历年的研究生考试当中,考研数学都是很多考生的拦路虎。而在考研数学中,概率统计部分又是部分同学的老大难。为了帮助考研同学更好的迎接新一年的研究生考试,小编整理过去十年的数学考研真题。经过小编认真研究,现将历年真题中存在一些规律,进行归纳总结,希望能够对正在考研复习的2020年考生有所帮助。一、2010年~2019年考研数学一概率统计中出现的主要知识点根据2018年最新的考研数学大纲,数学一考查的内容一共包含八章内容,这八章内容在一般的概率统计教材应该都是可以找到的。如图:考研数学的大纲近十年来基本上没有发生什么大的变化,小编估计2020年也不会发生很大的变化。所以,在目前阶段我们完全可参照2019年的考研大纲有针对性的进行复习。通过对近十年的考研真题的分析,研究生考试中的题目实际上是有一定的侧重点和规律性的。由于篇幅所限,在此小编简要介绍常考知识点和侧重点,详细介绍另文介绍。第一章,随机事件和概率是整个考研数学概率统计的基础,本章的知识点都是一些基本的定义和运算。一般情况,这一章的知识点不会单独拿出来考一个大题,考查形式都是融合到了后面各章知识点来考查。第二章随机变量及分布是作为第三章多维随机变量及分布的基础。因此在这两章中,考试题目主要出现在多维随机变量这一部分。多维随机变量这一章是研究生考试出题的重点章节,可以说每年必考,每年只是考试形式的改变而已。第四章随机变量的数字特征,这部分内容也是作为基础,重点在掌握基本的概念和性质。本章的知识点,不会单独考查,主要有两种考察形式:1.作为大题中计算完成之后,顺带着求个期望或者方差;2.作为计算题计算过程中需要用到的知识点。第五章.大数定律和中心极限定理,这一章的知识点不太容易出现在大题中,所以在以往的真题中,近十年只有一年的题目中用的了大数定律,其余各年本章知识点没有考查过。第六、七、八章是统计部分,这三部分重点在第七章参数估计。而参数估计这一章中,重点又在点估计的两种方法:矩估计法和最大似然估计法。近十年的研究生考试中,矩估计考了三次,最大似然估计法考了九次,几乎年年必考。最大似然估计法是概率统计所有知识点中考查次数最多的一个。而区间估计和假设检验则考查相对较少,近十年中各考查了一次,而且还是填空和选择的形式。二、近年考研数学一概率统计主要知识点的考查趋势小编将近十年的考研真题做了统计,考研数学的考试题目仍然是以考查基础为主。随便拿出哪一个题目来看都没有超纲或者特别难、怪的题目。比如多维随机变量和参数估计这两部分是每年的考试重点,几乎每年必考。小编以这两章的题目为例给大家解析,为什么考查的就是基础知识,很多同学却不会做呢?多维随机变量中考查的题目,在考研大纲中要求的就是二维随机变量,实际考查的也是二维随机变量。在前些年考试考查的都是单纯的离散型随机变量或者连续型随机变量,也就是题目当中的二维随机变量的两个随机变量类型相同。类型相同的二维随机变量是平时连续较多,相对简单的题目。而近年来,考查的二维随机变量更多的是一个是离散的,另外一个是连续的。这类二维随机变量在日常学习中较少遇到,这给考试学生增加一定的难度。参数估计这一章的知识点考查的内容和形式相对固定,也是考查重点之一。前面小编介绍过,参数估计这一部分的最大似然估计几乎是每年必考,并且形式固定。近十年考题中,这个知识点考查了九次,全部都在整张数学试卷的最后一题(23)。并且,在这九次考查中,问题几乎完全一样:求相关参数的最大似然估计。方法也基本一致:除去2015年另外的八年完全可以按照常规方法求出来。所用的方法大家都非常熟悉:1.写出似然函数;2. 对数似然函数;3. 求最大值(求导数等于零);4.解出相关参数。另外,区间估计和假设检验在前些年没有考过,只是在2016年填空形式考查了区间估计。2018年考查了假设检验的相关内容。