欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
2021考研数学大纲对比分析篇(考试内容与要求)高相

2021考研数学大纲对比分析篇(考试内容与要求)

经文都考研老师仔细与2020考研数学大纲对比后发现,2021考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。2021考研数学大纲在考试内容与要求方面,共 36 处变动。其中高数部分变动 29 处,主要集中在数(三),线代变动 7 处。在这些变动中,约80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数(一)考试要求。另外题量减少,时间上基本更多的同学有保障啦,这方面是好事情。总体来看,2021考研数学大纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是2021考研数学大纲变动的部分。大纲知识点方面的变化并不大,特别数学一二几乎没有几处变化,主要数学三的要求变高了,几乎20%的知识点提高要求,与数学一公共部分的要求靠拢。考研最后,在距离考研还有100多天的时间,面对今年大纲的调整,2021考研同学们应该怎么复习和备考才能取得不错的成绩呢? 首先,必须有目标、有规划、有信心,树立必胜的信念以及必须学习、充分备考的心理状态,然后还要有一定的坚持力。再次,付出行动,努力学习,重点把握真题。最后的时间可以称之为黄金时间,需要高效地学习。在完成真题的基础上,还需要再去做一些模拟题,适应大纲新变化,合理分配时间与调整生物钟。最后,文都考研所有老师预祝所有2021考研的同学金榜题名。

一唱一和

考研数学一、二、三难度大对比!分别考哪些知识点?

前两天小编在逛考研论坛的时候,发现有一篇帖子引起了大家的热议:“考研如果选择不考数学的专业,是不是会轻松很多?”评论区里大家议论纷纷,除了吐槽考研数学让一些文科生难到头秃以外,也有些同学发起新的疑问:“考研数学还分一、二、三?”“这三类数学试卷的区别有哪些?”“哪个难度最低?适用的专业是哪些?”当了解到有那么多考研党,都步入考研数学的“知识盲区”,小编也当机立断决定为大家写篇考研数学的解析文,汇总数学一、二、三的区别、难度以及适用专业。01分别适用哪些专业针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求。硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三;除前面三种统考数学试卷之外,还有数学(农)和招生单位自命题理学数学。数学(一)适用的招生专业:(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。  (2)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。数学(二)适用的招生专业:工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。数学(一)、(二)任选其一的招生专业:工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中所有的二级学科、专业。  数学(三)适用的招生专业:(1)经济学门类的理论经济学一级学科中所有的二级学科、专业。  (2)经济门类的应用经济学一级学科中的二级学科、专业:统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、国际贸易学、劳动经济学、国防经济。(3)管理学门类的工商管理一级学科中的二级学科、专业:企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。(4)管理学门类的农林经济管理一级学科中所有的二级学科、专业。02知识点占比大家可以结合自己计划报考的专业,来了解自己要考试哪一个数学科目的类别。值得一提的是,虽然都是考研数学,但是考研数学一、二、三各有区别,考试内容与难度都各不相同!我们先来看看考研数学一、二、三,对应的考试知识点占比分别是多少:03考试内容与难度当我们了解到考研数学一、二、三的重点知识点占比,接下来就要知悉各类考试卷里的“考纲”分别覆盖了哪些内容:数学(一)①高等数学(函数、极限、连续、一元函数微分学、一元函数积分学、向量代数和空间解析几何、多元函数微分学、多元函数积分学、无穷级数、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。数学(二)①高等数学(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积学、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型)。数学(三)①微积分(函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用、微分方程、多元函数微分法及其应用、重积分、无穷级数);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、随机变量的联合概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。总的来说,三类数学试卷知识面多少:数学一 > 数学三 > 数学二知识点难度:数学一>数学二 >数学三数学一:知识点多,难度大,更适合理科出身的同学。数学二:虽然知识点少,但难度大,一些题目比较精、专,适合大部分工科同学。数学三:知识点介于中间,但难度最小,适合经济类或管理类的同学。了解完上述考研数学的”常规内容“,我们再看看“个别案例”:像数学(农)的考试科目就是线性代数、概率论与数理统计。但很多考数学(农)的专业也可以选择考化学,而非固定选择考数学,所以这类同学在考试科目的选择上,自由度更大。以西北农林科技大学为例:值得注意的是,还有一些招生单位自命题理学数学:考试科目和内容可以参考学校官网,通常官网上会列出考试科目大纲,以2020年同济大学自命题数学的大纲为例:小编寄语如果你选择报考没有数学的专业,那么可选择的专业就会变得窄很多,相应的如果复试没有通过,调剂的机会就会更少。并且如果以后想继续深造,可选择的方向就没剩几个了。而很多不需要考数学的专业,虽然不用担心考数学的问题,但在备考的时候就需要备考两门专业课,需要付出更多的精力,最常见的诸如新闻与传播专业;以上图片摘自中国传媒大学2020年研究生招生专业目录其实考研的难度其实和很多方面都有关系,并不仅仅是一个数学考试能决定的。但如果你是从小就对数学科目头疼且不擅长的考生,小编劝你及时止损,不妨选择那些不考数学的专业,减轻自己的压力。其他考生还是要全面考虑,不要让一个数学绊住你的脚步。最后,希望大家都能考上心仪的学校和专业,免受考研数学的“头秃之累“!本篇原创文章由百家号“宗师考研”发布,我们将会持续更新考研及大学生主题的干货文章与上岸经验贴,敬请关注!

