方程组的问题,比如第一,二章分别引入了行列式,矩阵,并且行列式的定义并不像北大第四版的教材那样抽象,复旦的教材从简单的二阶,三阶行列式入手,也给出了行列式的背景知识,编者们一直试图在告诉读者,我们为什么要这么做?我们的目的是什么?并且采用展开式的定义方式,这样不至于一开始就是什么逆序数,排列,取自不同行不同列的元素乘积的代数和,在证明行列式的各种性质时,也显得得心应手。复旦的教材,对于每个知识点,都解释得非常详细,尤其是给一个定义之后,下面立即给出一个简单的例子加以说明。教材在定理证明之前,经常用大段通俗的语言引出证明的思路,正式证明的过程中没有任何的跳步,不像北大的教材那样具有跳跃性。复旦的高等代数,每一节课后,都有相应的习题,难度适中,题量适度,只要掌握了本节所讲的知识点,读者应该可以独立做完课后百分之七十左右的习题,非常适合备研之用。北大第四版的教材,一开始就讲多项式(第一章),整个多项式理论在高等代数中相对独立,而且理论性较强,大表哥不建议同学们复习时以多项式开始,应抓住代数最核心的主线——线性方程组展开。多项式的复习可留到最后。清华大学丘维声老师的高等代数上下册,内容相当丰富,容量相当于一般高等代数教材的2.5倍,适合老师作为教辅材料,不太适合同学们备考只用,如果你底子很好,可以买一套,当辅助的工具书查阅。自编的教材,请谨慎使用,具体原因,请自行体会,大表哥不做过多解读。最后,同学们还有一个普遍的疑问,比如我的目标院校是XX大学,而目标院校指定的教材就是北大的高代,那我是不是必须围绕北大的高代展开复习?大表哥回答:整个分析,代数的理论基础在十九世纪就已经盖棺定论,所以目前所有的高等代数教材的内容本身都是一样的,至于怎么编排,每个教材都有自己的思路!同学们不用担心目标院校教材指定的问题,知识完全是一样的,我们在备考的时候,需要选一个编排科学合理的“好”教材,待知识融会贯通之时,你会发现,用不用指定的教材,完全不影响考研成绩!所以,大表哥最终推荐复旦大学的教材!我是大表哥,关注我,考研不翻车!

沙撒

2021考研数学大纲有变动吗?变动较大的是这两方面!

2021年全国硕士研究生招生考试大纲于2020年9月9号正式发布,很少有变动的考研数学大纲在2021年有了一定的更新,但是,小编提醒各位同学,不要紧张,虽然大纲有变动,但不影响同学们这么长时间来的复习进度,接下来,小编给同学们整理了一些备考建议,一起看看吧!试卷内容结构试卷题型结构均为:选择题        10小题,每小题5分,共50分填空题        6小题,每小题5分,共30分解答题(包括证明题)  6小题,共70分试卷结构调整客观题的增加说明了,选择题增加对考生的基本功要求增加和能力要求更多。数学的选择题只有0分和5分这两个分值,每一道题的选择题都非常重要。在过去解答题目数量多,那么大家计算结果有误,也会有过程分的分值,但是选择题占比大后,那么得分更难,对大家的计算能力也要求更高。所以,大家在未来复习中,计算的核心不再是会与不会,能不能自己动手把答案又快又准地算对非常关键。数学总体题量由之前的23道题目变为了22道题目,其中选择题增加为10道,每道题分值为5分,填空题题目数量没变,但是每道题分值增加为5分,解答题总分值降到70分,题目数量也降低到6道。除了各个部分分值变化,科目比例也进行调整调整,其中高数:56%→60%,线代、概率:22%→20%。考试内容所占比例有些许的变动,以往是确定了考试内容所占的比例,但是今年考试内容的比例是约数,也就是不是很确定的比例,但是哪部分占大头比例还是与往年一样的。重点的是今年题型结构变化很明显,选择题数量增多,每题分值也变大,填空题虽然数量变少了,但是每题分值变大了,尤其是解答题,比往年少了三道大题,分值也明显减小,这对考生应该是好事,因为有很多考生看见大题就害怕,不知从何下手,今年应该没有大的心理压力了,做题也会轻松很多。其次,同学们一定要重视2021考研数学大纲的内容和要求,因为出题老师是严格遵守考研数学大纲的考试内容和考试要求来出题的,忽略了考研数学大纲中一点细微的要求,都有可能会影响你在考试中的答题,所以同学们在拿到大纲或者大纲解析时要注意以下三点:1.考研数学新旧大纲的系统对比与梳理,知识点的查缺补漏。2.同学们应该先关注新增的考点,因为它们意味着会出现新的考查知识内容与新考试要求的题目。3.细节调整也需重视,一些细节的调整可能会涉及影响到考试时的一些正确判断。同学们一定要建立在充分吃透考研数学大纲新变化的基础之上进行接下来的复习;而对考纲的理解,最终也一定要落实到具体的看书与练习之中,用练习检测自己的复习状况,找出忽略的、没完全弄懂的,或者理解错误的知识点,让自己的复习效果达到最优。2021的考试大纲要求中对考试内容的掌握、理解、了解的程度有明显的变动,所以同学们要认真研读大纲中的考试内容和考试要求。考试内容的部分会把教材中的知识点罗列出来,在考试要求部分中,会指出哪些是需要了解的,哪些是需要理解的,哪些是要掌握并且会运用的。对需要了解的概念、公式和理论,知道是怎样的概念,是怎样的公式,是什么样的理论就够了,比方说提到了一个概念,你要能知道这个概念是哪一章节的知识点;理解要比了解高一个层次,不仅要知道这个概念,而且要知道这个概念为什么要提出来,从哪一个方面提出来的,提出了之后要解决什么,要达到利用这个概念能够解决什么样的问题的目的;掌握运用是考试要求中级别最 高的,对于这些概念、公式或定理出现在不同题型中考察时要会灵活运用,达到熟练解决问题的程度。了解是基础,理解是关键,掌握运用是最终目的。考纲里的关于了解、理解、掌握的一定要多看多读多分析多写。在接下来的时间里,同学们要稳下心来踏实复习,希望同学们能考的都会,做的都对,你的名字这么好听,一定会出现在录取通知书上!!!

