2020考研数学大纲发生了哪些变化?答案是:0。是的,你没有听错,相比于2019的考研大纲,考研数学一二三的所有科目加到一起没!有!变!化!试卷内容结构上:数学一、数学三中,高等数学、线性代数、概率论与数理统计占比依旧为56%、22%、22%。数学二中,高等数学、线性代数分别占比78%、22%。试卷题型结构上:永远的“869”,即8道选择、6道填空、9道解答。试卷分数上:选择、填空每题4分,共56分;解答题共94分。2020考研数学:怎么正确运用全新的考研数学大纲?今年的考研数学大纲“0”变化!2020年考研数学大纲可以说是2019年的大纲换了个“帽子”。不仅如此,2010-2019,十年的时间里,考研数学大纲只有一处知识点名称的变化。那么,该如何正确运用考研数学大纲这个“新古董”呢?明确考试范围:大纲上没有的一定不会考,大纲上有的不一定会考。毕竟考试只有23道题目,不可能覆盖大纲上的所有知识点。但是,凡是大纲上提到的知识点,考生一定要认真复习。明确重点与非重点:要求“理解”“掌握”的内容为考试重点和核心考点。要求“会”“会用”“会求”和“了解”的知识点都是非重点内容。非重点内容考试难度与几率较低,但考生也需要掌握。其实,只要考生能够坚持到最后,都能取得好成绩的。
每年考研都会听到很多关于考研大纲改的消息,但是每年都只是“雷声大雨点小”,每年都说改变,到都没有任何改动,连一点细微的变化都没有,而2021年考研却进行了大幅度的改变,学生和老师都始料未及,都认为这个改变非常的不可思议,今年考研大纲改变的不局限于一门科目,而是多门科目都进行了较大的改动!我们先来说明一下,考研数学的改变,考研数学是考研最重要的一门科目之一,满分150分的分数占据了总分500分很大的比例,所以经常会有人说“得数学者得考研”,确实是这样,如果我们数学考得不好的话,那么我们的总分也不是特别高,经常会出现总分过不了国家线的情况,所以每一名考数学科目的同学们都非常的重视数学,东西我自己的数学能考到一个理想的成绩。今年考研数学的大纲发生了大幅度的改动,就以考研数学二为例!由原先的8道选择题和6道填空题改变为10道选择题和6道填空题,并且分数也进行了改变,由原先的每道小题四分改为现在的每道小题五分;计算题由原来的9道大题改变为现在的6道大,其中线性代数有原先的两道改变为一道,非说改变为现在的一道大题15分,所以2021年考研数学二的改动等幅度是非常大的。不仅仅是数学二,数学一和数学三都进行了大幅度的改动,这些改动也标志着同学们必须要改变自己的复习策略和侧重点,要根据各个科目的分数占比而选择复习的程度,一些同学们要按耐住自己的心情不要过于焦急,对于所有的考研学生们来说都是具有同等条件的,改变也是同时进行。各位21的考研小伙伴们,你们认为此次改变是否对我们来说有影响?