养心

2021年考研大纲解析-数学篇

叮!考研情报到!面对逐年增长的报考人数,2021年考研大纲有了众多新变化,考研数学更是近十年来最大的一次变动,2021考纲对高数的考察要求进一步提高,不管是考试内容占比还是考试要求上的变动都更多体现在了高数上面。以下为题型结构、内容结构、考试内容三个模块的变动情况:内容结构题型结构考试内容1. 数学(一)数学(一)除高等数学有所变化外,剩余的线性代数和概率论与数理统计相比于2020年大纲均无变化。2. 数学(二)高等数学线性代数对于变动部分,在补充新增知识点的同时,可以用数学(一)历年真题相应部分进行练习,提高实战能力。3. 数学(三)高等数学线性代数数学(三)的大纲内容是变动最多的,许多知识点要求已与数学(一)相同,备考数学(三)的同学可以对变动部分参照数学(一)历年真题进行相应部分练习。蔚然助力深造计划,致力于为各位考研学子保驾护航、逐梦远行。愿:有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。加油,考研人!

子云

2021年考研数学一大纲变动解析

2021考研数学一大纲如约而至,对考生而言,最重要的,最关心的莫过于考研大纲变动部分,以下,针对考研数学一,文都考研小编对考研大纲变动部分作以说明。一、变动分类2021考研数学大纲变动可分为以下几类:试卷结构变动,题型变动、知识点掌握程度的变动、及新增知识点变动。考生要重点把握新增知识点内容,考查的可能性较大。考研二、变动情况1.试卷结构变动2021年考研数学一试卷结构变动较大,高等数学分值占比有所提高,线性代数和概率统计占比略有下降。往年高等数学占比为56%,线性代数和概率统计各占22%。而今年高等数学占比为约60%,线性代数和概率统计各占约20%。2.题型变动2021年考研数学一的题型变动也较大,选择题和填空题分值的整体占比有较大提升,解答题分值占比有所下降。单项选择题,由往年“共8题,每题4分”变为“共10题,每题5分”,所占分值由往年的32分变为50分。填空题,由往年“共6题,每题4分”变为“共6题,每题5分”,所占分值由往年的24分变为30分。解答题,由往年“9小题,共94分”变为“6小题,共70分”,所占分值由往年94分降为70分。3.知识点掌握程度的变动高等数学:一元函数积分学中,由去年“了解反常积分的概念”,变为“理解反常积分的概念”。无穷级数中,由去年“会求根值判别法”变为“掌握根值判别法”。从大纲变动来看,数学一中高等数学对这两个知识点的要求均有所提高。线性代数和概率统计无变化。4.新增知识点一元函数积分学中,新增“了解反常积分收敛得比较判别法,会计算反常积分”。无穷级数中,新增“会用积分判别法”。线性代数和概率统计无新增知识点。总体来看,无论从试卷结构还是考试要求,2021年数学一考纲对高等数学的要求进一步提高,数学一的考生要注意高等数学变动部分,尤其对变动部分和新增知识点,要特别注意,多做一些相关题型理解和掌握知识点。

钢木兰

2020考研数学:全新的考研数学一二三大纲发生了哪些变化?