但是,即使这两年的考查中,只要理解的相关内容就可以很多写出结果,根本不需要那些繁琐的公式。三、在考研数学一考试中概率统计哪些知识点会成为测2020年考研考试的热点?根据以上整理的主要知识点和近十年主要考点,小编也斗胆预测一下2020年研究生考试那些知识点会成为考试的重点。首先,考查基础知识这样的主基调一定不会改变。就像第一、而章这样的基本知识章节,可能不会单独的出题目来考查,但是这些知识一定不会缺席。这些知识完全可以融合到其它知识点中去考查。换句话说,离开这些基本概念其它知识点的题目也不可能顺利完成。比如,多维随机变量的相关题目必然会用到一维随机变量掌握知识;数理统计的相关题目一定会用到随机变量的数字特征。所以,基础知识一定是考研学生复习的首要任务。具体的知识点,最大似然估计法过去十年考查了九年,根据统计知识,2020年考查的概率还是非常大的。另外,在考研数学概率论中计算完统计量之后,考查一下无偏性和有效性也是顺便的事情。区间估计和假设检验在早期从没有考查过,但是在近几年出现了两次,这是不是一种要加强考查这部分知识点的信号呢?当然,这只是小编个人见解和猜测,类似的规律大家都可以去从往年考研真题当中去寻找。四、如何复习应对考研数学一中概率统计相关题目呢?每个人的情况不尽相同,首先根据个人实际情况,趁着时间还来得及,制定详细的复习计划。在研究生考试中考查题目几乎都是考查我们日常学习中的基础知识点。只是,有些知识点在考试中考查方式与我们平时学习的不太一样,导致不太习惯而已。所以,在复习中首先要重视相关的基础知识的理解,在充分理解的基础上,将考研题目和日常学习中的不同点找出来重点练习。比如,小编前面谈到过的混合型二维随机变量。另外,数量统计部分,大部分同学普遍感到公式多、大,不好记。实际上,数理统计大家也应该把重点放到基本概念的理解上,真正的理解了基本的概念和原理,公式自然就能够记住,甚至根本都不用去记忆哪些公式。比如,小编前面提到的区间估计和假设检验过去十年考查过两次,实际只要真正理解了相关的概念,根本不用公式直接就可以看出结果。因此,对于研究生考试中概率统计部分的复习,要具体情况具体分析。对于前四章的知识点(概率部分),主要以记忆相关公式,多练习为主;而对于后三章(数理统计部分),把重点放到理解上。
2020考研数学大纲发生了哪些变化?答案是:0。是的,你没有听错,相比于2019的考研大纲,考研数学一二三的所有科目加到一起没!有!变!化!试卷内容结构上:数学一、数学三中,高等数学、线性代数、概率论与数理统计占比依旧为56%、22%、22%。数学二中,高等数学、线性代数分别占比78%、22%。试卷题型结构上:永远的“869”,即8道选择、6道填空、9道解答。试卷分数上:选择、填空每题4分,共56分;解答题共94分。2020考研数学:怎么正确运用全新的考研数学大纲?今年的考研数学大纲“0”变化!2020年考研数学大纲可以说是2019年的大纲换了个“帽子”。不仅如此,2010-2019,十年的时间里,考研数学大纲只有一处知识点名称的变化。那么,该如何正确运用考研数学大纲这个“新古董”呢?明确考试范围:大纲上没有的一定不会考,大纲上有的不一定会考。毕竟考试只有23道题目,不可能覆盖大纲上的所有知识点。但是,凡是大纲上提到的知识点,考生一定要认真复习。明确重点与非重点:要求“理解”“掌握”的内容为考试重点和核心考点。要求“会”“会用”“会求”和“了解”的知识点都是非重点内容。非重点内容考试难度与几率较低,但考生也需要掌握。其实,只要考生能够坚持到最后,都能取得好成绩的。
众所周知,只有关注大纲原文,知晓大纲变化,才能更加高效复习哦线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.