傅山

深度解读2021考研数学大纲变化点及备考计划

2021 考研数学大纲整体变动情况经与去年大纲对比,2021 考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。接下来我们从题型结构、内容结构、考试内容三个模块来说一下各部分内容的变动情况。一是试卷内容结构变动,共 5 处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。第一,数(一)、数(三)内容结构中,高等数学分值比例由“56%”变为“约 60%”, 线性代数和概率论与数理统计分值比例都由“22%”降为“约 20%”;第二,数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约 80%”, 而线性代数分值比例由“22%”降为“约 20%”。二是试卷题型结构变动,共 7 处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。单项选择题,由“8 小题,每小题 4 分”变为“10 小题,每题 5 分”,总分由 32 分变为 50 分,分值占比提高;填空题,题目数量不变,分值由“每小题 4 分,总分 24 分”变为“每小题 5 分,总分30 分”,分值占比提高;解答题,由“9 小题,总分 94 分”变为“6 小题,总分 70 分”,分值占比降低。三是考试内容与要求变动,共 36 处。其中高数部分变动 29 处,主要集中在数(三),线代变动 7 处。在这些变动中,约 80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数(一)考试要求。总体来看,2021 考纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是考纲变动的部分。2021 新大纲发布后考研数学备考策略2021 大纲已经发布,今年考研数学大纲发生近十年以来的最大变动,不仅考试要求发生变动,而且在高数、线代、概率的分值占比和试卷结构上也进行了调整。针对这些变动, 该如何安排接下来的复习呢?针对新考纲的变动给各位考生 一些备考方面的建议。一、高等数学考试要求:(1) 考查考生对微积分学的基本概念、基本理论、基本方法的理解和掌握。(2) 考查考生抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。变动情况与备考建议:1.数(一)考纲变动只有两处:一元函数积分学和无穷级数,变动的着重点在解题方法的掌握上。关于概念和一般解题方法,大家的日常练习中基本已经接触到,这里提醒各位考生注意的是新增“会用积分判别法”这一条,提到了“会”这个字眼,某些题目的解答中可能会用到这种方法,练习中遇到这类题目一定要注意积累。在备考方面:(1) 数(一)的考纲内容基本没有实质性变化,除个别变动的地方,按照之前的备考内容进行备考即可。(2) 对于变动部分的内容,加强概念和解题方法的掌握,多进行题目练习。2.数(二)数(二)考纲变动集中在两处:多元函数微分学和常微分方程,变动的着重点在对概念的理解上,加强了对概念理解的要求程度。这些变动中,数(二)的同学要关注的是线性微分方程解的性质及解的结构,不再局限于“二阶线性微分方程”,考查范围扩大,所以在后面的复习中一定要加强此部分题目的练习。在备考方面:(1) 对于未变动部分,按照之前的复习节奏进行复习即可。(2) 对于变动部分,在补充新增知识点的同时,可以用数(一)历年真题中对应部分的题目进行练习,提高实战能力。3.数(三)高数考纲的变动中,数(三)的变动最大,变动内容不仅包含对概念理解程度要求的提高,还有对解题方法的掌握程度上,部分内容的考试要求已经接近于数(一)的考试要求。在备考方面:(1) 在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(能)两个层次的要求,一般来说,要求理解的内容,要求掌握的方法,才是考试的重点。