2020考研数学大纲发生了哪些变化?答案是:0。是的,你没有听错,相比于2019的考研大纲,考研数学一二三的所有科目加到一起没!有!变!化!试卷内容结构上:数学一、数学三中,高等数学、线性代数、概率论与数理统计占比依旧为56%、22%、22%。数学二中,高等数学、线性代数分别占比78%、22%。试卷题型结构上:永远的“869”,即8道选择、6道填空、9道解答。试卷分数上:选择、填空每题4分,共56分;解答题共94分。2020考研数学:怎么正确运用全新的考研数学大纲?今年的考研数学大纲“0”变化!2020年考研数学大纲可以说是2019年的大纲换了个“帽子”。不仅如此,2010-2019,十年的时间里,考研数学大纲只有一处知识点名称的变化。那么,该如何正确运用考研数学大纲这个“新古董”呢?明确考试范围:大纲上没有的一定不会考,大纲上有的不一定会考。毕竟考试只有23道题目,不可能覆盖大纲上的所有知识点。但是,凡是大纲上提到的知识点,考生一定要认真复习。明确重点与非重点:要求“理解”“掌握”的内容为考试重点和核心考点。要求“会”“会用”“会求”和“了解”的知识点都是非重点内容。非重点内容考试难度与几率较低,但考生也需要掌握。其实,只要考生能够坚持到最后,都能取得好成绩的。

亲民

考研数学大纲发布后需要注意的关键词

每一个考研人都知道,考研大纲对于考研来说非常关键,正确解读考研大纲是考研成功的前提。小编为大家精心准备了考研数学大纲发布后的复习要点,欢迎大家前来阅读。考研数学大纲发布后的复习重点了解对这样的概念、这样的公式和这样的理论,我们只要知道它是怎么样的概念和公式、理论就够了,不需要对它进行更多的讨论,它是怎么来的,用它怎样解决什么样的实际问题的,这个可能应该在以后的问题来讨论,对了解只是知道这个概念它是怎么样的概念,这个公式是怎样的公式,这样的理论是什么样的理论就够了,比方说提到了这样的概念,你就能知道这是在哪个地方的,是哪个问题当中的概念,达到这样的程度就行了,这叫了解。理解这要比了解高一个层次了,我们不仅仅要知道这个概念,而且要知道来龙去脉,这个概念为什么要提出来,从哪一个方面提出来的,这是一个方面,再一个方面对这个概念提出了之后将来要解决什么我要知道,我要达到利用这个概念能够解决我们什么样的问题的目的,就要把这个概念真正做到理解。掌握是所有要求中级别最高的,我们不但知道这个概念、公式或定理,而且要知道它们的来龙去脉,如何推倒出来的,对于这些概念、公式或定理应该不但知道将来能解决什么问题,而且在出现不同题型考察这个知识点时要回灵活运用,达到熟练解决问题的程度。会用这样的词出来之后,这主要是对于某一个概念会用,对某一个结论会用,对某一个公式会用,只要会用这个结论、概念、公式就够了,而对这个概念是怎么来的,对结果是怎么推来的,不追究它的来历,只要会用就可以了,比方说这个公式只要会用了,可以拿它解决问题就可以了,至于是怎么来的不关心。考研数学高数必看的定理证明1、微分中值定理的证明这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。2、求导公式的证明2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。3、积分中值定理该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。4、微积分基本定理的证明该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。考研数学概率复习指导在文字叙述题上下功夫考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。会用公式解题概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。对概率论与数理统计的考点整体把握考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。心理上要重视考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的复习程度。概念不清,只会背不会运用;不能正确地选择概率公式去证明和计算;不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。分析有误,概率模型搞错。