2020考研大纲已经发布,其实相比于往年,数学的内容没有太多变化,而线性代数的部分,知识点成网状结构,各知识点之间彼此都有联系。现在前三章内容是铺垫,后面的知识点相互串联,考试考察的时候,会相互结合来进行考察,因此线性代数的复习更强调整体性与连续性复习,而想要实现有效复习,我们需要做到以下几点。考研数学大纲一、深入理解基础概念,熟练运用基础运算根据往年的阅卷统计结果,在线性代数科目上,考生的失分点主要在集中在基本概念、基本定理、基本性质掌握不牢固、理解不透彻上。由于线性代数的基本概念太多,甚至很细碎,以至于很多考生到了考场上,面对题目不知道用哪个公式,用哪个性质去算,这主要是因为基础不扎实的缘故。这就要求基础阶段在复习过程中,要根据线性代数大纲要求的内容,进行全方位复习,在复习过程中,前三章的内容要打扎实,在学习基本概念的同时,要深入理解概念,学习的时候将知识点进行前后联系,相互串联,抓住核心——矩阵的这个概念,贯穿线代学习的整个过程。二、以考试重点为依托,有效学习线性代数的知识点很多,但根据考研大纲要求,重要的或者说常考的知识点包括:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。以考试重点为依托,在常考知识点上,多投入精力,强效复习,才能事半功倍,有效提分。三、整体复习遵从“一条主线,两种运算,三个工具”一条主线是解线性方程组,两种运算是求行列式、矩阵的初等行(列)变换,三个工具是行列式、矩阵、向量。解线性方程组是难点。与很多知识点有或明或暗的联系,这就要从两种运算出发,结合三种工具,进行有效复习,同时在强化阶段,结合题目进行大量练习,注意提高自我基础运算能力,接触知识点的时候,注重前后联系,相似知识点不要混淆,清晰记忆。考研对线性代数的考察,更注重的是对基础知识运用的考察,复习过程中一定要注意对基础知识点的掌握,前后知识点的串联,同时提升基础运算能力,加强训练,有效提升,实现高分。
2021 考研数学大纲整体变动情况经与去年大纲对比,2021 考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。接下来我们从题型结构、内容结构、考试内容三个模块来说一下各部分内容的变动情况。一是试卷内容结构变动,共 5 处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。第一,数(一)、数(三)内容结构中,高等数学分值比例由“56%”变为“约 60%”, 线性代数和概率论与数理统计分值比例都由“22%”降为“约 20%”;第二,数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约 80%”, 而线性代数分值比例由“22%”降为“约 20%”。二是试卷题型结构变动,共 7 处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。单项选择题,由“8 小题,每小题 4 分”变为“10 小题,每题 5 分”,总分由 32 分变为 50 分,分值占比提高;填空题,题目数量不变,分值由“每小题 4 分,总分 24 分”变为“每小题 5 分,总分30 分”,分值占比提高;解答题,由“9 小题,总分 94 分”变为“6 小题,总分 70 分”,分值占比降低。三是考试内容与要求变动,共 36 处。其中高数部分变动 29 处,主要集中在数(三),线代变动 7 处。在这些变动中,约 80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数(一)考试要求。总体来看,2021 考纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是考纲变动的部分。2021 新大纲发布后考研数学备考策略2021 大纲已经发布,今年考研数学大纲发生近十年以来的最大变动,不仅考试要求发生变动,而且在高数、线代、概率的分值占比和试卷结构上也进行了调整。针对这些变动, 该如何安排接下来的复习呢?针对新考纲的变动给各位考生 一些备考方面的建议。一、高等数学考试要求:(1) 考查考生对微积分学的基本概念、基本理论、基本方法的理解和掌握。(2) 考查考生抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。变动情况与备考建议:1.数(一)考纲变动只有两处:一元函数积分学和无穷级数,变动的着重点在解题方法的掌握上。关于概念和一般解题方法,大家的日常练习中基本已经接触到,这里提醒各位考生注意的是新增“会用积分判别法”这一条,提到了“会”这个字眼,某些题目的解答中可能会用到这种方法,练习中遇到这类题目一定要注意积累。在备考方面:(1) 数(一)的考纲内容基本没有实质性变化,除个别变动的地方,按照之前的备考内容进行备考即可。(2) 对于变动部分的内容,加强概念和解题方法的掌握,多进行题目练习。2.数(二)数(二)考纲变动集中在两处:多元函数微分学和常微分方程,变动的着重点在对概念的理解上,加强了对概念理解的要求程度。这些变动中,数(二)的同学要关注的是线性微分方程解的性质及解的结构,不再局限于“二阶线性微分方程”,考查范围扩大,所以在后面的复习中一定要加强此部分题目的练习。在备考方面:(1) 对于未变动部分,按照之前的复习节奏进行复习即可。(2) 对于变动部分,在补充新增知识点的同时,可以用数(一)历年真题中对应部分的题目进行练习,提高实战能力。3.数(三)高数考纲的变动中,数(三)的变动最大,变动内容不仅包含对概念理解程度要求的提高,还有对解题方法的掌握程度上,部分内容的考试要求已经接近于数(一)的考试要求。在备考方面:(1) 在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(能)两个层次的要求,一般来说,要求理解的内容,要求掌握的方法,才是考试的重点。