如果喜欢这类教育分享文,请关注作者,并及时留言沟通,作者会根据读者的需要每日更新。01很多人都会有这样的思想,就是觉得数学最重要的不就是做题和练习吗?背诵是文科才需要做的事情。这句话是不错,和文科相比,数学科目是不注重背诵。但是有些数学公式如果你背了下来,那么在考研的过程中,可以起到事半功倍的效果。别人花10分钟做出来的题,你2分钟靠公式就可以解决。既然如此,又何必自己费心费力去推导呢?最主要的是,在真正考研的考场上,你可能会大脑空白,所以记清这些公式可能比你慌慌张张去推导的正确率高很多!接下来我们就来看看,每个考研人都必须记住的公式,如果还没有记住你就已经比别人落后了!021、泰勒公式这些幂级数展开式虽然可以根据泰勒公式推导,但是也需要一定的时间,如果你能直接记下来,那可以帮你节约不少时间。特别是,2018年的考研还考到了呢。2、定积分常用公式定积分的一些公式在积分的时候简直不要太好用!就是看你能不能想得起来,最后一个是著名的“点火公式”,你有听说过吗?3、特殊的积分公式这些公式真的不要太有用啊!特别是最后两个,当年我考研的时候怎么也背不下来,但是一旦记下来积分基本就没有问题了。4、等价无穷小这几个公式可以说是极限的基础,想必大家都不陌生。但是我要强调的是最后三个,用的少,但是一旦考到如果你可以直接给出答案,就会比别人快很多,要注意正负哦!如果实在忘记了,可以用泰勒公式自己推导出来。03考研真的很不容易,经历过的人都知道,那是一段什么样的日子。所以加油吧,记住这些公式,按部就班地学习,相信你一定会实现你的目标!END.
考研倒计时进入了61天,还有最后的两个月。从往年的考研数据来看,最难的考试科目应该属考研数学了,平均分并不高,以下数据是近11年考研数学的平均分变化,可以看到分数并不高,低的时候只有60分左右,高的时候也只有85分左右。今天学习考研帮想和大家分享考研数学必须要记住的53个公式,如下。数学虽然是理解性和技巧性为主的科目,但是依然有很多公式和知识点需要记忆。公式作为考察基础一部分的同时,又是很重要的解题工具。公式运用得巧妙,数学题也就解的快速、漂亮,自然容易得分。考研数学的复习过程是一个量变到质变的过程,只有把知识点都理解透了,看到新的题型的时候才能迅速地找到突破点,然后得分。那些考高分的学霸能把各类数学公式举一反三,这样在做题的时候能用最简单的方法做出答案。关于考研数学,你觉得难吗?欢迎留言分享你的问题。
三角函数想必让一些同学真的是很头痛的知识点,它不仅变化多端,而且技巧性很强。有时候你稍微不注意,没有弄清楚题目的变化,题目可能就要全军覆没。在考研备考复习过程中,三角函数这块知识点也是必不可少的。考研涉及的关于三角函数的知识点考查形式很多,比如有关三角函数的等价无穷小代换、万能公式代换积分、涉及三角函数的微分方程……今天先给大家分享一些结论性的三角函数积分知识。1.如下图的第一个公式涉及三角函数的换元变换积分,然后再结合函数的奇偶性可以直接推出答案。第二个公式结合函数的奇偶性直接可以得出结论。2.有兴趣的读者可以自行推导证明一下,注意和上述第二个公式的区别。这两个结论对于一些同学可能还是不太好证明的,但是大家可以自己取值验证一下。我认为就考研数学而言,它主要会在选择填空类型的题目中会有所涉及(主要根据数二而言,因为我解除最多的也是数二)。既然是选择填空,我们就可以用选择填空题的技巧来解题,不必大费周折地去推导,毕竟在考场上没那么多时间。如果你真想自己证明,那你也可以等到下了考场再去证明或者你现在就证明。3.看下图,是不是觉得很有意思?是不是感觉很熟悉呢?的确和上边刚说的结论看起来是一模一样,其实不然,积分区间不一样!一定不要大意。这个公式结合1和2与函数的奇偶性是很容易推导的,但这不是重点,主要的目的是大家一定要记清楚,不要弄混淆了。4.华里士公式。经常看我发文的朋友都知道这两天一直在说华里士公式,不是说考研一定会考,但是我敢说如果考到了你可以节省很多精力。如果你很熟悉这个结论,碰到相关的选择填空题的时候答案信手拈来。今天就先给大家分享这么多吧,三角函数公式有很多,而且变化也有很多,同时有关三角函数的知识点从来不会缺席考研数学。希望这些结论性的知识点大家自行记忆,希望在你下次遇到时,这些结论可以给你带来帮助。如果觉得对考研数学的复习有所帮助,记得分享给身边一起奋战的研友,大家一起学习、一起进步。预祝大家考研成功。