义兵

深度解读2021考研数学大纲变化点及备考计划

2021 考研数学大纲整体变动情况经与去年大纲对比,2021 考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。接下来我们从题型结构、内容结构、考试内容三个模块来说一下各部分内容的变动情况。一是试卷内容结构变动,共 5 处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。第一,数(一)、数(三)内容结构中,高等数学分值比例由“56%”变为“约 60%”, 线性代数和概率论与数理统计分值比例都由“22%”降为“约 20%”;第二,数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约 80%”, 而线性代数分值比例由“22%”降为“约 20%”。二是试卷题型结构变动,共 7 处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。单项选择题,由“8 小题,每小题 4 分”变为“10 小题,每题 5 分”,总分由 32 分变为 50 分,分值占比提高;填空题,题目数量不变,分值由“每小题 4 分,总分 24 分”变为“每小题 5 分,总分30 分”,分值占比提高;解答题,由“9 小题,总分 94 分”变为“6 小题,总分 70 分”,分值占比降低。三是考试内容与要求变动,共 36 处。其中高数部分变动 29 处,主要集中在数(三),线代变动 7 处。在这些变动中,约 80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数(一)考试要求。总体来看,2021 考纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是考纲变动的部分。2021 新大纲发布后考研数学备考策略2021 大纲已经发布,今年考研数学大纲发生近十年以来的最大变动,不仅考试要求发生变动,而且在高数、线代、概率的分值占比和试卷结构上也进行了调整。针对这些变动, 该如何安排接下来的复习呢?针对新考纲的变动给各位考生 一些备考方面的建议。一、高等数学考试要求:(1) 考查考生对微积分学的基本概念、基本理论、基本方法的理解和掌握。(2) 考查考生抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。变动情况与备考建议:1.数(一)考纲变动只有两处:一元函数积分学和无穷级数,变动的着重点在解题方法的掌握上。关于概念和一般解题方法,大家的日常练习中基本已经接触到,这里提醒各位考生注意的是新增“会用积分判别法”这一条,提到了“会”这个字眼,某些题目的解答中可能会用到这种方法,练习中遇到这类题目一定要注意积累。在备考方面:(1) 数(一)的考纲内容基本没有实质性变化,除个别变动的地方,按照之前的备考内容进行备考即可。(2) 对于变动部分的内容,加强概念和解题方法的掌握,多进行题目练习。2.数(二)数(二)考纲变动集中在两处:多元函数微分学和常微分方程,变动的着重点在对概念的理解上,加强了对概念理解的要求程度。这些变动中,数(二)的同学要关注的是线性微分方程解的性质及解的结构,不再局限于“二阶线性微分方程”,考查范围扩大,所以在后面的复习中一定要加强此部分题目的练习。在备考方面:(1) 对于未变动部分,按照之前的复习节奏进行复习即可。(2) 对于变动部分,在补充新增知识点的同时,可以用数(一)历年真题中对应部分的题目进行练习,提高实战能力。3.数(三)高数考纲的变动中,数(三)的变动最大,变动内容不仅包含对概念理解程度要求的提高,还有对解题方法的掌握程度上,部分内容的考试要求已经接近于数(一)的考试要求。在备考方面:(1) 在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(能)两个层次的要求,一般来说,要求理解的内容,要求掌握的方法,才是考试的重点。这些在历年考试的考题中出现的概率较大,在同一份试卷中所占的分数也较多。所以数(三)的同学在拿到考纲之后,先不要急于立刻补充新增知识点,而是在这些变动中找到要求变动为“理解”、“掌握”的这些地方,重点补充,重点练习。(2) 通过今年的考纲变动可以发现,数(一)、数(三)统考的内容中,数(三)的考试要求已经接近数( 一 ),考试要求提高。所以在后期的复习中,关于习题的练习,数( 三 ) 的同学也要做一下统考部分数(一)的真题,提升自己的解题能力。二、线性代数考试要求:(1) 考查考生对线性代数的基本概念、基本理论、基本运算的理解。(2) 考查考生的抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。变动情况与备考建议:1.数(一)数一的线性代数考试内容没有变动,数(一)的同学,按照之前的复习内容直接备战即可。2.数(二)线性代数中数(二)的变动,集中在两个地方:线性方程组和二次型,提高了对解题方法的掌握。因此在备考方面:(1) 加强线性方程组和二次型的题目练习。(2) 注重对线性方程组和二次型的解题方法的掌握,练习过程中,加强对线性方程组和二次型的解题方法的积累。(3) 适当做一下数(一)真题中线性方程组和二次型的题目。3.数(三)二次型是数(三)线性代数中唯一变动的地方,对二次型及其矩阵表示和用正交变换化二次型为标准形的方法的考试要求从“会”变为“掌握”,加强了考试要求,在今年的考题中出现的概率加大,因此数(三)的同学,一定要重视二次型这部分题目的练习。关于备考建议:(1) 回顾教材中关于对二次型及其矩阵表示和用正交变换化二次型为标准形的方法的内容。(2) 加强对二次型题目的练习,尤其是对二次型及其矩阵表示和用正交变换化二次型为标准形的方法这两部分。三、概率论与数理统计考试要求:(1) 考查考生对研究随机规律性的基本概念、基本理论和基本方法的理解。(2) 运用概率统计方法分析和解决实际问题的能力。变动情况与备考建议:概率论与数理统计的考纲内容无变化,关于备考建议:(1) 抓住命题特点,划分次重点复习。重点掌握要求理解的内容,要求掌握的方法。(2) 寻找命题特点,把握出题规律,重点突出。在结合往年命题规律的基础上,有重点的进行复习,例如概率论第三、四、七章,每年考查的概率一般会在 80%以上,而且常会以大题的形式出现,这部分就要加强复习,加大投入时间,而古典概型与几何概型这部分,一般只考一些简单的概率计算,因此只掌握一些简单的概率计算即可。(3) 重视概率与高数的联系,提升综合思考的能力,通过习题练习,提升实战能力。四、备考时间规划考研数学总分 150 分,在考研备考中的重要地位不言而喻,如何在剩下的时间高效备考呢?接下来我们从时间的角度给大家一些备考建议。9~10 月份,以真题为引,结合考纲变动,针对性学习基础较好的同学,如果你已经结束强化阶段的知识点的复习,接下来的复习,可以真题为主进行实战练习,尤其是近十五年的真题,一定要认真做,反复训练,找出错误点,查漏补缺。同时针对大纲变动的部分,练习的同时,补充新增知识点,增强训练。数(二)、数(三)的同学,针对变动的部分,可以适当做一下对应内容数(一)的题目,提高解题能力。起步比较晚的同学,9 月份开始,你的强化可能还没结束。这个时候不要慌,做好个人复习规划,9 月末之前一定要完成强化阶段的复习,开启真题训练。时间虽紧,但一定不要操之过急,学习质量比学习进度更重要,学一点会一点,不要潦草学完,还是不会,不仅浪费了时间,还影响了复习心态。11 月份~考前,查漏补缺为主,习题练习为辅,重点突出将基础、强化、真题练习中的错误点和不足点,系统复习一遍,尤其是考纲中要求标记为理解”和“掌握”的地方,要重点复习。复习的同时,也要时常进行限时模拟训练,积累临场经验,对于重点的题目,要总结规律和方法重点提升,但注意一定要有重点的看,不可贪多。以上是新大纲发布后考研数学备考策略建议,祝愿考生们顺利上岸,一战成“硕”!想了解更多精彩内容,快来关注硕博学霸说考研