2021年全国硕士研究生招生考试大纲于2020年9月9号正式发布,很少有变动的考研数学大纲在2021年有了一定的更新,但是,小编提醒各位同学,不要紧张,虽然大纲有变动,但不影响同学们这么长时间来的复习进度,接下来,小编给同学们整理了一些备考建议,一起看看吧!试卷内容结构试卷题型结构均为:选择题 10小题,每小题5分,共50分填空题 6小题,每小题5分,共30分解答题(包括证明题) 6小题,共70分试卷结构调整客观题的增加说明了,选择题增加对考生的基本功要求增加和能力要求更多。数学的选择题只有0分和5分这两个分值,每一道题的选择题都非常重要。在过去解答题目数量多,那么大家计算结果有误,也会有过程分的分值,但是选择题占比大后,那么得分更难,对大家的计算能力也要求更高。所以,大家在未来复习中,计算的核心不再是会与不会,能不能自己动手把答案又快又准地算对非常关键。数学总体题量由之前的23道题目变为了22道题目,其中选择题增加为10道,每道题分值为5分,填空题题目数量没变,但是每道题分值增加为5分,解答题总分值降到70分,题目数量也降低到6道。除了各个部分分值变化,科目比例也进行调整调整,其中高数:56%→60%,线代、概率:22%→20%。考试内容所占比例有些许的变动,以往是确定了考试内容所占的比例,但是今年考试内容的比例是约数,也就是不是很确定的比例,但是哪部分占大头比例还是与往年一样的。重点的是今年题型结构变化很明显,选择题数量增多,每题分值也变大,填空题虽然数量变少了,但是每题分值变大了,尤其是解答题,比往年少了三道大题,分值也明显减小,这对考生应该是好事,因为有很多考生看见大题就害怕,不知从何下手,今年应该没有大的心理压力了,做题也会轻松很多。其次,同学们一定要重视2021考研数学大纲的内容和要求,因为出题老师是严格遵守考研数学大纲的考试内容和考试要求来出题的,忽略了考研数学大纲中一点细微的要求,都有可能会影响你在考试中的答题,所以同学们在拿到大纲或者大纲解析时要注意以下三点:1.考研数学新旧大纲的系统对比与梳理,知识点的查缺补漏。2.同学们应该先关注新增的考点,因为它们意味着会出现新的考查知识内容与新考试要求的题目。3.细节调整也需重视,一些细节的调整可能会涉及影响到考试时的一些正确判断。同学们一定要建立在充分吃透考研数学大纲新变化的基础之上进行接下来的复习;而对考纲的理解,最终也一定要落实到具体的看书与练习之中,用练习检测自己的复习状况,找出忽略的、没完全弄懂的,或者理解错误的知识点,让自己的复习效果达到最优。2021的考试大纲要求中对考试内容的掌握、理解、了解的程度有明显的变动,所以同学们要认真研读大纲中的考试内容和考试要求。考试内容的部分会把教材中的知识点罗列出来,在考试要求部分中,会指出哪些是需要了解的,哪些是需要理解的,哪些是要掌握并且会运用的。对需要了解的概念、公式和理论,知道是怎样的概念,是怎样的公式,是什么样的理论就够了,比方说提到了一个概念,你要能知道这个概念是哪一章节的知识点;理解要比了解高一个层次,不仅要知道这个概念,而且要知道这个概念为什么要提出来,从哪一个方面提出来的,提出了之后要解决什么,要达到利用这个概念能够解决什么样的问题的目的;掌握运用是考试要求中级别最 高的,对于这些概念、公式或定理出现在不同题型中考察时要会灵活运用,达到熟练解决问题的程度。了解是基础,理解是关键,掌握运用是最终目的。考纲里的关于了解、理解、掌握的一定要多看多读多分析多写。在接下来的时间里,同学们要稳下心来踏实复习,希望同学们能考的都会,做的都对,你的名字这么好听,一定会出现在录取通知书上!!!
