欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
2020考研数学:全新的考研数学一二三大纲发生了哪些变化?干得好

2020考研数学:全新的考研数学一二三大纲发生了哪些变化?

2020考研数学大纲发生了哪些变化?答案是:0。是的,你没有听错,相比于2019的考研大纲,考研数学一二三的所有科目加到一起没!有!变!化!试卷内容结构上:数学一、数学三中,高等数学、线性代数、概率论与数理统计占比依旧为56%、22%、22%。数学二中,高等数学、线性代数分别占比78%、22%。试卷题型结构上:永远的“869”,即8道选择、6道填空、9道解答。试卷分数上:选择、填空每题4分,共56分;解答题共94分。2020考研数学:怎么正确运用全新的考研数学大纲?今年的考研数学大纲“0”变化!2020年考研数学大纲可以说是2019年的大纲换了个“帽子”。不仅如此,2010-2019,十年的时间里,考研数学大纲只有一处知识点名称的变化。那么,该如何正确运用考研数学大纲这个“新古董”呢?明确考试范围:大纲上没有的一定不会考,大纲上有的不一定会考。毕竟考试只有23道题目,不可能覆盖大纲上的所有知识点。但是,凡是大纲上提到的知识点,考生一定要认真复习。明确重点与非重点:要求“理解”“掌握”的内容为考试重点和核心考点。要求“会”“会用”“会求”和“了解”的知识点都是非重点内容。非重点内容考试难度与几率较低,但考生也需要掌握。其实,只要考生能够坚持到最后,都能取得好成绩的。

长沮

考研数学大纲发布后需要注意的关键词

每一个考研人都知道,考研大纲对于考研来说非常关键,正确解读考研大纲是考研成功的前提。小编为大家精心准备了考研数学大纲发布后的复习要点,欢迎大家前来阅读。考研数学大纲发布后的复习重点了解对这样的概念、这样的公式和这样的理论,我们只要知道它是怎么样的概念和公式、理论就够了,不需要对它进行更多的讨论,它是怎么来的,用它怎样解决什么样的实际问题的,这个可能应该在以后的问题来讨论,对了解只是知道这个概念它是怎么样的概念,这个公式是怎样的公式,这样的理论是什么样的理论就够了,比方说提到了这样的概念,你就能知道这是在哪个地方的,是哪个问题当中的概念,达到这样的程度就行了,这叫了解。理解这要比了解高一个层次了,我们不仅仅要知道这个概念,而且要知道来龙去脉,这个概念为什么要提出来,从哪一个方面提出来的,这是一个方面,再一个方面对这个概念提出了之后将来要解决什么我要知道,我要达到利用这个概念能够解决我们什么样的问题的目的,就要把这个概念真正做到理解。掌握是所有要求中级别最高的,我们不但知道这个概念、公式或定理,而且要知道它们的来龙去脉,如何推倒出来的,对于这些概念、公式或定理应该不但知道将来能解决什么问题,而且在出现不同题型考察这个知识点时要回灵活运用,达到熟练解决问题的程度。会用这样的词出来之后,这主要是对于某一个概念会用,对某一个结论会用,对某一个公式会用,只要会用这个结论、概念、公式就够了,而对这个概念是怎么来的,对结果是怎么推来的,不追究它的来历,只要会用就可以了,比方说这个公式只要会用了,可以拿它解决问题就可以了,至于是怎么来的不关心。考研数学高数必看的定理证明1、微分中值定理的证明这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。2、求导公式的证明2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。3、积分中值定理该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。4、微积分基本定理的证明该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。考研数学概率复习指导在文字叙述题上下功夫考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。会用公式解题概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。对概率论与数理统计的考点整体把握考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。心理上要重视考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的复习程度。概念不清,只会背不会运用;不能正确地选择概率公式去证明和计算;不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。分析有误,概率模型搞错。

乒乓

21考研数学大纲公布,最后三个月如何复习?

