考研数学和高等数学不是一个概念,考研之前一定要分清楚否则白学。考研数学分为数学一、数学二、数学三、数学基础四个类别。四个类别的考研数学分别对应不同的一级学科和二级学科。一、考研数学包含的科目首先来看考研数学一:考研数学一是考研数学中难度最大,范围最广的。数学一的考试科目包括高等数学、线性代数、概率统计三科。请记住,这里考的是三科可不只是高等数学哦!其中高等数学占比百分之五十六;线性代数占比百分之二十二;概率统计占比百分之二十二;其次来看考研数学二:考研数学二是考研数学中考试范围最小,但是高等数学占比最高的。考研数学二的考试科目包括高等数学和线性代数其中高等数学占比百分之七十八;线性代数占比百分之二十二。发现了吗?考研数学二考的也不只是高等数学哦。但是比较庆幸的是考研数学二不考概率统计。再次来看考研数学三:考研数学三是考研数学中考试难度最简单的(个人观点)。考研数学三的考试科目与数学一完全一样,各科目的分值占比也与考研数学一完全一样。但是考试难度相对于考研数学一而言较为简单。最后来看数学基础:看到这里很多考生可能要疑问了,考研数学还包括初等数学吗?回答是:不仅有,而且涵盖的专业还很热门。在专业硕士的考试中工商管理硕士也就是我们耳熟能详的MBA以及会计专硕MPAcc的考试科目中的《管理类联考综合能力》科目代码199,其中初等数学的考试分值为75分。考试科目有算术、代数、几何、数据分析。这一科是不包含高等数学的。金融硕士、应用统计硕士、税务硕士、国际商务硕士、保险硕士、资产评估硕士所考试的科目中《经济类联考综合能力》中初等数学的考试分值为70分。考试科目为《微积分—部分》、《概率论—部分》、《线性代数—部分》。在此科目的考试中虽然没有标明要考高等数学但是《微积分—部分》所考试的内容实际上就是高等数学的内容。二、高等数学在考研数学中的地位从上一小节的分析中我们能够看到,除管理类联考综合能力所考的初等数学外。考研数学一、二、三以及经济类联考综合能力的考试内容中高等数学的考试占比都是比较大的。当然这些只是我们能够从表面上分析出来的数据。在实际学习以及考试过程中,高等数学不仅本身分值占比大,而且还担任着一个不可或缺的角色:为线性代数和概率论提供计算方法(这一点在考研复习之初考生一般很难发现)。在关于考研数学复习指导的文章以及课程中,很多老师建议大家在考研数学复习过程中可以首先复习内容较少的《线性代数》或《概率论》。在小编看来凡是发表以上言论的老师都没有真正研究过考研数学的考试结构以及考试重点。在考研数学的考试难度以及考试重点的综合约束下,如果没有高等数学作为支撑,线性代数和概率论的很多习题根本是无从下手的,甚至是,即便你找到了思路也是需要用到高等数学的方法来进行运算的。从这个角度来讲,高等数学是考研数学的根本和基础。三、高等数学在考研数学中考试难度以及范围的区别高等数学在考研数学一二三以及经济类联考综合能力中都有涉及到,从上文的数据中我们看到了高等数学部分分值占比最大的是考研数二。那么也就有人得出结论说考研数学二所考察的高等数学范围最广、难度最大。根据小编对于考研大纲以及考研真题的分析发现,在考研数学中,数学一才是对于高等数学考核范围最关难度最大的。数学二中高等数学的分值占比最大,这主要体现在了对于高等数学的细节部分考核较多,但是考试范围和考试难度并没有数学一大。数学三的分值比例虽然跟数学一相同,但是考试难度以及考试范围也比数学一小。在考研数学中,一般情况下涉及到的相同的考试知识点考察的难度也几乎是一样的,有时甚至在考试试卷上会有同一道题同时出现在数学一二三的试卷上。