这些在历年考试的考题中出现的概率较大,在同一份试卷中所占的分数也较多。所以数(三)的同学在拿到考纲之后,先不要急于立刻补充新增知识点,而是在这些变动中找到要求变动为“理解”、“掌握”的这些地方,重点补充,重点练习。(2) 通过今年的考纲变动可以发现,数(一)、数(三)统考的内容中,数(三)的考试要求已经接近数( 一 ),考试要求提高。所以在后期的复习中,关于习题的练习,数( 三 ) 的同学也要做一下统考部分数(一)的真题,提升自己的解题能力。二、线性代数考试要求:(1) 考查考生对线性代数的基本概念、基本理论、基本运算的理解。(2) 考查考生的抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。变动情况与备考建议:1.数(一)数一的线性代数考试内容没有变动,数(一)的同学,按照之前的复习内容直接备战即可。2.数(二)线性代数中数(二)的变动,集中在两个地方:线性方程组和二次型,提高了对解题方法的掌握。因此在备考方面:(1) 加强线性方程组和二次型的题目练习。(2) 注重对线性方程组和二次型的解题方法的掌握,练习过程中,加强对线性方程组和二次型的解题方法的积累。(3) 适当做一下数(一)真题中线性方程组和二次型的题目。3.数(三)二次型是数(三)线性代数中唯一变动的地方,对二次型及其矩阵表示和用正交变换化二次型为标准形的方法的考试要求从“会”变为“掌握”,加强了考试要求,在今年的考题中出现的概率加大,因此数(三)的同学,一定要重视二次型这部分题目的练习。关于备考建议:(1) 回顾教材中关于对二次型及其矩阵表示和用正交变换化二次型为标准形的方法的内容。(2) 加强对二次型题目的练习,尤其是对二次型及其矩阵表示和用正交变换化二次型为标准形的方法这两部分。三、概率论与数理统计考试要求:(1) 考查考生对研究随机规律性的基本概念、基本理论和基本方法的理解。(2) 运用概率统计方法分析和解决实际问题的能力。变动情况与备考建议:概率论与数理统计的考纲内容无变化,关于备考建议:(1) 抓住命题特点,划分次重点复习。重点掌握要求理解的内容,要求掌握的方法。(2) 寻找命题特点,把握出题规律,重点突出。在结合往年命题规律的基础上,有重点的进行复习,例如概率论第三、四、七章,每年考查的概率一般会在 80%以上,而且常会以大题的形式出现,这部分就要加强复习,加大投入时间,而古典概型与几何概型这部分,一般只考一些简单的概率计算,因此只掌握一些简单的概率计算即可。(3) 重视概率与高数的联系,提升综合思考的能力,通过习题练习,提升实战能力。四、备考时间规划考研数学总分 150 分,在考研备考中的重要地位不言而喻,如何在剩下的时间高效备考呢?接下来我们从时间的角度给大家一些备考建议。9~10 月份,以真题为引,结合考纲变动,针对性学习基础较好的同学,如果你已经结束强化阶段的知识点的复习,接下来的复习,可以真题为主进行实战练习,尤其是近十五年的真题,一定要认真做,反复训练,找出错误点,查漏补缺。同时针对大纲变动的部分,练习的同时,补充新增知识点,增强训练。数(二)、数(三)的同学,针对变动的部分,可以适当做一下对应内容数(一)的题目,提高解题能力。起步比较晚的同学,9 月份开始,你的强化可能还没结束。这个时候不要慌,做好个人复习规划,9 月末之前一定要完成强化阶段的复习,开启真题训练。时间虽紧,但一定不要操之过急,学习质量比学习进度更重要,学一点会一点,不要潦草学完,还是不会,不仅浪费了时间,还影响了复习心态。11 月份~考前,查漏补缺为主,习题练习为辅,重点突出将基础、强化、真题练习中的错误点和不足点,系统复习一遍,尤其是考纲中要求标记为理解”和“掌握”的地方,要重点复习。复习的同时,也要时常进行限时模拟训练,积累临场经验,对于重点的题目,要总结规律和方法重点提升,但注意一定要有重点的看,不可贪多。以上是新大纲发布后考研数学备考策略建议,祝愿考生们顺利上岸,一战成“硕”!想了解更多精彩内容,快来关注硕博学霸说考研
考研百科说明 考研百科是全新栏目,每天为大家用精炼的语言科普考研基础常识,以及基本常识性问题,帮助广大考研小小白快速上车~考试内容不同(一)线性代数数学一、二、三均考察线性代数,所占比例均为22%,而且是数一数二数三考试内容中差别最小的科目,很多年份,考研真题线代部分都是完全一样的,唯一不同的是数一的大纲中多了向量空间部分的知识。(二)概率论与数理统计数学二不考察,数学一与数学三均占22%,从历年的考试大纲来看,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件(三)高数数学一、二、三均考察,而且所占比重最大。数一、三的试卷中所占比例为56%,数二所占比例78%。,数一考察的范围是最广的;数二不考察向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数;数三不考察向量空间与解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。而且侧重有所不同理工类(数一数二)要考微积分的物理应用,而经济类(数三)相应的内容则换成了经济学应用。数三强调级数,数一强调曲面积分温馨提示一般来说数一是考的全面而且相比数二数三来说要难很多。数二虽然考查范围少,但是高数的内容考的很细。数三考的也相对全面主要针对经济类考生。还未确定专业考数学几的考生可以从高等数学的极限、一元函数微分学、一元函数积分学、不定积分、定积分、不定积分的应用、多元函数微分学、微分方程和二重积分等必考公共内容入手,确定好后就要着手开始其他科目的复习啦