较去年相比,2021考研大纲发布推迟了两个月,今年的数学大纲变动有些多,但是都是一些很小的知识点,不会对各位考生整个复习进程有很大的影响,文都考研小编建议:同学们,不要急,静下心来,比对增加的知识点,按照自己的进度进行调整,抓紧时间复习。文都kao'yan2021考研大纲的发布预示着我们离2021考研只有三个多月啦!对我们是一个重要的提醒,考试又近了一个阶段,那最后三个月我们该如何复习数学呢?接下来文都考研老师给出如下的复习建议,希望对你们有所帮助。一、全面复习,门门跟上考研数学分为三门学科(数学一三,数学二是两科),在这三个多月的时间里,涉及到的三个学科要同时复习,每周都要复习到各学科的知识,以防长时间不复习带来的知识点遗忘,如果遗忘之后在进行下一步的复习会感觉到吃力,从而进入不停翻看知识点的恶性循环,因此做到每一门学科都不落下非常重要。二、夯实基础,重难点突破考研数学考查的大部分都是对基础概念的理解、计算推理和综合解决问题的能力。现在大部分考生都已经结束一轮复习了,但这不代表接下来就可以忽视基础阶段的知识了,只有牢固掌握基础才能继续突破重难点。接下来的时间,我们要多做题目进行练习,熟悉常考题型,总结解题思路,才能在考场上拿到题目不怯场。三、不断练习,掌握方法考生们在最后三个多月的时间里,一定要多多做题,多做真题,通过练习进行强化,提高数学的解题能力和解题速度,才能面对任何试题都可以有条不紊的分析解决。四、及时回顾,加强总结在往届考生的经验分享中,经常会出现做过的题目,再做的时候还是会出错的情况。所以说,每次做错题目的时候要进行总结归纳,最好生成错题集,以便我们及时回顾,看看是哪一方面没有掌握牢固,快速查漏补缺,为冲刺阶段做好铺垫。接下来的三个多月的时间,制定出适合自己的复习计划,保证复习有条不紊进行;同时,坚定信念,保持好心态,拼到最后一定会成功!加油!

十二夜

考研数学大纲大改,一文让你读懂有哪些改动

#2021考研大纲#相信考研数学大纲要大改的消息早就传遍了考研人的朋友圈,毕竟本人在3天前就跟大家打过招呼。时至今日,考研数学大纲真的出来了,具体改革内容你清楚吗?1 分值变化虽然考研数学的总分不会变,但是各科目的占比发生了重大变化。数学一在往年,数学一中高数占据56%,改革后变为60%。线代和概率在往年占比为22%,21考研将降至20%。数学二数学二中高数占据78%,改革后变为80%。线代在往年占比为22%,21考研将降至20%。数学三数学三和数学一的变化一样,分别是高数增至60%。线代和概率降至20%。可以看出考研数学将加重高等数学的比重,想和往年一样突袭线代和概率,只求过线的可能降低了。2 题型变化在往年,考研数学的题型为选择题8题,共32分;填空题6题共24分;解答题9题共94分。改革后变为,选择题10题,共50分;填空题6题共30分,解答题6题共70分。主要是大题分数降低了,选择题变多了,分值也增加了,如果运气好,蒙的全对,考研数学就稳妥了。3 新增考点数学一数学一新增了两个考点:反常积分的敛散性-比较判别法和无穷级数-正项级数的积分判别法。这两个考点均是高数的,可见考研数学将重点放在了高数,弱化了线代和概率论。数学二数学二也是新增两个考点:二重积分中值定理和将矩阵化为相似对角矩阵的方法。其中第一个考点是高等数学的,第二个考点属于线性代数的。数学三数学三新增考点比较多,有6个:反常积分的敛散性-比较判别法;隐函数存在定理;二重积分中值定理;正项级数的根值判别法;高阶常系数线性齐次微分方程和二阶常系数非齐次微分方程的自由项为多项式、指数函数、正弦函数、余弦函数的和与积。这6个考点均属于高等数学知识,可见数三也是在加重高等数学的地位。4 原因分析通过上述解读可以看出,数学一、二、三,均在加重高等数学的比重,新增考点内容也多为高等数学知识。主要原因是,高等数学的难度相对要大,比起线代和概率,它的得分率更低。在研究生扩招,选拔优质人才的当下,加大高等数学的权重能更好选拔优质声援。以上就是关于考研数学的分值、题型、内容3方面的变化,以及变化的主要原因,赶紧转给身边需要的人吧,预祝大家顺利上岸。

柴田

2021考研数学大纲你看懂了吗?