首先,笔者为自己昨天犯的错误给大家道歉,昨天的文章中确实把莱布尼茨公式的系数给漏掉了,希望同学们自己亲自翻翻课本以加深记忆。今天给大家分享几种常考的参数方程图像和函数图像,希望同学们加以重视,基础好的同学们来加深一下印象同时来看一看笔者有没有又弄错什么,以免给大家带来不便;基础不太好的同学呢,最好能加倍重视,因为到了这个时候,能多记住一些知识点就多记住一点,它们总会帮助你拿分的。其次,今天给大家分享的是几种参数方程图像和函数图像(反三角函数图像)。这些知识点有什么重要的呢?(重申一点:笔者主要针对数二)大家如果做过18数二真题,或许都记得大题里的那道二重积分题目吧。其实考的很简单,但是给的参数方程的区域如果大家平时不注意可能就一时想不起来那是什么线。一但我们在考场上想不起来区域怎么画,这道题基本上就是废了。这就意味着将近十分就没有了,试问你的政治学多好才能比别的同学多考十分?基本不可能的,大家都是差不多的。所以,笔者认为数学是你提高分数的最佳科目,掌握好基础知识帮助你提高分数才是最重要的事情。1.星形线(内摆线的一种)2.摆线没错,18年数二考的就是这种形式,几天前还看到一些考研交流群在问这种区域怎么画。不知道你们知不知道它的区域,可见一斑,希望同学们加以重视吧。当然不只是摆线,其他的也要重视!3.心形线(外摆线的一种)同学们想必都熟悉心形线,因为一些考题喜欢考结合心形线考查弧长,有一些结论性的知识点希望同学们自己去推导算一下。4.伯努利双纽线5.三叶玫瑰线和四叶玫瑰线最后是大家一定要记住的反三角函数图像,有的同学的确还真不会画这些基础的东西,到这个时候了,希望同学们自己结合自己的情况自行重视。
由于考研数学每年第一道大题,往往会是求极限,偶尔是求不定积分值。在统计极限题目的计算中,我们发现考生很多时候利用导数计算,结果往往使得计算变得非常复杂,同时,导数过程中会出现分母少提了一下系数,结果导致整个大题10分被扣——这是非常可惜的!今天在考研复习的黄金暑假,我和大家一起来针对考研真题中出现的求极限大题,一起来分析一下,帮助同学们掌握正确、高效的解题思路!首先,我们看看是哪8个泰勒公式。在实际解题中,公式1、2、4出现的概率比较高,我们通过网友的一道解题来讲解一下:这道题网友采用了导数的基本计算规则,结果计算错误而且过程繁琐,系数非常容易提错。那么,如果用泰勒公式之后,是什么效果呢?解题如下:显而易见,通过泰勒公式的代入计算,过程变得清晰明朗,并且 不会出现因为提系数导致的出错!简单、清晰的拿满分这才是我们做题的目的!下面,我们通过2019年数一考试大纲,来一起回顾一下,看看大纲中对这部分是怎么要求的。另外特别提醒大家一句:很多时候,我们都是直接拿着全书开始复习,忽略了大纲,实际上所有全书都是以考研大纲为主,我们抽时间对照大纲看全书是非常有必要的!一定要切记、切记!以下附带部分为考试大纲针对极限要求部分:一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.2.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.3.掌握极限的性质及四则运算法则.4.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.5.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.6.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.7.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、导数和微分 1.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.2.了解高阶导数的概念,会求简单函数的高阶导数.3.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.4.掌握用洛必达法则求未定式极限的方法.希望大家2020年考研调整心态,努力冲刺,抓住该抓住的满分大题!