2021考研大纲已经公布了!考研英语大纲整体相比去年变化不大,但是有一些单词的增删需要大家格外注意。政治新大纲较往年比,也不是很大,最让人意外的是数学大纲,2021考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。今天小编就为大家分享政英数的变化情况~2021考研大纲英语一二对比变化解析表(1)英语一二大纲词汇变动(2)2021 年英语一、二大纲常用前缀和后缀、部分国家(或地区)名称和常见缩写词等变化情况1) 常用前缀2021 年大纲常用前缀中有新增,如下表所示:(备注:红色标注代表今年 2021 年大纲新增词缀。)2)常用后缀2021 年大纲常用后缀有新增、删减,如下表所示:(备注:蓝色标注代表 2020 大纲原有词缀,红色标注代表今年 2021 年大纲新增词缀。) 3) 部分国家(或地区)名称2021 年大纲中国家(或地区)名称中有一处变化,如下表所示:(备注:蓝色标注代表 2020 大纲原有词缀,红色标注代表今年 2021 年大纲新增词缀。)4) 常见缩写词2021 年大纲常见缩写词中有一处变化,如下表所示:(备注:蓝色标注代表 2020 大纲原有词缀,红色标注代表今年 2021 年大纲新 增词缀。)2021考研政治大纲新增整理2021考研数学变动2021考研新大纲题型与分值变动:2021考研数学最新大纲试卷内容结构数学三大纲变动2021 新大纲的具体变化,那么如何利用考研大纲呢?第一点我们应对比新旧大纲的变化,梳理考点的增改删,新增考点要格外注 意,在今年的考试过程中尤为重要,今年的新增知识点,考的几率非常的大。第二点根据考研大纲变化调整复习策略,对知识点进行查漏补缺。失败教训及建议分享失败教训1、总有无数偷懒的借口在备战的时光里,我有过很努力的日子,最早抵达教室,最晚离开,起早贪黑,但往往坚持不了半个月。朋友生日、亲人问候、电影上映......有太多的借口和诱惑逃避学习,成功的方式千篇一律,偷懒的方式各不相同。而当丢下学习一段时间后再想重新拾起时,一切都变得不容易,最终沦为在寝室焦虑的废柴。解决焦虑最好的办法是立即行动而非继续思考。成功离不开思考,但只有思考没有行动只会令你精疲力竭、失去信心,与成功渐行渐远。2、总是自我感觉良好在学习中,我们常常以为一天辛苦下来就会收获很多,但仔细分析每个时间段就会发现并没有很高的效率和收获。最好是能每天,每个小时,每分钟的投入都要看到实效。我们不能用心理上的“感受”去衡量自己每天的学习结果,今天觉得踏实充实,就认为学习效果好;今天觉得焦虑郁闷,就认为一事无成……当我们的投入得不到预想的产出,就应该及时调整和转换目标,不再去纠结沉没成本,及时“止损” 。3、每天起很早,睡很晚,觉得自己很努力,其实都是在走神,效率极低。4、总在幻想,却很少实际行动,结果发现教材看得少的可怜。5、有时学得很狠,就会造成过度疲劳,结果休息好几天,缓元气,学习断了,重新拾起来又很困难。建议:1、必须要有一颗坚定的心,坚信好好复习一定就能考上,很多人输在心态崩了2、把你的时间合理的规划,每天按计划来复习3、适当运动,没有好的身体怎么能好好复习,生病的时候复习是没有效率的4、找个合适的环境,没有干扰的环境更有利于复习5、好好休息,切忌熬夜复习6、该复习的一定要百分百复习到位,不能只看个80%就算了
2021考研数学大纲整体变动情况与去年大纲对比,2021年考研数学大纲发生近十年以来的最大变动,数(一)、数(二)变动达48处,接下来从题型结构、内容结构、考试内容三个模块详细分析。一、试卷内容结构变动,共5处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。1.数(一)内容结构中,高等数学分值比例由“56%”变为“约60%”,线性代数和概率论与数理统计比例由“22%”降为约“20%”。2.数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约80%”,而线性代数分值比例由“22%”,降为“约20%”。二、试卷题型结构变动,共7处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。1.单项选择题,有“8小题,每小题4分”变为“10小题,每小题5分”,总分有32分变为50分,分值占比提高。2.填空题,题目数量不变,分值有“每小题4分,总分24分”变为“每小题5分,总分30”,分值占比提高。3.解答题,有“9小题,总分94分”变为“6小题,总分70分”,分值占比降低。三、考试内容与要求变动,共36处。其中高等数学变动29处,线性代数变动7处。第一部分 考试形式和试卷结构1.试卷内容结构调整2.试卷题型结构调整第二部分 考试内容和考试要求1.数学(一)考试要求变动情况第一篇 高等数学一、函数、极限、连续(无变化)考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形。 初等函数函数关系的建立。