四、考研数学的考试方向我们知道进入大学以后我们对于任何一个学科的学习都会有比较明确的方向性。考研数学座位研究生的入学选拔考试自然也不例外。考试数学的考试方向主要体现在考试范围上,比如空间解析几何与多元函数积分学只有数学一要求;无穷级数只有数学一和数学三有考核要求;微积分的物理应用只有数学一和数学二要求;而微积分的经济应用却是数学三的考察重点,数学一和二对其不做要求。线性代数在考试内容上是区别最小的,只有数学一会涉及到向量空间的内容,但是这一部分在实际的考试中出现的次数是极少的对于考生的复习并没有实质性影响。但是在最抽象的概率论部分,数学一却要考察参数估计包括评选标准、区间估计以及假设检验。五、数学基础就真的好学吗从管理类联考综合能力中我们看到了有一个叫做基础数学的学科居然出现在考研数学这个科目中很是费解。很多老师断文取义般的在告诉学生们,高数学不会就学初等数学。在描述中将初等数学描述的极为简单,这种引导其实是不负责任的。虽然在初等数学考试章节上我们看到的考试内容是很简单的,主要涉及到的就是小学以及初中的内容。但是在实际考试中这些题目的难度堪比奥数考试,因此对于没有数学思想的考生来讲,也是极具挑战性的学科。六、考研数学与专业选择在考研专业中,无论是学术型硕士还是专业性硕士,大部分专业的考试都是要涉及到考研数学的。在小编看来,能够进入本科学习的考生(个别大神除外)数学基础相差并不大,那么最后谁能获得高分完全取决于学习方法以及学习的态度。因此完全没有必要因为自己喜欢的专业要考数学而选择放弃。并且在考研数学中基础部分的考试内容占比80分以上,过线并不难。以上分析均基于小编对于考研数学考试大纲及考试真题的研究而得出的结论,不足之处和错误之处欢迎大家指正讨论。
要知道高等数学是考研数学中分值最高的一个科目,达整张卷面分值的百分之五十六(数一和数三),数三的分值占比更是高达百分之七十八,而且概率与统计的题目在解题过程中也会大量用到高数微积分的知识,毋庸置疑高数是考研数学中最重要的科目。从难度上来说,也是考研数学三科(高等数学、线性代数、概率论与数理统计)中,相对来说难度最大的一个科目。高数难度大主要体现在以下三个方面:第一,高数的内容非常多,知识体量大,光是高数教材就有七百多页,且微积分的计算要求熟练运用高中学的指数函数、幂函数、对数函数、三角函数等知识,这无疑使高数的考点变得更多,考试的难度变得更大。第二,高数不只考查的知识多,而且对知识的综合运用能力有较高的要求,也就是说只是单纯地掌握单一的知识点是远远不够的,一道题目通常会考查两个或者是更多的知识点,而且有些考查的知识点还是不同章节的,如果不能将知识融会贯通,有清晰的解题思路是很难得高分的。这就要求我们在复习的过程中,不仅要熟练掌握每一个知识点,而且要提高对知识的综合运用能力,说白了就是要大量做题,知易行难,在实际解题过程中,提高对知识的运用能力。第三,高数的题量比较大,考试的时候对解题速度和计算能力的要求较高。学生会出现有些题目虽然会做但最后时间来不及,或者是会做但是花费大量的时间,占用做其他考题的时间的情况,这就要求我们在复习的过程中,不光是要看书学习,还要不断地去计算,做题,不要停留在知识看懂了的阶段,一定要自己动手去做题,熟练掌握考题背后要求的知识点,达到拿到题目有思路,计算过程快又准的程度。希望各位同学可以在高数上找到合适的方法,顺利成研,多做题,总结经验总是有好处的!