这些在历年考试的考题中出现的概率较大,在同一份试卷中所占的分数也较多。所以数(三)的同学在拿到考纲之后,先不要急于立刻补充新增知识点,而是在这些变动中找到要求变动为“理解”、“掌握”的这些地方,重点补充,重点练习。(2) 通过今年的考纲变动可以发现,数(一)、数(三)统考的内容中,数(三)的考试要求已经接近数( 一 ),考试要求提高。所以在后期的复习中,关于习题的练习,数( 三 ) 的同学也要做一下统考部分数(一)的真题,提升自己的解题能力。二、线性代数考试要求:(1) 考查考生对线性代数的基本概念、基本理论、基本运算的理解。(2) 考查考生的抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。变动情况与备考建议:1.数(一)数一的线性代数考试内容没有变动,数(一)的同学,按照之前的复习内容直接备战即可。2.数(二)线性代数中数(二)的变动,集中在两个地方:线性方程组和二次型,提高了对解题方法的掌握。因此在备考方面:(1) 加强线性方程组和二次型的题目练习。(2) 注重对线性方程组和二次型的解题方法的掌握,练习过程中,加强对线性方程组和二次型的解题方法的积累。(3) 适当做一下数(一)真题中线性方程组和二次型的题目。3.数(三)二次型是数(三)线性代数中唯一变动的地方,对二次型及其矩阵表示和用正交变换化二次型为标准形的方法的考试要求从“会”变为“掌握”,加强了考试要求,在今年的考题中出现的概率加大,因此数(三)的同学,一定要重视二次型这部分题目的练习。关于备考建议:(1) 回顾教材中关于对二次型及其矩阵表示和用正交变换化二次型为标准形的方法的内容。(2) 加强对二次型题目的练习,尤其是对二次型及其矩阵表示和用正交变换化二次型为标准形的方法这两部分。三、概率论与数理统计考试要求:(1) 考查考生对研究随机规律性的基本概念、基本理论和基本方法的理解。(2) 运用概率统计方法分析和解决实际问题的能力。变动情况与备考建议:概率论与数理统计的考纲内容无变化,关于备考建议:(1) 抓住命题特点,划分次重点复习。重点掌握要求理解的内容,要求掌握的方法。(2) 寻找命题特点,把握出题规律,重点突出。在结合往年命题规律的基础上,有重点的进行复习,例如概率论第三、四、七章,每年考查的概率一般会在 80%以上,而且常会以大题的形式出现,这部分就要加强复习,加大投入时间,而古典概型与几何概型这部分,一般只考一些简单的概率计算,因此只掌握一些简单的概率计算即可。(3) 重视概率与高数的联系,提升综合思考的能力,通过习题练习,提升实战能力。四、备考时间规划考研数学总分 150 分,在考研备考中的重要地位不言而喻,如何在剩下的时间高效备考呢?接下来我们从时间的角度给大家一些备考建议。9~10 月份,以真题为引,结合考纲变动,针对性学习基础较好的同学,如果你已经结束强化阶段的知识点的复习,接下来的复习,可以真题为主进行实战练习,尤其是近十五年的真题,一定要认真做,反复训练,找出错误点,查漏补缺。同时针对大纲变动的部分,练习的同时,补充新增知识点,增强训练。数(二)、数(三)的同学,针对变动的部分,可以适当做一下对应内容数(一)的题目,提高解题能力。起步比较晚的同学,9 月份开始,你的强化可能还没结束。这个时候不要慌,做好个人复习规划,9 月末之前一定要完成强化阶段的复习,开启真题训练。时间虽紧,但一定不要操之过急,学习质量比学习进度更重要,学一点会一点,不要潦草学完,还是不会,不仅浪费了时间,还影响了复习心态。11 月份~考前,查漏补缺为主,习题练习为辅,重点突出将基础、强化、真题练习中的错误点和不足点,系统复习一遍,尤其是考纲中要求标记为理解”和“掌握”的地方,要重点复习。复习的同时,也要时常进行限时模拟训练,积累临场经验,对于重点的题目,要总结规律和方法重点提升,但注意一定要有重点的看,不可贪多。以上是新大纲发布后考研数学备考策略建议,祝愿考生们顺利上岸,一战成“硕”!想了解更多精彩内容,快来关注硕博学霸说考研

