2021考研数学大纲已出,小编发现,大纲较以往变动了很多地方,首先是高数、线代、概率三科的占比发生了变化,数一数三之前都是高数约56%,线代和概率约22%,而今年变为高数约60%,提高了2%,分值提高到90分,线代和概率约20%,比例略减;数二的高数部分比例提高至80%,线代减至20%,整体来看,分值偏向于高数更多了。其次是题型的变化,往年数学真题的题型是:单选题8小题,每题4分,共32分,填空6小题,每题4分,共24分,解答题9小题,共94分,今年调整之后,客观题分值占比提高,客观题的分值从之前的56分提高到现在的80分,而解答题从之前的94分降至70分,这么来看,数学的得分难度增加了,客观题主要考察学生的综合分析能力和技巧,只要答案错误就没有分数,所以更加有求大家做题的准确率,那么在平时的练习中大家就更要有意识的去练习自己做题的准确率和速度。知识点方面,数一数二改动的不是很大,数三改动较大,好多考点进行了强化,并且还新增了好多考点,不过大家也不用太过担心,这些考点都是我们之前学过的,只不过现在要学的再深入一点而已。整体来说知识点要求提高,同学们复习的时候一定要注意今年新增及改变的知识点,要重点复习,但也不用太焦躁,大部分的知识点没有变化,大家踏踏实实复习,千万不要眼高手低,尤其要注意客观题的准确率,最后文都考研小编希望大家都能考上理想的院校。
叮!考研情报到!面对逐年增长的报考人数,2021年考研大纲有了众多新变化,考研数学更是近十年来最大的一次变动,2021考纲对高数的考察要求进一步提高,不管是考试内容占比还是考试要求上的变动都更多体现在了高数上面。以下为题型结构、内容结构、考试内容三个模块的变动情况:内容结构题型结构考试内容1. 数学(一)数学(一)除高等数学有所变化外,剩余的线性代数和概率论与数理统计相比于2020年大纲均无变化。2. 数学(二)高等数学线性代数对于变动部分,在补充新增知识点的同时,可以用数学(一)历年真题相应部分进行练习,提高实战能力。3. 数学(三)高等数学线性代数数学(三)的大纲内容是变动最多的,许多知识点要求已与数学(一)相同,备考数学(三)的同学可以对变动部分参照数学(一)历年真题进行相应部分练习。蔚然助力深造计划,致力于为各位考研学子保驾护航、逐梦远行。愿:有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。加油,考研人!
相比往年,2021年的考研数学大纲可谓是发生了十年来最大的变动,接下来,我对2021年数学大纲的变动做一个具体剖析!一、数学整体变化剖析1、试卷内容占比调整2、试卷题型分值变动二、数学具体变动剖析1、数学(一)调整2、数学(二)调整(3)数学(三)调整通过上述改变内容可以看出,本次考研数学大纲变化共48处,其中高数占比较大,共29处,足以看出高数在看考研数学中的地位,因此,在后期复习考研数学的时候,同学们要注重考研数学的复习,尤其是大纲中变化的部分。
9月份是全国各高校“期盼已久”的开学月,与此同时,2021考研大纲也在9月9日准时发布,作为2021考研准考生的你有没有一丝丝激动,话不多说,文都考研小编带同学们看一下2021考研数学大纲到底长啥样吧!不得不说,这次2021考研数学大纲变动还是挺大的,首先就是分值结构和往年相比做了调整,具体如下:表 1 往年分值结构表 2 今年分值结构通过两张表的对比可知,高等数学部分在2021考研数学大纲中的分值占比增加,数一、数三占比60%,数二更是高达80%,这个分值变化简直跌破所有人的眼镜,没想到吧!学好高等数学,你的考研数学就成功了一大半!在这里提醒高等数学掌握不好的童鞋们抓紧最后三个半月的时间,冲刺高数!关于2021考研数学大纲考点上的变动,文都考研小编在这里就不过多描述了,想要了解的同学可以及时关注文都考研微博、文都考研微信公众号哦,文都考研会及时发布2021考研数学大纲考点变动的深度解读,不容错过哦。同时看过2021考研数学大纲之后觉得自己复习的不是很理想的同学也不要气馁,距离考研还有三个半月的时间,完全来的及补回之前掌握不是很好的知识点或模块。
2021考研数学大纲整体变动情况与去年大纲对比,2021年考研数学大纲发生近十年以来的最大变动,数(一)、数(二)变动达48处,接下来从题型结构、内容结构、考试内容三个模块详细分析。一、试卷内容结构变动,共5处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。1.数(一)内容结构中,高等数学分值比例由“56%”变为“约60%”,线性代数和概率论与数理统计比例由“22%”降为约“20%”。2.数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约80%”,而线性代数分值比例由“22%”,降为“约20%”。二、试卷题型结构变动,共7处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。1.单项选择题,有“8小题,每小题4分”变为“10小题,每小题5分”,总分有32分变为50分,分值占比提高。2.填空题,题目数量不变,分值有“每小题4分,总分24分”变为“每小题5分,总分30”,分值占比提高。3.解答题,有“9小题,总分94分”变为“6小题,总分70分”,分值占比降低。三、考试内容与要求变动,共36处。其中高等数学变动29处,线性代数变动7处。第一部分 考试形式和试卷结构1.试卷内容结构调整2.试卷题型结构调整第二部分 考试内容和考试要求1.数学(一)考试要求变动情况第一篇 高等数学一、函数、极限、连续(无变化)考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形。 初等函数函数关系的建立。