经文都考研老师仔细与2020考研数学大纲对比后发现,2021考研数学大纲发生近十年以来的最大变动,数(一)、数(二)、数(三)变动达 48 处。2021考研数学大纲在试卷内容结构方面,共 5 处变动。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。数(一)、数(三)内容结构中,高等数学分值比例由“56%”变为“约 60%”,线性代数和概率论与数理统计分值比例都由“22%”降为“约 20%”;数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约 80%”,而线性代数分值比例由“22%”降为“约 20%”。 高等数学以数一为例,在一元函数积分学这一章节中,要求理解(2020是“了解”)反常积分的概念,(新增)了解反常积分收敛的的比较判别法,会计算反常积分;无穷级数要求掌握正项级数收敛性的比较判别法、比值判别法、根值判别法,会用积分判别法.(2020年是:掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.)线性代数以数二为例,在矩阵的特征值和特征向量这一章中,要求理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法(2020年是:会将矩阵化为相似对角矩阵),掌握(2020年是:理解)实对称矩阵的特征值和特征向量的性质。数学二次型要求掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.(2020年是:了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念),掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.(2020年是了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形).
每一个考研人都知道,考研大纲对于考研来说非常关键,正确解读考研大纲是考研成功的前提。小编为大家精心准备了考研数学大纲发布后的复习要点,欢迎大家前来阅读。考研数学大纲发布后的复习重点了解对这样的概念、这样的公式和这样的理论,我们只要知道它是怎么样的概念和公式、理论就够了,不需要对它进行更多的讨论,它是怎么来的,用它怎样解决什么样的实际问题的,这个可能应该在以后的问题来讨论,对了解只是知道这个概念它是怎么样的概念,这个公式是怎样的公式,这样的理论是什么样的理论就够了,比方说提到了这样的概念,你就能知道这是在哪个地方的,是哪个问题当中的概念,达到这样的程度就行了,这叫了解。理解这要比了解高一个层次了,我们不仅仅要知道这个概念,而且要知道来龙去脉,这个概念为什么要提出来,从哪一个方面提出来的,这是一个方面,再一个方面对这个概念提出了之后将来要解决什么我要知道,我要达到利用这个概念能够解决我们什么样的问题的目的,就要把这个概念真正做到理解。掌握是所有要求中级别最高的,我们不但知道这个概念、公式或定理,而且要知道它们的来龙去脉,如何推倒出来的,对于这些概念、公式或定理应该不但知道将来能解决什么问题,而且在出现不同题型考察这个知识点时要回灵活运用,达到熟练解决问题的程度。会用这样的词出来之后,这主要是对于某一个概念会用,对某一个结论会用,对某一个公式会用,只要会用这个结论、概念、公式就够了,而对这个概念是怎么来的,对结果是怎么推来的,不追究它的来历,只要会用就可以了,比方说这个公式只要会用了,可以拿它解决问题就可以了,至于是怎么来的不关心。考研数学高数必看的定理证明1、微分中值定理的证明这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。2、求导公式的证明2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。3、积分中值定理该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。4、微积分基本定理的证明该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。考研数学概率复习指导在文字叙述题上下功夫考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。会用公式解题概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。对概率论与数理统计的考点整体把握考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。心理上要重视考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的复习程度。概念不清,只会背不会运用;不能正确地选择概率公式去证明和计算;不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。分析有误,概率模型搞错。
叮!考研情报到!面对逐年增长的报考人数,2021年考研大纲有了众多新变化,考研数学更是近十年来最大的一次变动,2021考纲对高数的考察要求进一步提高,不管是考试内容占比还是考试要求上的变动都更多体现在了高数上面。以下为题型结构、内容结构、考试内容三个模块的变动情况:内容结构题型结构考试内容1. 数学(一)数学(一)除高等数学有所变化外,剩余的线性代数和概率论与数理统计相比于2020年大纲均无变化。2. 数学(二)高等数学线性代数对于变动部分,在补充新增知识点的同时,可以用数学(一)历年真题相应部分进行练习,提高实战能力。3. 数学(三)高等数学线性代数数学(三)的大纲内容是变动最多的,许多知识点要求已与数学(一)相同,备考数学(三)的同学可以对变动部分参照数学(一)历年真题进行相应部分练习。蔚然助力深造计划,致力于为各位考研学子保驾护航、逐梦远行。愿:有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。加油,考研人!