对于高中生来说,数学是一门很拉分的学科,而到了大学就是高等数学了,对于绝大多数理工科的学生而言,高数既是必不可少的科目,也是很重要的一门课程。数学的重要性不必多言,数学好的与数学差的有着很大的差距,在高中的时候就有明显的体现,同一个老师教的学生,单科数学差距五六十分都存在,有的甚至差距上百分,相信很多人在高中的时候,对于这一情况深有体会。然而上了大学,只要你读的是理工科类的专业,高数就是必然要学的科目,无论你喜不喜欢高数,你都要努力学好它,为什么这样说呢?高数在大学也是很容易让人挂科的科目,一旦挂科,也许补考都不一定好过,大学清考制度的取消,已经给那些挂科生封死了最后的机会,而很多大学补考都是有代价的,所以,对于高等数学这门课,即便你不喜欢,只要是你要学的课程就一定要努力通过考试,不要让挂科影响了你的学业。而对于现在的大学本科生而言,毕业工作不好找,竞争压力大,现实的情况摆在那里,即便是“211”重点大学、“985”一流名校的毕业生,也不敢说自己毕业就一定可以找个好工作,本科生就业压力大,这是众所周知的。考研越来越成为毕业大学生的主流,保研、考研似乎成了很多人的不二选择,因为读研不仅可以提升自己的学历,也可以提升自己的专业能力,正因为有着两点优势,考研才可以持续升温。理工科专业的本科生,想要考研,高数属于必考科目,也是容易拉开差距的科目,所以对于很多人来说,放弃了高数就等于放弃了考研,我们都知道无论你是什么专业,英语、政治都是必考科目,而高数并非所有专业的必考科目,而是绝大多数理工科专业必考的科目,如果你读的是理工科专业,而且也明确要考研,在大学本科期间,就应该多花时间学好高数,因为高数的好坏对你的考研结果有很大的影响。考研政治想拉开差距很难,考研英语除非你的英语底子特别硬,一般报考同一所大学的考生英语隔不了多少,差距不会很大,当然英语也要引起重视。而高数学的好的与学的不好的,差距十分明显,并不是说有些东西复习就一定可以考的好,你没学好,对于复习备战也是一件麻烦的事情,其实这也是很多人考研面临的问题,本科阶段没有认真努力学习,到准备考研的时候慌了手脚。不过,对于现在的大学生而言,考研也比以前难度更大了,教育部对于高等教育这一块也是越抓越严,大学教育严进严出以后可能会成为常态,对于大学生来说这是好事,因为可以逼着自己去努力学习,让自己在专业与能力方面更多的去提升,考研不光是去提升自己的学历,更重要的是明白自己为什么去深造,只有想清楚了,你的研究生才会有意义,才会明白在研究生三年中如何去实现自己的价值。高数是理工科专业都要面临的考研科目,无论是否决定考研,你都要学好它,因为它不止关系到你的考研,其实在专业方面也有很多的影响,放弃高数其实从某种意义上就放弃了考研,如果你想继续考研,本科阶段就不要把它当副课,学好它,对于你来说,对于后面备战考研,不仅可以提高你的总成绩,还可以给自己争取复试的主动权,你说呢?
就总体难度而言,2019年考研数学一试题与2018年相比,难度相差无几。这与近年来的考研趋势是非常契合的,随着考研人数的增加,试题的难度也在增加,这也体现了考研是选拔性考试的特点,不过从2013年开始试题的难度整体是比较平稳的。另外,2019年的考研数学一高数部分试题体现了考研数学的一贯特点:重基础,综合性强,计算量大。首先,考题重在考查学生对基本概念的理解和运用数学的基本方法来解决基本问题的能力。其实从1990年到2019年以来,重基础这个出题的侧重点从未改变过。与此同时,近几年试题中不断凸显的综合性和灵活性增加了考试的难度,要求考生注重对方法的总结和能力的培养,从而做到活学活用。最后,计算量大的特点要求考生要多做题,只有量的积累才能把计算能力提升上来,在考场上不仅做到会,而且要快,这样才能考取理想的分数。考研是一场持久战,要把握好复习的节奏,尤其是对考研数学的复习,制定好复习计划,进而保证高数复习的效率。因此,中公考研制定了比较科学的梯度学习法,把考研数学全年的复习计划划分为四个阶段,即基础阶段(6月份之前)、强化阶段(7-9月份)、提高阶段(10-11月份)以及冲刺模考阶段(12月份)。以上四个阶段循序渐进,每个阶段都有对应的学习任务和目标,一步一个脚印,稳扎稳打。考生在复习中,最重要也是最容易忽视的就是基础阶段,只有打好基础,具备扎实的基本功,这是最关键的一个环节,这与考查目标—重基础是非常契合的。在此基础上,通过适量的练习做到灵活运用,最后才能够转化为考场上的得分能力。最后,中公考研祝各位考生取得优异的成绩,考取理想的学校!