数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2.了解函数的有界性、单调性、周期性和奇偶性;3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4.掌握基本初等函数的性质及其图形,了解初等函数的概念;5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系;6.掌握极限的性质及四则运算法则;7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法;8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限;9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分学(无变化)考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径。考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;3.了解高阶导数的概念,会求简单函数的高阶导数;4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;6.掌握用洛必达法则求未定式极限的方法;7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分学(有变化)考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念;2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法;3.会求有理函数、三角函数有理式和简单无理函数的积分;4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式;5.①“了解”反常积分的概念”。变为“理解反常积分的概念”,加强对概念的要求;②了解反常积分收敛的比较判别法”。变为“增加”了解反常积分收敛的比较判别法。6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、向量代数和空间解析几何(无变化)考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示;2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法;5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题;6.会求点到直线以及点到平面的距离;7.了解曲面方程和空间曲线方程的概念;8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程;9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。五、多元函数微分学(无变化)考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件。多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用。考试要求1.理解多元函数的概念,理解二元函数的几何意义;.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质;3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性;4.理解方向导数与梯度的概念,并掌握其计算方法;5.掌握多元复合函数一阶、二阶偏导数的求法;6.了解隐函数存在定理,会求多元隐函数的偏导数;7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程;8.了解二元函数的二阶泰勒公式;9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。六、多元函数积分学(无变化)考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用。考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理;2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标);3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;4.掌握计算两类曲线积分的方法;5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数;6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分;7.了解散度与旋度的概念,并会计算;8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。七、无穷级数(有变化)考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数。考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件;2.掌握几何级数与级数的收敛与发散的条件;3.①掌握正项级数收敛性的比较判别法和比值判别法。变为“增加”会用积分判别法。②“会用”根值判别法。变为“掌握”根植判别法,加强对根植判别法的要求”;4.