相比往年,2021年的考研数学大纲可谓是发生了十年来最大的变动,接下来,我对2021年数学大纲的变动做一个具体剖析!一、数学整体变化剖析1、试卷内容占比调整2、试卷题型分值变动二、数学具体变动剖析1、数学(一)调整2、数学(二)调整(3)数学(三)调整通过上述改变内容可以看出,本次考研数学大纲变化共48处,其中高数占比较大,共29处,足以看出高数在看考研数学中的地位,因此,在后期复习考研数学的时候,同学们要注重考研数学的复习,尤其是大纲中变化的部分。

若物之外

2021年考研大纲解析-数学篇

叮!考研情报到!面对逐年增长的报考人数,2021年考研大纲有了众多新变化,考研数学更是近十年来最大的一次变动,2021考纲对高数的考察要求进一步提高,不管是考试内容占比还是考试要求上的变动都更多体现在了高数上面。以下为题型结构、内容结构、考试内容三个模块的变动情况:内容结构题型结构考试内容1. 数学(一)数学(一)除高等数学有所变化外,剩余的线性代数和概率论与数理统计相比于2020年大纲均无变化。2. 数学(二)高等数学线性代数对于变动部分,在补充新增知识点的同时,可以用数学(一)历年真题相应部分进行练习,提高实战能力。3. 数学(三)高等数学线性代数数学(三)的大纲内容是变动最多的,许多知识点要求已与数学(一)相同,备考数学(三)的同学可以对变动部分参照数学(一)历年真题进行相应部分练习。蔚然助力深造计划,致力于为各位考研学子保驾护航、逐梦远行。愿:有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。加油,考研人!

俗言胜也

考研数学想拿高分,一定要做到这5点,附:19年考研数学大纲

大家说考研数学难不难?10个同学应该最少有8个觉得难吧!据调查了解,特别是经济类专业的考生而言,考研是他们最大的拦路虎。数学是一门既需要积累又需要技巧的学科。长期以来,"考研难,考研数学难"的论调广为流传并深入人心,不少考生在尚未了解考试内容和题型的时候,就已经对数学望而生畏,把目标和期望值定得很低。"过线就行,差不多就可以"成为比较普遍的心态。这反映在复习中就是消极地应付,而非积极准备。事实上,数学是需要深入钻研的一门学科,要想学好它,首先要消除惧怕心理和畏惧情绪,树立必胜的信心,这样才可以化消极被动为积极主动,才可以在数学的学习和解题中体会到真正的乐趣。这一部分考生需要时常给自己一些正面的心理暗示,坚持下去!数学难,但也有同学考研时候数学考到140多分的,除了他们本身智商因素之外,考研复习要有科学的方法,而说到科学就必然涉及规律一类,有依据才有方法。数学科目要掌握其科目规律及命题规律才能更好的去规划安排。考研数学拿高分必须要做到以下五点1、数学是做出来的;2、考研数学没想地那么难,基础很重要(近两年趋势是越来越重基础);3、考研数学计算量有点大,细致很重要;4、一天至少要花4个小时在数学上(数学大神另说);5、学数学要先喜欢上数学,兴趣很重要。下面小编给大家整理一份数学复习提纲供大家参考不要小看这个数学大纲的作用,它不仅可以让你在复习数学是不会漫无目的,而且可以让你把时间花在刀刃上,效率的最大化。并且把每个章节的对应考研出题方向也给大家标注出来。难易度都用红黑字体区别。建议大家收藏别用 。