问一名大学生,大学当中什么科目比较难?大家给出的答案五花八门。学姐罗列了一下数学相关的科目,发现高数是令很多大学生头疼的科目。每次期末考试中,都有很多学生的高数挂科。大学期末考试当中会考到高数,有的专业考研也会考到高数。有的学生就有疑问了:期末考试高数挂科了,考研高数还有希望吗?其实,学姐想说:期末考试成绩跟考研成绩是没有可比性的,因为两者有很大的不同。首先期末考试学生的备考时间不足;然后,考研数学不仅只考高数,还有线性代数、概率论与数理统计等;最后,两者的考试范围、难易程度等也不同。虽然期末考试高数挂科了,但只要积极备考,好好准备,考研数学照样能拿高分。那么,考研数学如何拿高分?1. 重视双基高中学习重视“双基”,大学学习也一样。“双基”包括基础知识跟基本技能。基础知识就是教材上的基本概念、公式、定理。基本技能就是考研所需要具备的各项能力。很多学生基础知识不扎实,概念不清楚、公式记不牢、定理不会用,这样是很难在考试当中拿到高分的。尤其在高数当中有很多的基本概念跟性质,考生备考的时候更要注意理解,学会应用。2. 多做题、勤练习考研数学想要拿高分,多做题、勤练习是必不可少的。只有多做题,我们才会找到题感,遇到相同或者类似的题时,思路如泉涌。当然我们要学会从海量的题库中淘金。不是所有的题都需要做,况且题库中的题是做不完的。我们要学会选择性做题,做题的时候避免做怪题、偏题,选择适合自己能力水平的题来做,还有就是哪里不会补哪里。3. 常反思、多复习只做题不反思,可能就会形成一种错误的思维定式,导致同样的题目反复错。只反思不复习,我们明知有坑,可做题的时候还是止不住往坑里跳。所以,我们不仅要做题,还要常反思、多复习。反思题目的考点、解题思路、易错点、误区等。复习学过的知识点、做错的题目、记不牢的公式等。4. 重视真题的价值考研真题是含金量最高的题,不管哪科的复习,最后少不了的就是研究真题,考研数学也一样。为什么真题的研究价值高呢?因为真题是出题老师间接透露的考试信息,它蕴含了出题老师的出题思路,蕴含了考点、答题规律跟技巧,是考研数学的风向标,也是衡量学生数学成绩的标准。5. 考前掌握应试技巧考研是一次综合性考试,不仅考察学生的知识储备量,还考察学生的临场应变能力。所以考前掌握必要的应试技巧是非常重要的。在考试之前,考生可以通过研究真题的方式,合理分配答题时间,制定准确的答题策略。这样等真正考试的时候,就不至于那么慌乱,也不至于出现突发情况时,没有应对措施。学姐说:大学当中的高数难是公认的,但是难并不意味着它就不能攻克。只要我们想攻克,并且为攻克高数做了全面充足的准备,就一定可以攻克。所以,首先我们不能对它存抵触心理;其次,要迎难而上;再次打牢基础,弥补不足;最后多练习、勤反思、常复习。相信通过我们的持之以恒的努力,定可以取得好成绩。考研数学大家是如何攻克的,欢迎评论区留言,我们共同讨论。
大家好!我是向上好青年!众所周知,考研数学满分是150分,考试时间为180分钟。考研数学试卷从题型结构分为单选题、填空题、解答题。考研数学试卷从内容上包括高等数学、线性代数、概率论与数理统计。其中,高等数学在整个考研数学中具有举足轻重的作用。可以说高等数学是后期线代和概率学习的一个知识积淀。因此,同学们要十分重视高等数学的复习!注重基础基本概念、基本方法、基本性质一直是考研数学的重点,从多年的考研阅卷经验看,考生对数学基本概念掌握不够牢固,理解不够透彻。