数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2.了解函数的有界性、单调性、周期性和奇偶性;3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4.掌握基本初等函数的性质及其图形,了解初等函数的概念;5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系;6.掌握极限的性质及四则运算法则;7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法;8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限;9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分学(无变化)考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径。考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;3.了解高阶导数的概念,会求简单函数的高阶导数;4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;6.掌握用洛必达法则求未定式极限的方法;7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分学(有变化)考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念;2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法;3.会求有理函数、三角函数有理式和简单无理函数的积分;4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式;5.①“了解”反常积分的概念”。变为“理解反常积分的概念”,加强对概念的要求;②了解反常积分收敛的比较判别法”。变为“增加”了解反常积分收敛的比较判别法。6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、向量代数和空间解析几何(无变化)考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示;2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法;5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题;6.会求点到直线以及点到平面的距离;7.了解曲面方程和空间曲线方程的概念;8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程;9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。五、多元函数微分学(无变化)考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件。多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用。考试要求1.理解多元函数的概念,理解二元函数的几何意义;.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质;3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性;4.理解方向导数与梯度的概念,并掌握其计算方法;5.掌握多元复合函数一阶、二阶偏导数的求法;6.了解隐函数存在定理,会求多元隐函数的偏导数;7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程;8.了解二元函数的二阶泰勒公式;9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。六、多元函数积分学(无变化)考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用。考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理;2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标);3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;4.掌握计算两类曲线积分的方法;5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数;6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分;7.