旦旦而钓

2020考研大纲正式发布,如何查找?各科考点“增删变改”明细

2020年全国硕士研究生招生考试大纲7月8日(今天)正式发布,真的是让人措手不及。高教考试在线刚开始发布消息说是今年考研大纲将于7月中旬公布,后来有了确切的时间7月13日,再后来就是7月8日正式发布上市。考研大纲发布的时间一再提前,2020考研er也成为了近些年最早公布考研大纲的一届。现在考研大纲已经发布,那么我们应该如何查找考试大纲、最新考试大纲主要有哪些变化,是20考研er目前最关心的事情。今天,惠园教育小编就针对这些考研er比较关心的事情做一个全方位的解析。一、大纲的类别大纲主要分为公共课考试大纲和专业课考试大纲。其中公共课就是政治英语数学。专业课分为三类,分别是教育部统一公布、各大高校及学院公布以及不公布三种类型。其中由教育部统一公布的大纲有:二、考研大纲的作用1、考研大纲非常重要,它是规定当年考研相应科目的考试范围、考试要求、考试形式、试卷结构等内容的权威,当然了,也是官方发布的唯一权威考研指南和命题的唯一依据。2、考研大纲可以理解为是给考研初试划重点,大纲里明确说的不考什么,是绝对不会出现在考题里的(特指政治),但有的内容,比如超纲单词,这个大纲不会明确说明,但绝对是个别的。三、考研大纲的下载渠道1、教育部教育部是主管教育事业和语言文字工作的国务院组成部门,公共课考研大纲和统考专业课考研大纲由教育部统一公布。2、招生信息网站一些招生信息网站,例如考研网上报名的研招网、考研信息等网站都有更新考研大纲的相关信息,在考研大纲公布后考生们可以登录这类网站去寻找自己所需要的大纲。3、报考学校官网每年这个时候,学校就会发布招生简章和考生大纲,所以对于目标院校的官网一定要时刻关注,在这里下载的考研大纲最新切准确度高,这是大部分同学都会选择的一个途径。4、社交平台下载随着网络的不断发展,现在信息获取渠道也变得更加丰富,一些微博、论坛、贴吧之类的社交平台,通过资料分享就可以查看考研大纲,不需要自己去寻找,缺点则是不如官方渠道正规,可信度相对一般。所以需要同学们在官方通知的大纲变动内容基础上,擦亮眼睛,认真辨别。5、考研资讯网站作为专门为考研的小伙伴提供资讯服务的网站,通常会以较快的速度更新考研相关信息、考研大纲相关原文,并且还会同步进行大纲的解析直播。 昨天,由“高教考试在线”联合“微博教育”进行了关于考研大纲的全网直播!各位考研er可以直接查看相关名师关于大纲的解析。四、各科大纲的变化和往年相比今年的考研大纲并没有出现任何“反常”的变化,一切都还在可控的范围之内,大家可以放下心复习备考啦!1、政治:微调“马原”和“中国近代史纲要”这两门课属于轻微调整,基本没有大幅度变化。“毛中特”和“形势与政策”这两部分政治大纲有较大的变化,对于“毛中特”部分,主要是加入了“新中国”思想以及“新中国特色社会主义”理念,这两个新理念是符合当前发展潮流的主流思想,因此“毛中特”的大纲有较大的调整。至于“形式与政策”部分,这一块不用多说,调整幅度是最大的,因为“形式”时刻在变,而“政策”也并非一成不变,因此“形式与政策”的具体考点,还需要细看考研大纲,掌握最新动态。具体关注点如下:马克思主义基本原理概论:重点关注第一章中关于马克思主义鲜明特征知识点的调整。毛泽东思想和中国特色社会主义理论体系概论:从考研大纲变动来看,毛中特变动不大,但回归到考试大纲解析中,一些具体的说法还是有变动的,很明显的体现了中央新精神、新思想。中国近代史纲要:重点关注以下几个调整点:新文化运动、中国共产党成立的意义。对于纲要的复习要重点关注整数纪年事件。思想道德修养与法律基础:要重点关注人生态度、人生矛盾的描述,关于社会主义核心价值观的评价,关于道德修养的描述,关于依法治国和以德治国相结合的描述,关于法律权利与法律义务的关系的描述等等。形势与政策以及当代世界经济与政治:形势与政策考查2019年1月到2019年12月国内、国际的重大时事,特别要重点关注领导人在中外各种场合的重要讲话。2、数学:不变张宇老师很干脆的一点,考研数学大纲没有变化。之前有数学二会增加内容的消息引起考数学二考研er的恐慌,下面给各位考研e吃一颗定心丸:数学大纲不变!考数二的同学们放心吧!而且从这几年的平均得分来看,2020考研数学又是艰难的一年,大家一定要有心理准备。具体关注点如下:注意线性代数的复习强调整体性与连续性,考试考察的时候会和其它知识点结合起来进行考察。3、英语:不考听力,增加单词英语大纲每年都有把过去一年最新的真题和解析补充进去,而且样题也会做更新,这都是每年出版考试大纲的常规操作,可以说跟大家关系不大。 总的来说,英语大纲约等于没变化,只是在局部微调,对于考研备考几乎没有影响,主要改动的是词汇部分,新增了30多个一带一路友好国家、地区名称,这种变动表现出国际文化交流主题需得到重视。如果今年的翻译里面出来了这些地名,则一定要会翻译,否则要扣分。同时,今年的考研作文可以多关注下【国际文化交流】、【文化之间的理解、沟通】之类的话题。具体关注点如下:附录部分的国家名和洲名处有所调整,需要同学们引起注意!