掌握交错级数的莱布尼茨判别法;5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;6.了解函数项级数的收敛域及和函数的概念;7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法;8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;9.了解函数展开为泰勒级数的充分必要条件;10.掌握 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数;11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。八、常微分方程(无变化)考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用。考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念;2.掌握变量可分离的微分方程及一阶线性微分方程的解法;3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程;4.会用降阶法解下列形式的微分方程:5.理解线性微分方程解的性质及解的结构;6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程;7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程;8.会解欧拉方程;9.会用微分方程解决一些简单的应用问题。
经文都考研老师仔细与2020考研数学大纲对比后发现,2021考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。2021考研数学大纲在考试内容与要求方面,共 36 处变动。其中高数部分变动 29 处,主要集中在数(三),线代变动 7 处。在这些变动中,约80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数(一)考试要求。另外题量减少,时间上基本更多的同学有保障啦,这方面是好事情。总体来看,2021考研数学大纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是2021考研数学大纲变动的部分。大纲知识点方面的变化并不大,特别数学一二几乎没有几处变化,主要数学三的要求变高了,几乎20%的知识点提高要求,与数学一公共部分的要求靠拢。考研最后,在距离考研还有100多天的时间,面对今年大纲的调整,2021考研同学们应该怎么复习和备考才能取得不错的成绩呢? 首先,必须有目标、有规划、有信心,树立必胜的信念以及必须学习、充分备考的心理状态,然后还要有一定的坚持力。再次,付出行动,努力学习,重点把握真题。最后的时间可以称之为黄金时间,需要高效地学习。在完成真题的基础上,还需要再去做一些模拟题,适应大纲新变化,合理分配时间与调整生物钟。最后,文都考研所有老师预祝所有2021考研的同学金榜题名。
↑↑↑更多院校报考数据及考研干货资料点我的头像到主页查看领取!《2021考研大纲》发布。小编之前也给大家分享过关于大纲的内容:定了!今年考研初试时间推迟一周!大纲确定下周发布,数学有变动考研大纲指由教育部考试中心组织编写,高等教育出版社独家出版的,规定当年全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等指导性考研用书。目前各科2021最新版大纲原文还未发布,不过据透漏,数学有非常大的变化:最新2021考研数学大纲, 选择题10个,每题5分,共50分, 填空题6个,每题5分,共30分, 解答题6个,共70分。而在此之前,往年数学真题的题型是:单选题 8小题,每题4分,共32分 ,填空题 6小题,每题4分,共24分,解答题(包括证明题) 9小题,共94分。也就是说考研数学的考试题型大改动,对比如下:如此调整后,小题分值占比提高,也就是客观题(选择+填空)的分值从原来的56分提高到80分,增加了24分(增幅43%),而主观题(证明+解答)分值从原来的94分降至70分,减少24分。因为考研人数越来越多,为了减少主观题阅卷带来的误差等随机因素,增加客观题的分值占比。这样的话,对于考数学的同学们来说,更加考查综合能力、计算能力。除了题型的调整,高数、概论、线代的占比也变了,高数更重要了。考试考点方面:增加反常积分收敛的比较判别法;数一数三增加无穷级数收敛的积分判别法等等。对于新增的内容,第一年不会考太难,但是大家也要重点补习。(数学一二三详细的知识点增减对比,大家可以点我的头像发送私信:大纲,我会发给大家。)接下来的复习,大家更不可眼高手低,一定要做题,要知道一个选择5分,一个填空5分,粗心简直要命了!所以大家要做大量的题目去巩固自己所学知识点,计算必须加强,而且一定对自己严格要求,而不是马马虎虎。其他政治英语等科目的变动,小编会持续为大家更新。别忘了关注我哦~往期考研干货文章:考研报名在即!报考点选择和档案在哪有关系吗?一旦选错无法考试20年共录取6088名研究生!湖南大学2020级研究生新生大数据!注意:今年考研变化真多,每一条都很重要!21考研要调剂更难了!