了解散度与旋度的概念,并会计算;8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。七、无穷级数(有变化)考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数。考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件;2.掌握几何级数与级数的收敛与发散的条件;3.①掌握正项级数收敛性的比较判别法和比值判别法。变为“增加”会用积分判别法。②“会用”根值判别法。变为“掌握”根植判别法,加强对根植判别法的要求”;4.掌握交错级数的莱布尼茨判别法;5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;6.了解函数项级数的收敛域及和函数的概念;7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法;8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;9.了解函数展开为泰勒级数的充分必要条件;10.掌握 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数;11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。八、常微分方程(无变化)考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用。考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念;2.掌握变量可分离的微分方程及一阶线性微分方程的解法;3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程;4.会用降阶法解下列形式的微分方程:5.理解线性微分方程解的性质及解的结构;6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程;7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程;8.会解欧拉方程;9.会用微分方程解决一些简单的应用问题。
#2021考研大纲#在研究生教育大会召开后,各大高校省份相继公布改革方案,那么考研大纲会不会也有较大改动呢?这也是有可能的。近日,一位从事考研数学辅导工作十多年的著名教师称,考研数学的大纲会迎来新修订,并且在近日会公布。1 考研大纲的重要性为什么说关于考研大纲会成为考生关注的焦点。因为它真的太重要了,它是当年全国硕士研究生入学考试命题的唯一依据。它规定当年全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等。个人认为:它是考生复习备考必不可少的工具书。尤其是针对未报辅导班的考生,如果出现较大改动,你却不知道,复习内容甚至会和考试内容偏差较大,意味着你落榜的可能极大。2 数学考研大纲数学考研大纲已经12年没有大的变动了。由于今年招生简章中,绝大部分高校都要求考数学一,且数学一是考察内容最大,涉及最高,难度最大的考研数学,本人简单说下考研数学一往年考试内容。考试科目主要涉及高等数学、线性代数和概率论这3门科目。其中高等数学往年考察范围主要是:函数、极限、连续;一元函数微分学;一元函数积分学;向量代数和空间解析几何;多元函数微分学;多元函数积分学;无穷级数;常微分方程等8个方面。关于线性代数往年的考察范围主要有:行列式;矩阵;向量;线性方程组;矩阵的特征值及特征向量;二次型等6个部分。概率与统计在往年考察范围主要是:随机事件和概率;随机变量及其分布;多维随机变量及其分布;随机变量的数字特征;大数定律和中心极限定理;数理统计的基本概念;参数估计等7部分内容。很多内容都是每年必考的大题。3 变动的可能性个人认为考研数学改动的可能性不算特别大,可能会小范围改动。毕竟考研数学的重点知识仅有那么多,虽然同样内容考了12年,但是平均分依旧没有太大变化。大纲适当改动是可能的,首先,考研数学出题规律已经被不少辅导老师摸透,适当调整大纲,反押题可能是有的。在20年考研政治中,就出现反押题的现象。其次,在研究生教育改革的大背景下,适当改动大纲,能更好的选拔人才。基于上述两点,个人认为,考研数学大纲会小范围的改动。关注我,带你了解最新考研大纲消息。以上就是关于考研大纲重要性及变动可能性分析,赶紧转给身边需要的人吧。让考生能够尽早做好准备。