有些同学在考场上,不知道怎样下手,不知道该用哪个公式。所以,建议考生在数学复习中一定要重视基础知识,要复习所有的公式、定理、定义,多做一些基础题来帮助巩固基本知识。 高等数学中基本概念和性质较多,他们之间的联系也比较多。考生特别要根据高数考试的内容,找出所涉及到的概念与方法之间的联系与区别。注重真题考研历年真题是考研复习必不可少的重要资料,甚至可以毫不夸张地说真题是关系考研成败的关键要素,尤其到了9月份以后,数学复习主要以真题为主。首先考研真题是大家了解考研形势的重要途径。其次考研真题集结了出题老师的精华总结,包含了许多考试信息和讯号,在做真题的过程中,可以掌握出题人的思路以及答题的方式方法。最后真题也是检查考生复习情况的最佳衡量标准。注重归纳总结高等数学涉及的知识点比较多,有些知识点同学们理解起来也比较困难,如果只是一味的做题,容易导致思维混乱,不可能得高分。所以同学们在平时复习时,一定注重归纳总结。高数重点知识点比较多,要逐一击破!数学的复习需要稳扎稳打,掌握住每一个重难点。我是向上好青年,愿你在考研路上勇往直前!考研相关的问题可以私信、评论!
文|冷丝栏目|丝说考研2017年的全国研究生入学考试初试,公共科目高等数学试卷中,很多所谓考研备考专家专家对一道很重要的试题解答出现错误,这也导致很多备考生跟着出错。冷丝今天想说的话题是:考研试卷除了政治和英语公共课,官方公布标准答案,其他试卷有参考答案,但均未通过官方渠道进行公布。因此,无论是文科还是理科,考研一族备考时需要找准找对资料,千万不要因此而出大的差错。研究生入学考试考场冷丝在这里友情提醒,我接下来的解释涉及很多专业性问题,很多读者可能看不懂,这个不要紧,本文主要是通过展现一些错误,让你理解:一些考试中的典型错误为什么经常出现,源于部分教材存在瑕疵,部分教师的专业素养或多或少有问题,而备考生需要瞪大眼睛辨别,敢于质疑,不要迷信,并且要学会辨别一些辅导机构、辅导教材是否权威。网上流传的错误答案被当成权威解答,典型错误具有代表性。2017年全国硕士研究生入学统一考试《数学(一)》试题,第18题的解答,很多网站上流传的解答是错误的,据专家介绍,这种错误是高等数学教师在课堂上经常遇到的问题,也是学生经常出错的难题。原题是这样的:而网上广为流传的错误答案是这样的:从上面的解答可以看到函数F(x)需要存在3个不同的零点,而上面解答中得到了3个零点分别是0,ξ和ξ1,忽略了ξ和ξ1可能是同一个点,这样的证明是错误的。课堂教学中存在的类似问题,柯西中值定理的证明,比如,同济版本《高等数学》(第六版)中的柯西中值定理结论如下,在(a,b)内,至少有一点ξ,这样的等式才会成立:很多学生在使用这个教材是会问,能否在等式左侧的分子与分母中分别用拉格朗日中值定理?显然不行,这是为什么呢?因为,学生犯了拉格朗日中值定理中的不一定是同一个值的错误。即使是同一个值也要给出严格证明,ξ只是在(a,b)内的一个点,而在(a,b)内存在数不尽的不可数的点。同济办教材《高等数学》(第六版)习题中的习题,许多学生在用罗尔中值定理证明f’=0也是错误的。那么,这道入学考试真题的正确答案是怎样的呢?因为f(x)在[0,1]上二阶可导,所以,f(x)在[0,1]上是连续的,因此,可以这么解答:这个答案应该是很详细了,一看就明白。还有一个问题,很多学生为什么会出错呢?怎样避免错误。除了部分教材存在瑕疵之外,最重要的问题是,高等数学的学习内容不连贯,存在知识盲点。