错情记

不同以往的2021考研数学大纲解析

9月份是全国各高校“期盼已久”的开学月,与此同时,2021考研大纲也在9月9日准时发布,作为2021考研准考生的你有没有一丝丝激动,话不多说,文都考研小编带同学们看一下2021考研数学大纲到底长啥样吧!不得不说,这次2021考研数学大纲变动还是挺大的,首先就是分值结构和往年相比做了调整,具体如下:表 1 往年分值结构表 2 今年分值结构通过两张表的对比可知,高等数学部分在2021考研数学大纲中的分值占比增加,数一、数三占比60%,数二更是高达80%,这个分值变化简直跌破所有人的眼镜,没想到吧!学好高等数学,你的考研数学就成功了一大半!在这里提醒高等数学掌握不好的童鞋们抓紧最后三个半月的时间,冲刺高数!关于2021考研数学大纲考点上的变动,文都考研小编在这里就不过多描述了,想要了解的同学可以及时关注文都考研微博、文都考研微信公众号哦,文都考研会及时发布2021考研数学大纲考点变动的深度解读,不容错过哦。同时看过2021考研数学大纲之后觉得自己复习的不是很理想的同学也不要气馁,距离考研还有三个半月的时间,完全来的及补回之前掌握不是很好的知识点或模块。

李四光

2021考研数学大纲整体变动情况——高等数学

2021考研数学大纲整体变动情况与去年大纲对比,2021年考研数学大纲发生近十年以来的最大变动,数(一)、数(二)变动达48处,接下来从题型结构、内容结构、考试内容三个模块详细分析。一、试卷内容结构变动,共5处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。1.数(一)内容结构中,高等数学分值比例由“56%”变为“约60%”,线性代数和概率论与数理统计比例由“22%”降为约“20%”。2.数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约80%”,而线性代数分值比例由“22%”,降为“约20%”。二、试卷题型结构变动,共7处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。1.单项选择题,有“8小题,每小题4分”变为“10小题,每小题5分”,总分有32分变为50分,分值占比提高。2.填空题,题目数量不变,分值有“每小题4分,总分24分”变为“每小题5分,总分30”,分值占比提高。3.解答题,有“9小题,总分94分”变为“6小题,总分70分”,分值占比降低。三、考试内容与要求变动,共36处。其中高等数学变动29处,线性代数变动7处。第一部分 考试形式和试卷结构1.试卷内容结构调整2.试卷题型结构调整第二部分 考试内容和考试要求1.数学(一)考试要求变动情况第一篇 高等数学一、函数、极限、连续(无变化)考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形。 初等函数函数关系的建立。数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2.了解函数的有界性、单调性、周期性和奇偶性;3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4.掌握基本初等函数的性质及其图形,了解初等函数的概念;5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系;6.掌握极限的性质及四则运算法则;7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法;8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限;9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分学(无变化)考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径。考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;3.了解高阶导数的概念,会求简单函数的高阶导数;4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;6.掌握用洛必达法则求未定式极限的方法;7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分学(有变化)考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念;2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法;3.会求有理函数、三角函数有理式和简单无理函数的积分;4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式;5.①“了解”反常积分的概念”。变为“理解反常积分的概念”,加强对概念的要求;②了解反常积分收敛的比较判别法”。变为“增加”了解反常积分收敛的比较判别法。6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、向量代数和空间解析几何(无变化)考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示;2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法;5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题;6.会求点到直线以及点到平面的距离;7.了解曲面方程和空间曲线方程的概念;8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程;9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。五、多元函数微分学(无变化)考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件。多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用。考试要求1.理解多元函数的概念,理解二元函数的几何意义;.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质;3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性;4.理解方向导数与梯度的概念,并掌握其计算方法;5.掌握多元复合函数一阶、二阶偏导数的求法;6.了解隐函数存在定理,会求多元隐函数的偏导数;7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程;8.了解二元函数的二阶泰勒公式;9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。六、多元函数积分学(无变化)考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用。考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理;2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标);3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;4.掌握计算两类曲线积分的方法;5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数;6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分;7.了解散度与旋度的概念,并会计算;8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。七、无穷级数(有变化)考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数。考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件;2.掌握几何级数与级数的收敛与发散的条件;3.①掌握正项级数收敛性的比较判别法和比值判别法。变为“增加”会用积分判别法。②“会用”根值判别法。变为“掌握”根植判别法,加强对根植判别法的要求”;4.掌握交错级数的莱布尼茨判别法;5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;6.了解函数项级数的收敛域及和函数的概念;7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法;8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;9.了解函数展开为泰勒级数的充分必要条件;10.掌握 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数;11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。八、常微分方程(无变化)考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用。考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念;2.掌握变量可分离的微分方程及一阶线性微分方程的解法;3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程;4.会用降阶法解下列形式的微分方程:5.理解线性微分方程解的性质及解的结构;6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程;7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程;8.会解欧拉方程;9.会用微分方程解决一些简单的应用问题。