最近很多考研同学都在询问2021考研大纲到底什么时候公布?根据高等教育出版社消息,2021全国硕士研究生招生考试大纲将在9月9日正式发布上市,考研大纲是由教育部考试中心组织编写、高等教育出版社出版、官方发布的权威考研指南。考研大纲中包含各科目的考试范围、考试要求、考试形式、试卷结构等。文都网校考研名师将在考研大纲发布后,为大家带来考研新大纲深度解析直播,带你一同把握大纲考点变动。根据往年的经验,大纲一般以下几个特征:考研政治大纲每年都是变动最大的,在大纲出来前可以更多关注时政热点和客观题。考研英语大纲偶尔会有细节的变化,但是总体的词汇量和语法考查不会有太大变动;考研数学大纲往年基本不会有变化,但据小道消息,考研数学可能会有挺大变动,所以小编提醒2021考研大纲出来后一定要关注文都网校考研数学大纲名师直播解析。文都名师将会第一 时间带大家了解2021年考研大纲变动。小道消息 最新2021考研数学大纲中,数学题型仍然是选择题、填空题、解答题三个题型,主要变动在试卷题型数量、分值及各部分考试内容结构比例:2021考研新大纲题型与分值变动:2021考研数学最新大纲试卷内容结构不管是否有这样的变动,大家都要稳住!根据自己前面复习的内容适当调整复习节奏,等大纲发布之后,把握重点、适当放弃次要内容。2021考研的同学已经通过一段时间的学习了,相信大家已经对各科考试的基本概念和框架有了一个模糊的印象,从感性上了解了各门学科的知识框架,原来完全陌生的知识,这时候也开始有一些熟悉之感。在大纲发布前后,我们首先要做到的就是将原有的基础夯实、打牢。在九月份和十月份,抓住大纲,熟读教材。根据大纲,分清知识点的主次,划清重点;对于重要的知识点,要吃准,吃透。考研大纲如何使用新旧大纲要对比,细节变化莫忽略这一点,对于每年都在发生变化的就比如拿政治科目来说,尤为关键。如果不厘清考纲变化,就会造成知识点的疏漏。因此,强烈建议大家依照最新考纲来复习,再对比去年的考纲,把增加、删除或修订的考点整理出来,要做到不遗漏任何一处的变化。这点大家可以来文都网校看名师直播解析大纲变化;或者收藏文都网校考研大纲频道,小编会及时分享各科目大纲原文及对比变化分析。全局掌握,大纲为重建议大家不要盲目搞“题海战术”,因为毫无头绪、毫无规划的“题海战术”只会浪费时间,终不得要领。考研最终是要以考试定输赢,所以建议同学们首先要认真分析考试大纲,确定复习重点,将重要的知识点和题型理清,节省时间,不可贪多求全。因为毕竟人的时间、精力有限。大纲发布之后:分清主次,分三步复习第一步:考研专业课大纲已经发布了,考生结合新的考研大纲和变化点,针对重点知识加强复习,对于新增知识进行补充和巩固。第二步:对照大纲把前阶段复习的知识进行强化巩固之后,考生就要攻克真题了。加强对考研专业课知识的整体把握和理解。解决各种难题,攻克各大知识要点。第三步:冲刺提升。经过了前面两步的复习和巩固之后,考生对考研专业课的复习基本熟练,各项重点要点掌握得差不多了。最后就是要抓住冲刺点来进行提升。除了考研大纲是小伙伴们的最重要复习资料外,历年真题始终是重点。认真研究历年真题,从中可以发现命题人的一些命题规律、侧重点、命题风格等。因此建议同学们尽量多搜集往年真题,对试题的题型、分值、命题角度、考查频次等进行统计分析,一定能从中找出解题技巧和复习的侧重点。
#2021考研大纲#相信考研数学大纲要大改的消息早就传遍了考研人的朋友圈,毕竟本人在3天前就跟大家打过招呼。时至今日,考研数学大纲真的出来了,具体改革内容你清楚吗?1 分值变化虽然考研数学的总分不会变,但是各科目的占比发生了重大变化。数学一在往年,数学一中高数占据56%,改革后变为60%。线代和概率在往年占比为22%,21考研将降至20%。数学二数学二中高数占据78%,改革后变为80%。线代在往年占比为22%,21考研将降至20%。数学三数学三和数学一的变化一样,分别是高数增至60%。线代和概率降至20%。可以看出考研数学将加重高等数学的比重,想和往年一样突袭线代和概率,只求过线的可能降低了。2 题型变化在往年,考研数学的题型为选择题8题,共32分;填空题6题共24分;解答题9题共94分。改革后变为,选择题10题,共50分;填空题6题共30分,解答题6题共70分。主要是大题分数降低了,选择题变多了,分值也增加了,如果运气好,蒙的全对,考研数学就稳妥了。3 新增考点数学一数学一新增了两个考点:反常积分的敛散性-比较判别法和无穷级数-正项级数的积分判别法。这两个考点均是高数的,可见考研数学将重点放在了高数,弱化了线代和概率论。数学二数学二也是新增两个考点:二重积分中值定理和将矩阵化为相似对角矩阵的方法。其中第一个考点是高等数学的,第二个考点属于线性代数的。数学三数学三新增考点比较多,有6个:反常积分的敛散性-比较判别法;隐函数存在定理;二重积分中值定理;正项级数的根值判别法;高阶常系数线性齐次微分方程和二阶常系数非齐次微分方程的自由项为多项式、指数函数、正弦函数、余弦函数的和与积。这6个考点均属于高等数学知识,可见数三也是在加重高等数学的地位。4 原因分析通过上述解读可以看出,数学一、二、三,均在加重高等数学的比重,新增考点内容也多为高等数学知识。主要原因是,高等数学的难度相对要大,比起线代和概率,它的得分率更低。在研究生扩招,选拔优质人才的当下,加大高等数学的权重能更好选拔优质声援。以上就是关于考研数学的分值、题型、内容3方面的变化,以及变化的主要原因,赶紧转给身边需要的人吧,预祝大家顺利上岸。