五、读懂考研大纲关键词在研读大纲的时候并不是漫无目的的读一遍,而是要注意一些字眼,比如了解、理解、掌握、会用等,从这些字眼就可以看出命题人考试的关键所在。1、了解对这样的概念或者理论,只要知道它的基本概念和公式理论就够了,不需要知道它是怎么来的,用它怎样解决什么样的实际问题的。这个可能应该在以后的问题来讨论,对了解只是知道这个概念它是怎么样的概念,这个公式是怎样的公式,这样的理论是什么样的理论就够了。2、理解这要比了解高一个层次了,不仅要知道这个概念,而且要知道它的来源,这个概念为什么要提出来,从哪一个方面提出来的,这是一个方面,再一个方面对这个概念提出了之后将来要解决什么,要利用这个概念能够解决什么样的问题。3、掌握是所有要求中级别最高的,不但要知道这个概念、公式或定理,而且要知道它们的来龙去脉,如何推倒出来的,对于这些概念、公式或定理应该不但知道将来能解决什么问题,而且在出现不同题型考察这个知识点时要回灵活运用,达到熟练解决问题的程度。4、会用这样的词出来之后,这主要是对于某一个概念会用,也就是而不用管它的来源,只用知道它的使用方法就可以了。知道是要在什么情况下使用它,比方说这个公式只要会用了,可以拿它解决问题就可以了,至于它的来龙去脉不需要太清楚。六、如何使用大纲1、紧盯变化考点,用练习落实考纲新大纲公布出来后,我们应该拿旧大纲对比,找出新大纲变化的内容。其中一些删除了的考点大就可以不用管了。像把考点合并或者拆分的知识点不需要花费太多时间,因为内容大概一致,大家对这些知识点已经复习过了。所以同学们最关注的应该是新增考点。从知识点名称的变化到内容变化,都要认真看清楚,因为这些新增考点很有可能成为考场上的试题。建议考生们多关注对新增知识点的深度解析,有助于加深理解,扩宽知识点外延。2、重视使用顺序大纲作为考试的指挥棒,在阅读的使用顺序上也要讲究方式方法。一定要首先明确考研会考什么内容、有什么样的规律,做到心中有数才能制定正确的复习计划,为走向成功奠定良好的基础。一般来说,放在前面的知识点都是近几年来出现过多次,考得比较频繁的知识点。考生要结合自身的学习情况,根据自身的学习规律来使用考纲。3、用考纲制定策略,用练习落实考纲新大纲发布之后的复习策略,一定要建立在充分熟悉考纲的基础之上。并且一定要落实到具体的练习中,用练习检测自己的考习状况。通过练习来找出忽略的、没完全弄懂的,或者理解错误的知识点,让自己的复习效果达到最优。七、后面如何复习1、政治罗天老师:789三个月不碰大题,跟课程听知识点,整理笔记,比如说土地政策。做选择题,先做真题,再做模拟题,考研英语重基础轻冲刺,政治重冲刺轻基础,政治相对容易突击,大家不要对政治太害怕。2、数学张宇老师:第一,按照大纲要求知识点,点点吃透,偏的知识点,每年都有,今年要引导大家全面复习知识点,不能只看重点,偏的点就不看,每个点好好看第二,知识点是散的,一盘散沙,所以第二条要求大家科学的知识结构,把知识点串起来,知识点之间的联系和构成,形成良好的数学素质和学科的科学体系第三,熟悉套路,当你有了知识体系之后,命题的思路和套路要熟悉,知道命题老师要怎么出题,知识点之间怎么综合起来出题,这都是今年要强调的部分,反反复复扎扎实实念念不忘必有回响,对于陌生的东西都要反反复复做,不要第一遍第二遍不会就放弃了,第三遍再反复就会了第四,对于考试复习,明白两个环节,数学的学习必须要有闭关修炼的阶段,集中大量时间和精力攻克难点的过程,从量变到质变,然后是细水长流,每个人都会遗忘,后面复习英语政治不能遗忘数学,不能学下然后扔掉。看完教材看完书,然后做题,通过每天坚持做习题的好习惯,保持知识点,知识结构和套路,始终让知识点在大脑中重复,一直坚持到考试当天,保障考场的发挥。尤其要避免冲刺阶段背政治背英语而忽视了数学,几天不动笔算算题手就生了。3、英语宫东风老师:第一个是单个单词在短语和句子中意思的考察,而不是单词本身意思的考察;第二个是在阅读理解中最近大家都在研究长难句,考研题目也将侧重短句的考察;第三个是通过题干很难在原文中找到对应的原文,而更倾向于句间逻辑的判断。这几句说的看似高深,其实还是一方面英语基本功扎实,另一方面,对阅读本质更加深入的理解,也属于正常要求。在考试大纲具体的变动上面,宫东风老师也做了一些提示,主要是涉及到大纲词汇的变化,关于大纲词汇方面,英语一和英语二词汇要求是一样的。从今年开始,遇到国家名称,你要会翻译出来,一带一路友好国家名字都在新增的这些词汇这里面,今年的作文也可能考到国际文化交流等相关话题,渗透着教育部考试中心的意志,这个变化是值得深思的。最后,惠园教育小编做一个简单总结:【数学】请继续,复习不受大纲影响,但难度强度暑假要上去【英语】样题真题做参考,单词短语阅读逻辑还是要自己去研究。【政治】大部分同学应该暑期才开始复习政治,政治老师随后应该都会根据大纲对习题体系做一些增补或者修改,大家也是跟着学就可以了。2020考研大纲已公布,希望各位考研er都可以利用好暑期这一黄金备考期,圆梦目标院校。