许多高校在安排学生学习同济版本《高等数学》(第六版)等教材时,没有让学生事先学习“实变函数”中实数论的相关内容,这样导致学习内容的脱节。比如,实数具有有序性——就是任何两个或多个实数之间一定可以比较大小。所以,在同一个问题中出现两个或多个实数时要有明确的大小顺序关系,学生要掌握有序性。天津市考点再如,有理数与无理数的关系是稠密的——任何一个有理点的任何小的邻域内都有不可数个无理点,反之,任何一个无理点的任何小的邻域内会有无数、但可数个有理点,即我们所说的"稠密性"。当然,还涉及有其他一些高等数学知识,你如果没有学,在考研中遇到这样的问题,肯定会出错。这些基础知识,学生没有学习,在遇到实数间的比较,区间中有理点与无理点个数的多少和它们之间的关系时,出错就是一件很正常的事情了。特别需要提出的是,部分年轻教师由于缺乏上述的基础知识,特别是对狄利克雷函数本质的理解等等,那么,他们在教学生时,就会让学生跟着他一起出错。研究生入学考试现场确认冷丝最后还想说,教师的任务责任重大,自己的一个小错或者知识盲点会导致无数个学生跟着出错。同时,无论是哪一个阶段的教材编写,也无论是什么课程,编写者要精益求精,出现错误要及时更正,否则,很多人也会跟着教材出错。(感谢:本文参考了张德存教授的观点)。多选|你觉得考研难度如何?竞争激烈,难度大试题难度大,复习辛苦考试内容多,复习难度大复习时间长,难以坚持打开百度APP进行投票
谈起高等数学,理工科的人都知道,这是一门应用性极其广泛的核心必修课程,也是一门难度较大的基础课,无论是理论研究,还是考研,高等数学就像噩梦般的存在!下面,我们就来看看,高等数学到底难在哪些地方。我们看一下,高等数学的目录从目录来看,其实有些知识,高中就已经解除了,尤其是上册第一章至第三章以及下册的第八章,都是高中接触过的知识,只不过是对高中知识的延伸。所以说,高等数学的设计还是沿袭了数学递进层次的教学,不是说一上来就一棒子打死,让学生彻底崩溃。从内容的设计上来看,上册以微积分为主,后面的不定积分和定积分是导数与微分的反向,也就是逆向思维;下册的重积分和曲面积分是以空间解析几何和多元微分为基础。总的来说,高等数学说简单也简单,只要踏踏实实学,肯定是没有问题的;说它难呢,也可以理解,它的难主要是延伸后的知识变复杂了,就拿极限来说,简单的极限很容易看,一旦把式子复杂了,需要通过一个又一个转换,叠加上极限,他就把这个式子复杂化了。高等数学的应用性和价值数学本身就是带有逻辑思维的学科,高等数学同样离不开思维,不能说高等数学特别难,因为很多高中的学生已经懂得利用微积分来化解物理难题了,而他们都是通过自学的高等数学,并且懂得合理应用,一方面看出高等数学并不是大学才能学,也并不像传说中那么可怕,另一方面,表明高等数学的应用性好。高等数学应用于公式推理确实,学了大学物理之后,会发现大学物理与高中物理本质上的内容不变,但是学习的方法全变成了积分微积分,为什么呢,因为高中物理不具有大学物理的严谨性,大学物理更符合实际应用,而且实际生活需要严谨,尤其是像大型建筑设计、空间模型设计等不能有丝毫差错,它需要高等数学的知识来支撑。数学的应用极其广泛,高等数学的应用也很广泛,且价值比一般数学大,无论是我们生活的空间,还是互联网的开发,还是其他东西的创造,往往都离不开高等数学,它包含着一个模型设计、创造应用的理论基础,缺了它,很多东西都没法理解。某高校数学老师与大学生的对话曾经有人问过教高数的老师,为什么高等数学那么难?