2021考研数学一大纲如约而至,对考生而言,最重要的,最关心的莫过于考研大纲变动部分,以下,针对考研数学一,文都考研小编对考研大纲变动部分作以说明。一、变动分类2021考研数学大纲变动可分为以下几类:试卷结构变动,题型变动、知识点掌握程度的变动、及新增知识点变动。考生要重点把握新增知识点内容,考查的可能性较大。考研二、变动情况1.试卷结构变动2021年考研数学一试卷结构变动较大,高等数学分值占比有所提高,线性代数和概率统计占比略有下降。往年高等数学占比为56%,线性代数和概率统计各占22%。而今年高等数学占比为约60%,线性代数和概率统计各占约20%。2.题型变动2021年考研数学一的题型变动也较大,选择题和填空题分值的整体占比有较大提升,解答题分值占比有所下降。单项选择题,由往年“共8题,每题4分”变为“共10题,每题5分”,所占分值由往年的32分变为50分。填空题,由往年“共6题,每题4分”变为“共6题,每题5分”,所占分值由往年的24分变为30分。解答题,由往年“9小题,共94分”变为“6小题,共70分”,所占分值由往年94分降为70分。3.知识点掌握程度的变动高等数学:一元函数积分学中,由去年“了解反常积分的概念”,变为“理解反常积分的概念”。无穷级数中,由去年“会求根值判别法”变为“掌握根值判别法”。从大纲变动来看,数学一中高等数学对这两个知识点的要求均有所提高。线性代数和概率统计无变化。4.新增知识点一元函数积分学中,新增“了解反常积分收敛得比较判别法,会计算反常积分”。无穷级数中,新增“会用积分判别法”。线性代数和概率统计无新增知识点。总体来看,无论从试卷结构还是考试要求,2021年数学一考纲对高等数学的要求进一步提高,数学一的考生要注意高等数学变动部分,尤其对变动部分和新增知识点,要特别注意,多做一些相关题型理解和掌握知识点。
2021 考研数学大纲整体变动情况经与去年大纲对比,2021 考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。接下来我们从题型结构、内容结构、考试内容三个模块来说一下各部分内容的变动情况。一是试卷内容结构变动,共 5 处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。第一,数(一)、数(三)内容结构中,高等数学分值比例由“56%”变为“约 60%”, 线性代数和概率论与数理统计分值比例都由“22%”降为“约 20%”;第二,数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约 80%”, 而线性代数分值比例由“22%”降为“约 20%”。二是试卷题型结构变动,共 7 处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。单项选择题,由“8 小题,每小题 4 分”变为“10 小题,每题 5 分”,总分由 32 分变为 50 分,分值占比提高;填空题,题目数量不变,分值由“每小题 4 分,总分 24 分”变为“每小题 5 分,总分30 分”,分值占比提高;解答题,由“9 小题,总分 94 分”变为“6 小题,总分 70 分”,分值占比降低。三是考试内容与要求变动,共 36 处。其中高数部分变动 29 处,主要集中在数(三),线代变动 7 处。在这些变动中,约 80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数(一)考试要求。总体来看,2021 考纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是考纲变动的部分。2021 新大纲发布后考研数学备考策略2021 大纲已经发布,今年考研数学大纲发生近十年以来的最大变动,不仅考试要求发生变动,而且在高数、线代、概率的分值占比和试卷结构上也进行了调整。针对这些变动, 该如何安排接下来的复习呢?针对新考纲的变动给各位考生 一些备考方面的建议。一、高等数学考试要求:(1) 考查考生对微积分学的基本概念、基本理论、基本方法的理解和掌握。(2) 考查考生抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。变动情况与备考建议:1.数(一)考纲变动只有两处:一元函数积分学和无穷级数,变动的着重点在解题方法的掌握上。关于概念和一般解题方法,大家的日常练习中基本已经接触到,这里提醒各位考生注意的是新增“会用积分判别法”这一条,提到了“会”这个字眼,某些题目的解答中可能会用到这种方法,练习中遇到这类题目一定要注意积累。在备考方面:(1) 数(一)的考纲内容基本没有实质性变化,除个别变动的地方,按照之前的备考内容进行备考即可。(2) 对于变动部分的内容,加强概念和解题方法的掌握,多进行题目练习。