摘要:有很大一批人因为数学差而对考研望而却步,其实数学没有那么可怕。而高数又是考研数学中难得,作为重中之重,帮帮就带大家一起梳理一下考研数学高数重要考点知识点。帮帮整理了“2021考研数学高数夯实基础知识点:基本积分表公式”的相关内容,希望对大家有所帮助。
史上最全的概率论公式来啦,你们都知道么?跟着小编一起来看看吧~1随机事件及其概率2概率的定义及其计算3条件概率4随机变量及其分布5离散型随机变量6连续型随机变量7多维随机变量及其分布8连续型二维随机变量9二维随机变量的条件分布10随机变量的数字特征
2月即将结束,考研数学要开始打基础了!今天为大家带来的是考研数学的诱导公式。惊呼君将每日为你分享考研的各类干货,记得关注【惊呼教育】哦!“公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)”
考研数学的试卷结构及考试特点1、试卷结构选择题:10题(每题5分);填空题:6题(每题5分);解答题:6题(每题12分左右)。满分150分,考试时间3小时2、考试科目及分值高等数学:84分,占56%(4道选择题,4道填空题,4道大题);线性代数:33分,占22%(3道选择题,1道填空题,1道大题);概率论与数理统计:33分,占22%(3道选择题,1道填空题,1道大题)。注:数学二不考概率论与数理统计,这一科的分值和试题全加到高等数学中。3、考试特点①总分150分,在公共课中所占分值大,全国平均分在70左右,分数之间差距较大;②注重基础,遵循考试大纲出题,考查公式定理知识点固定;③注重高质量的考点训练与题型总结。4、考研数一、数二、数三的区别4.1数学一的考试科目有:高等数学、线性代数、概率论与数理统计。各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。(1)高等数学:同济六版高等数学中除了第七章微分方程考带*号的欧拉方程,伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;第九章第五节不考方程组的情形;第十二章第五节不考欧拉公式;(2)线性代数:数学一用的教材是同济五版线性代数1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。其中向量组的线性相关性中数一考向量空间,线性方程组跟空间解析几何结合数一也要考;(3)概率与数理统计:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计8、假设检验4.2数学二的考试科目有:高等数学、线性代数。在试题中,各科目所占比例为:高等数学78%、线性代数22%。(1)高等数学:同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。(2) 线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。(3)概率与数理统计:不考。4.3数学三考试科目有:高等数学/微积分、线性代数、概率论与数理统计。各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。(1)高等数学:同济六版高等数学中所有带*号的都不考;所有“近似”的问题都不考;第三章微分中值定理与导数的应用不考曲率;第四章不定积分不考积分表的使用;不考第六章定积分在物理学上的应用以及曲线的弧长。第七章微分方程不考可降阶的高阶微分方程,另外补充差分方程。不考第八章空间解析几何与向量代数。第九章第五节不考方程组的情形,第十章二重积分为止,第十二章的级数中不考傅里叶级数;(2)线性代数:数学一用的参考教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。数三不考向量组的线性相关性中的向量空间,线性方程组跟空间解析几何结合的问题;(3)概率与数理统计的内容包括:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计,其中数三的同学不考参数估计中的区间估计。