自从数学(三)和数学(四)合并后,考研数学大纲一直没有新的变化。但是2021考研数学大纲变化比较大,也让数学直接站在了大纲变化的C位。不光考点内容与要求有所变化,就考卷各题型题量与分值也有较大调整。随小编一起来看下吧。一、考卷各科目所占比与题量分值调整(1)数一、二、三试卷各科目所占比例变化(2)各题型题量与分值变化数学总体题量由之前的23道题目变为了22道题目,其中选择题增加为10道,每道题分值为5分,填空题题目数量没变,但是每道题分值增加为5分,解答题总分值降到70分,题目数量也降低到6道。注意:①客观题题量增加,分值也增加到每道题5分。这说明了,选择题增加对考生的基本功要求增加。数学的选择题只有0分和5分这两个分值,每一道题的选择题都非常重要。在过去解答题目数量多,就算大家计算结果有误,也会有过程分,但是选择题占比大后,得分更难,对同学们的计算能力以及各概念理解能力也要求更高。②填空题虽说题量没变,但分值增加到每题5分。这就要求大家对计算的精准度要求更高,结果的重要性提升。③解答题题量变少,这对考生来说不是好事。这就意味着考查的综合性提高,计算复杂度也会提升。解答题的命题点会向后迁移。二、考点内容与要求的变化今年考点内容基本没有删,只有增,接下来我们来看数一、数二、数三就考点内容的具体的变化体现在哪里?⑴数学一:反常积分增加反常积分敛散性的比较判别法、无穷级数增加积分判别法。⑵数学二:反常积分增加反常积分敛散性的比较判别法,二重积分增加二重积分中值定理。⑶数学三:反常积分增加反常积分敛散性的比较判别法,无穷级数增加柯西判别法、积分判别法。总之,对考点要求,内容细化、考查层次提高、数一数二数三差异与难度趋于平衡。小编就2021考研数学大纲的变化给予同学们几点复习建议,希望可以为同学们带来帮助。1、稳扎稳打、夯实基础:2021年考研对数学的要求会更高,大家基础一定要打牢。2、重视计算、理解概念、加强练习:数学计算差之毫厘,失之至少五分;概念理解不到位,客观题不易做对。3、各考点出题脉络总结,题型归纳,注意解题思想,进而形成思维定式。4、重视考研真题、把握命 题脉络,查缺补漏:2021考研数学整体的命 题思路不会有太大偏差,所以历年的考研试题仍然是大家需要掌握的。5、模拟考场、提前适应:按照今年的考研数学大纲出试题结构加强训练,提前适应试卷结构、考查内容,在做题时自己计算好时间,提前适应考研做题节奏。本文根据网络内容整理,如有侵权请联系删除。
自从数学(三)和数学(四)合并后,考研数学大纲一直没有新的变化。但是2021考研数学大纲变化比较大,也让数学直接站在了大纲变化的C位。不光考点内容与要求有所变化,就考卷各题型题量与分值也有较大调整。随文都考研小编一起来看下吧。1、考卷各科目所占比与题量分值调整(1)数一、二、三试卷各科目所占比例变化(2)各题型题量与分值变化数学总体题量由之前的23道题目变为了22道题目,其中选择题增加为10道,每道题分值为5分,填空题题目数量没变,但是每道题分值增加为5分,解答题总分值降到70分,题目数量也降低到6道。注意注意:①客观题题量增加,分值也增加到每道题5分。这说明了,选择题增加对考生的基本功要求增加。数学的选择题只有0分和5分这两个分值,每一道题的选择题都非常重要。在过去解答题目数量多,就算大家计算结果有误,也会有过程分,但是选择题占比大后,得分更难,对同学们的计算能力以及各概念理解能力也要求更高。②填空题虽说题量没变,但分值增加到每题5分。这就要求大家对计算的精准度要求更高,结果的重要性提升。③解答题题量变少,这对考生来说不是好事。这就意味着考查的综合性提高,计算复杂度也会提升。解答题的命题点会向后迁移。
昨晚相信考研的同学都关注了考研大纲的相关解析,汤老师的考研数学大纲解读更是上了热搜,那么,往年考研数学的变动基本很小,但是今年情况特殊,考研数学还是有一定的变化,那么下面就来根据汤家凤老师对大纲的解析,总结了2021考研数学大纲的7大变化,希望考研人们都能够了解,及时调整自己的复习计划和进度!写在前面,考研数学大纲变化比较大的内容在题型,所以备考过程中,多练习不同类型题型是至关重要的!具体2021考研数学大纲的变化内容如下:第一、题型仍然是三种,选择题、填空题、大题,但分数出现了细微变化,前两者从以往每题4分变成5分。高等数学,数一数三占比60%。高代、线代从22%变成20%。客观题80:客观题,增加24分 。主观题70:主观题减少24分。选择题变为10道、填空题6道、大题6道。温馨小提示:现在调整备考复习侧重点还不晚,大家可以及时关注文都电商,最新考研相关资讯都会及时更新!帮助考生在备考路上少走弯路!第二、汤老师强调应对题型变化,要重点加强选择题和填空题的练习,要掌握选择题的答题技巧,比如排除法:根据所给条件举出反例进行排除选项;特例法:在抽象的条件下,举出一个符合所有条件的例子;图像法:高等数学都是有图像的。温馨小提示:考生现在还处于强化复习阶段,所以在大纲公布之后,一定要及时调整自己的复习重点,尽量能把需要加强的内容集中突破,汤老师提醒要加强选择题和填空题联系,所以,一定要重点关注这两个部分的内容!第三、数一数二数三,增加知识点,不要怕哦!不会太难!不要放弃任何一个题。第四、数一数二数三占比比重有所调整!数学一:56%改为约60%,数学三:22%改为约20% 数学二:78%改为约80% 。第五、知识点修订:知识点要求程度提高,需高度重视;数学二、三的知识点修订,数学一要重视,重视命题的趋同性。温馨小提示:对于数二,数三的部分知识点修订,考生要及时的了,尤其是考数二、数三的同学,以免知识点有偏差,造成复习上的误区;但是也提醒大家,不要慌,及时了解问题,并解决问题才是关键!第六、线性代数和概论论与统计学科将会出现更少的题目,题目更宝贵,命题更准确,也相应会提高要求。代数分值比例由22%改为约20%。第七、填空题与大题相同点是都需要计算,但是不同点是大题会按步骤给分,但是填空题不会,答对就是答对,答错一分没有,所以填空题答题技巧就是强调准确性。最后,再来分享一下2021考研数学大纲公布之后,具体各部分考研数学大纲内容的变化表!帮助考生更清晰地了解今年考研数学的变动!总之,不管考研大纲有哪些变化,考研人需要做的就是及时了解大纲内容,并且适时做出调整,及时做好复习计划,把握好此次大纲内容变动的重点内容,按部就班的做好备考复习,迎接这一年来的努力成果!