2.数(二)数(二)考纲变动集中在两处:多元函数微分学和常微分方程,变动的着重点在对概念的理解上,加强了对概念理解的要求程度。这些变动中,数(二)的同学要关注的是线性微分方程解的性质及解的结构,不再局限于“二阶线性微分方程”,考查范围扩大,所以在后面的复习中一定要加强此部分题目的练习。在备考方面:(1) 对于未变动部分,按照之前的复习节奏进行复习即可。(2) 对于变动部分,在补充新增知识点的同时,可以用数(一)历年真题中对应部分的题目进行练习,提高实战能力。3.数(三)高数考纲的变动中,数(三)的变动最大,变动内容不仅包含对概念理解程度要求的提高,还有对解题方法的掌握程度上,部分内容的考试要求已经接近于数(一)的考试要求。在备考方面:(1) 在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(能)两个层次的要求,一般来说,要求理解的内容,要求掌握的方法,才是考试的重点。这些在历年考试的考题中出现的概率较大,在同一份试卷中所占的分数也较多。所以数(三)的同学在拿到考纲之后,先不要急于立刻补充新增知识点,而是在这些变动中找到要求变动为“理解”、“掌握”的这些地方,重点补充,重点练习。(2) 通过今年的考纲变动可以发现,数(一)、数(三)统考的内容中,数(三)的考试要求已经接近数( 一 ),考试要求提高。所以在后期的复习中,关于习题的练习,数( 三 ) 的同学也要做一下统考部分数(一)的真题,提升自己的解题能力。二、线性代数考试要求:(1) 考查考生对线性代数的基本概念、基本理论、基本运算的理解。(2) 考查考生的抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。变动情况与备考建议:1.数(一)数一的线性代数考试内容没有变动,数(一)的同学,按照之前的复习内容直接备战即可。2.数(二)线性代数中数(二)的变动,集中在两个地方:线性方程组和二次型,提高了对解题方法的掌握。因此在备考方面:(1) 加强线性方程组和二次型的题目练习。(2) 注重对线性方程组和二次型的解题方法的掌握,练习过程中,加强对线性方程组和二次型的解题方法的积累。(3) 适当做一下数(一)真题中线性方程组和二次型的题目。3.数(三)二次型是数(三)线性代数中唯一变动的地方,对二次型及其矩阵表示和用正交变换化二次型为标准形的方法的考试要求从“会”变为“掌握”,加强了考试要求,在今年的考题中出现的概率加大,因此数(三)的同学,一定要重视二次型这部分题目的练习。关于备考建议:(1) 回顾教材中关于对二次型及其矩阵表示和用正交变换化二次型为标准形的方法的内容。(2) 加强对二次型题目的练习,尤其是对二次型及其矩阵表示和用正交变换化二次型为标准形的方法这两部分。三、概率论与数理统计考试要求:(1) 考查考生对研究随机规律性的基本概念、基本理论和基本方法的理解。(2) 运用概率统计方法分析和解决实际问题的能力。变动情况与备考建议:概率论与数理统计的考纲内容无变化,关于备考建议:(1) 抓住命题特点,划分次重点复习。重点掌握要求理解的内容,要求掌握的方法。(2) 寻找命题特点,把握出题规律,重点突出。在结合往年命题规律的基础上,有重点的进行复习,例如概率论第三、四、七章,每年考查的概率一般会在 80%以上,而且常会以大题的形式出现,这部分就要加强复习,加大投入时间,而古典概型与几何概型这部分,一般只考一些简单的概率计算,因此只掌握一些简单的概率计算即可。(3) 重视概率与高数的联系,提升综合思考的能力,通过习题练习,提升实战能力。四、备考时间规划考研数学总分 150 分,在考研备考中的重要地位不言而喻,如何在剩下的时间高效备考呢?接下来我们从时间的角度给大家一些备考建议。9~10 月份,以真题为引,结合考纲变动,针对性学习基础较好的同学,如果你已经结束强化阶段的知识点的复习,接下来的复习,可以真题为主进行实战练习,尤其是近十五年的真题,一定要认真做,反复训练,找出错误点,查漏补缺。同时针对大纲变动的部分,练习的同时,补充新增知识点,增强训练。数(二)、数(三)的同学,针对变动的部分,可以适当做一下对应内容数(一)的题目,提高解题能力。起步比较晚的同学,9 月份开始,你的强化可能还没结束。这个时候不要慌,做好个人复习规划,9 月末之前一定要完成强化阶段的复习,开启真题训练。时间虽紧,但一定不要操之过急,学习质量比学习进度更重要,学一点会一点,不要潦草学完,还是不会,不仅浪费了时间,还影响了复习心态。11 月份~考前,查漏补缺为主,习题练习为辅,重点突出将基础、强化、真题练习中的错误点和不足点,系统复习一遍,尤其是考纲中要求标记为理解”和“掌握”的地方,要重点复习。复习的同时,也要时常进行限时模拟训练,积累临场经验,对于重点的题目,要总结规律和方法重点提升,但注意一定要有重点的看,不可贪多。以上是新大纲发布后考研数学备考策略建议,祝愿考生们顺利上岸,一战成“硕”!想了解更多精彩内容,快来关注硕博学霸说考研