客出

2021考研数学大纲对比分析(试卷内容结构)

经文都考研老师仔细与2020考研数学大纲对比后发现,2021考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。2021考研数学大纲在试卷内容结构方面,共 5 处变动。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。数(一)、数(三)内容结构中,高等数学分值比例由“56%”变为“约 60%”,线性代数和概率论与数理统计分值比例都由“22%”降为“约 20%”;数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约 80%”,而线性代数分值比例由“22%”降为“约 20%”。 高等数学以数一为例,在一元函数积分学这一章节中,要求理解(2020是“了解”)反常积分的概念,(新增)了解反常积分收敛的的比较判别法,会计算反常积分;无穷级数要求掌握正项级数收敛性的比较判别法、比值判别法、根值判别法,会用积分判别法.(2020年是:掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.)线性代数以数二为例,在矩阵的特征值和特征向量这一章中,要求理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法(2020年是:会将矩阵化为相似对角矩阵),掌握(2020年是:理解)实对称矩阵的特征值和特征向量的性质。数学二次型要求掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.(2020年是:了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念),掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.(2020年是了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形).

卡奥斯

2021考研数学大纲你看懂了吗?

相比往年,2021年的考研数学大纲可谓是发生了十年来最大的变动,接下来,我对2021年数学大纲的变动做一个具体剖析!一、数学整体变化剖析1、试卷内容占比调整2、试卷题型分值变动二、数学具体变动剖析1、数学(一)调整2、数学(二)调整(3)数学(三)调整通过上述改变内容可以看出,本次考研数学大纲变化共48处,其中高数占比较大,共29处,足以看出高数在看考研数学中的地位,因此,在后期复习考研数学的时候,同学们要注重考研数学的复习,尤其是大纲中变化的部分。

天谴

2021考研数学大纲公布,我要怎么做?

2020年9月,期待已久的大纲终于来啦。2021考研数学大纲作为考研数学“风向标”,是各位准考生必须重视的一件事,更要及时了解考试大纲的变化,提前应对复习。文都考研文都考研小编提示各位考生们,可以通过以下方式获得考研大纲:教育部中国研究生招生信息网(研招网)文都考研网等在拿到2021考研大纲之后,同学们还要注意以下几点:仔细对比新旧大纲,关注新增考点,及时查漏补缺;重视考点细微变化,细节的调整可能会影响考试时的一些正确判断;认真总结考试重点,明确接下来的2021考研复习方向;根据2021考研大纲和真题,总结考试命题规律。如果感觉自己不能很好的把握考研大纲的变化及命题的方向,也可以多关注各位文都考研名师、文都考研官方微博、文都考研微信公众号,这些平台都会发布2021考研大纲比对的相关信息,比自己比对更快速、更高效、更准确。2021考研大纲的发布预示着2021考研复习进入到了白热化阶段,很多同学可能会兴奋于这个重要时间节点的到来,也会对未来的复习方向感到茫然无措。其实每年的考研大纲变化都预示着今年的考试重点会出现在哪里,所以同学们只要抓住大纲出现的变化,就相当于变相掌握了一部分考试重点。但在关注考试变化的同时,也要放平自己的心态,积极备考,按部就班地完成接下来的复习。