其生之时

2021考研数学大纲整体变动情况——高等数学

2021考研数学大纲整体变动情况与去年大纲对比,2021年考研数学大纲发生近十年以来的最大变动,数(一)、数(二)变动达48处,接下来从题型结构、内容结构、考试内容三个模块详细分析。一、试卷内容结构变动,共5处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。1.数(一)内容结构中,高等数学分值比例由“56%”变为“约60%”,线性代数和概率论与数理统计比例由“22%”降为约“20%”。2.数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约80%”,而线性代数分值比例由“22%”,降为“约20%”。二、试卷题型结构变动,共7处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。1.单项选择题,有“8小题,每小题4分”变为“10小题,每小题5分”,总分有32分变为50分,分值占比提高。2.填空题,题目数量不变,分值有“每小题4分,总分24分”变为“每小题5分,总分30”,分值占比提高。3.解答题,有“9小题,总分94分”变为“6小题,总分70分”,分值占比降低。三、考试内容与要求变动,共36处。其中高等数学变动29处,线性代数变动7处。第一部分 考试形式和试卷结构1.试卷内容结构调整2.试卷题型结构调整第二部分 考试内容和考试要求1.数学(一)考试要求变动情况第一篇 高等数学一、函数、极限、连续(无变化)考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形。 初等函数函数关系的建立。数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2.了解函数的有界性、单调性、周期性和奇偶性;3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4.掌握基本初等函数的性质及其图形,了解初等函数的概念;5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系;6.掌握极限的性质及四则运算法则;7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法;8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限;9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分学(无变化)考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径。考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;3.了解高阶导数的概念,会求简单函数的高阶导数;4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;6.掌握用洛必达法则求未定式极限的方法;7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分学(有变化)考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念;2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法;3.会求有理函数、三角函数有理式和简单无理函数的积分;4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式;5.①“了解”反常积分的概念”。变为“理解反常积分的概念”,加强对概念的要求;②了解反常积分收敛的比较判别法”。变为“增加”了解反常积分收敛的比较判别法。6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、向量代数和空间解析几何(无变化)考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示;2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法;5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题;6.会求点到直线以及点到平面的距离;7.了解曲面方程和空间曲线方程的概念;8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程;9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。五、多元函数微分学(无变化)考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件。多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用。考试要求1.理解多元函数的概念,理解二元函数的几何意义;.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质;3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性;4.理解方向导数与梯度的概念,并掌握其计算方法;5.掌握多元复合函数一阶、二阶偏导数的求法;6.了解隐函数存在定理,会求多元隐函数的偏导数;7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程;8.了解二元函数的二阶泰勒公式;9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。六、多元函数积分学(无变化)考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用。考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理;2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标);3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;4.掌握计算两类曲线积分的方法;5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数;6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分;7.了解散度与旋度的概念,并会计算;8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。七、无穷级数(有变化)考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数。考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件;2.掌握几何级数与级数的收敛与发散的条件;3.①掌握正项级数收敛性的比较判别法和比值判别法。变为“增加”会用积分判别法。②“会用”根值判别法。变为“掌握”根植判别法,加强对根植判别法的要求”;4.掌握交错级数的莱布尼茨判别法;5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;6.了解函数项级数的收敛域及和函数的概念;7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法;8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;9.了解函数展开为泰勒级数的充分必要条件;10.掌握 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数;11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。八、常微分方程(无变化)考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用。考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念;2.掌握变量可分离的微分方程及一阶线性微分方程的解法;3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程;4.会用降阶法解下列形式的微分方程:5.理解线性微分方程解的性质及解的结构;6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程;7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程;8.会解欧拉方程;9.会用微分方程解决一些简单的应用问题。