研究生考试考研大纲里划定了研究生考试科目的考试范围、考试要求、考试形式以及试卷结构,对考生备考至关重要!2021年考研大纲在9月9日正式公布!请各位考生知晓并及时关注!本文中公考研为大家整理分享“数学考研大纲变化”相关内容。在往年数学大纲都是很稳定的,但是今年数学大纲有调整,其变化程度为近几年较多的一次,其具体变化情况,中公考研已经为大家进行整理“2021年考研数学考研大纲变化分析(数一、数二、数三)”!研究生考试考研大纲里划定了研究生考试科目的考试范围、考试要求、考试形式以及试卷结构,对考生备考至关重要!2021年考研大纲在9月9日已经正式公布!请各位考生知晓并及时关注!本文为大家整理分享“2021年考研数学考研大纲变化分析(数一、数二、数三)”相关内容。在往年数学大纲都是很稳定的,但是今年数学大纲有调整,其变化程度为近几年较多的一次,其具体变化情况,中公考研小编已经为大家进行整理!自从2009年数学(三)和数学(四)合并后,考研数学大纲一直没有新的变化。但是今年数学考纲变化比较大。今年的变化也让数学直接站大纲变化的C位。变化一:试卷结构调整数学总体题量由之前的23道题目变为了22道题目,其中选择题增加为10道,每道题分值为5分,填空题题目数量没变,但是每道题分值增加为5分,解答题总分值降到70分,题目数量也降低到6道。客观题的增加说明了,选择题增加对考生的基本功要求增加。数学的选择题只有0分和5分这两个分值,每一道题的选择题都非常重要。在过去解答题目数量多,就算大家计算结果有误,也会有过程分,但是选择题占比大后,得分更难,对大家的计算能力也要求更高。所以,大家在未来复习中,有涉及到计算的题目,不仅在于会与不会,也在于能不能自己动手把答案又快又准地计算出来。总之,这样的试卷分值的改变,让研究生入学数学考试更加公平、公正,而且也方便阅卷老师提高阅卷效率。这次的大纲调整,可以分析得出以下结论:1. 结果的重要性提升2. 试题题量变少,分值升高,考查的综合性也会提高3. 解答题的命题点会向后迁移4. 总体难度下降接下来我们看一下具体考点的变化。变化二:考点增删及改动数学一:反常积分增加反常积分敛散性的比较判别法、无穷级数增加积分判别法。数学二:数学三:从上述改变内容,可以看出,数学二和数三与数一的公共部分,考查难度趋同。数学复习方法大家要稳扎稳扎,夯实基础。因为数学变化比较大,大家需要增强好自己的基础,重视计算能力的培养,在平时做题中,不能只是认为自己懂了,而是一定要自己算一遍。否则差之毫厘,失之5分。依旧要重视过去考过的试题,考研数学题目没有过时,给大家举个例子:曾经1987年的考研试题中的两个选项,在2015年中原封不动地出现。数学的过去的考试试题有2000余道,大家需要把过去的试题进行做熟。此外,大家一定要进行考前模拟。特别是要根据今年的题型变化进行模拟考试。数学如果没有发挥好,很可能造成30-50分的差距。最好在考试之前,做过10-20套根据新大纲调整后的模拟试题。