轨迹人

注意:2021考研新大纲,数学巨变!与2020版的对比汇总在这里!

考研是越来越多人关注和选择的一条升级之路了。2021年的参考学生可能突破400万!提前一天做好准备,就多一分胜利的希望!2021年的教研大纲是由教育部考试中心编写的,规定了全国硕士研究生入学考试相应科目的考试范围、要求、形式、结构,是一份指导性的文件,大纲一变,试卷就要跟着来。而2021年的大纲看起来,总体上可以认为是数学有巨变、政治有微调、英语基本不变。数学题型分值的变化通过对比可以看出,和往年相比,今年的新大纲加大了客观题、小分值题的比重,去掉了3道大题,但与此同时,选择、填空题的单题分值和总分占比提高了。这意味着在考察考生能力的时候,会更加注重基础知识的考察。平时我们经常讲,即使是选拔考试也不会出过分的难题、偏题,这个变化可以认为是2021年的数学考研还会加强基础知识的比重。基础知识是大家“一看就会,一做就废”的题型,千万不要觉得基础就简单,一定要通过多做多练才能掌握,光看懂和理解明白是不够的,一定要形成条件反射式的解题习惯。数学的科目分值占比变化51教研网整理的对比图根据网上整理的数据,数学一、二、三的试卷中高数、线代和概率的分值占比也发生了较为明显的变化。从上表可以看出,不管是数学一、二、三,高等数学的地位都得到了加强。虽然高数增加的分值并不是特别多,但线代和概率本为不多的分数再减少一点,意味着出题点将会更加集中、重点将会更加突出,也有可能提高出题的要求。数学的知识点的变动我们这里借花献佛,把“宇哥考研”汇总分析的数学考研大纲2021与旧版的知识点变化对比放在了下面。如果说,数学一、二小修小改知识点,那数学三可就是大兴土木了!这个就不详细讨论了,大家可以根据自己的科目对照来看。来自宇哥考研数学复习的关键首先,以努力的不变应万变。不管考研的大纲如何变,努力有步骤地复习是不变的,一定一轮接一轮,扎扎实实地去完成复习计划。第二,做题是不能代替的环节!这是最为关键的,很多人其实数学基础很好,但考研的时候数学没有拿到理想的分数,甚至出现了翻船。一部分原因就在于,数学考研的真题其实看起来是不难的,但是正儿八经考试的时候,得高分又是不容易的。所以也是我们常说的,一看就会、一做就废。如果不是大量的练习,是无法形成条件反射式的解题思维的。考研的时候咱要不谈点应试教育,您就真输了!第三,重视基础!同志们,2021年的选择、填空可是5分一个啊,丢不起啊!既然是只有5分,又是选择和填空,也就意味着综合性不会太强,对应的知识点构成不会太复杂,如果基础题的求解能力好,这可就是送分;但如果基础题做不了,那可就死翘翘咯!结语总的来说,这次2021数学大纲的修订应该是科学的,400万人参考,试卷批改量都要大不少,这样修改大纲,也是让考试走向标准化的一个过程。对考生来说,笔者还想再强调一次基础的重要性,要死抓基础题不放,多做,有能力做到市面上的题都做光,一定没问题。有人说这不现实,可笔者当年就是这样的,所以当年考完数学就知道自己多少分了,因为除了自己放弃的一道题外,其余的都有把握是正确的。你怎么看今年的数学大纲变化呢?还有什么精彩的?这几类同学考研基本是当“炮灰”,不如就业,你属于这类人吗?这位同学读个硕士,却被建议破格授博士学位?上一次可是院士哦!心塞:这些学校今年扩招太猛,全日制研究生也不提供宿舍了突发:美国一大学无理由驱逐所有中国公派留学生,限1个月内离境来也来了,看也看了。转发不掉肉,关注更有情!