老师说:你觉得数学难不难?学生说:小学、初中、高中都没觉得数学难,就觉得大学数学难!老师说:你知道为什么人被称为高等动物,而其他动物像狗、猴子、猩猩、老虎等都高级动物吗?学生:因为人有意识,有认识世界和改造世界的能力老师:一样的理解,高等数学是一门具有让人认知世界和改造世界能力的学科,所以它有别于一般数学,它叫高等数学!既然高人一等,岂能那么简单!学生:。。。开个玩笑,其实在大学老师眼里,因为它们是研究数学的,所以并不觉得难,你去问他们,总是被一句“哪里难了”给驳回来,这简简单单的四个字直接戳中了学生的心窝,让学生无言以对,有种想破口大骂的感觉!总之,高等数学的难在于它的深度,不在于它的基础,认真学习总能化难为易,深入研究也能发现高等数学的价值之处。今天就说那么多,有不同见解的(千万千万不要怼小编),欢迎到评论区交流。
在前面的内容中,小编已经给大家梳理了高等数学中的所有核心知识点。如果要说高等数学中哪一个部分的内容最难,那不好说。但微分中值定理一定是最难的内容之一,且微分中值定理这部分的内容往往以考察高分值的大题的为主。许多同学往往觉得微分中值定理的题构造十分的复杂且繁多,所以做题有些困难。其实,不只是构造,而且其形式多变,还可以结合积分等多部分内容来考核。下面,小编带大家一起来盘点一下常见的微分中值定理题型。考研基础知识首先,我们应该熟悉几个常见的中值定理,并且能够独立的推导出他们的证明过程。之所以这么严格要求,原因有下面两个。①因为在考研数学中,很有可能直接考察定理的证明。②定理证明过程的思想往往就是我们做题的证明过程思路。基础下面,小编根据自己的理解,给大家大致的叙述一下主要的几个定理的证明思想。由于许多定理证明的方法不止一种,所以小编提供的方法仅供参考。(1)介值定理(与根的存在性定理等价,也称作为零点定理,证明了解即可,基本不会考。)证明思想:通过构造,结合确界原理,推出在函数值等于0的点在区间的两端取不到。其次,在利用反证法设函数在开区间中取不到0。(2)最大、最小值定理(了解即可)证明思想:想要证明最大最小值定理,我们首先要知道有界性定理,即若一个函数在闭区间上连续,那么这个函数在闭区间上也有界。其次,我们再通过结合确界原理使用反证法,证明函数在闭区间上存在上确界是错误的。考研(3)Rolle(罗尔)定理(重点)证明思想:因为函数f在闭区间上连续,所以满足最大、最小值定理,一定存在最大值与最小值,分两种情况讨论。①最大值等于最小值时,那么函数为常数函数。②最小值小于最大值时,我们发现函数f满足费马定理的条件,可以使用费马定理,从而直接得到证明。(4)lagrange(拉格朗日)定理(重点)证明思想:证明拉格朗日中值定理时,我们常常需要构造辅助函数,其中我们最常见的是构造助函数:F(x)=f(x)-f(a)-(x-a)(f(b)-f(a)/(b-a)然后使用罗尔中值定理即可。同学其实想不太明白这个函数的构造是如何得到的,其实这个构造只是为了方便验算罗尔中值定理。直接把拉格朗日中值定理两等式两边,进行积分构造也是可行的,只是验证罗尔定理条件的时候麻烦一点。考研(5)cauchy(柯西)中值定理(重点)证明思想:要通过构造辅助函数,利用罗尔定理就可以证明。(6)积分第一中值定理(重点)证明思想:同样我们利用最大、最小值定理,函数f在闭区间上存在最大值与最小值,使用积分不等式结合连续函数的介值定理就可以得到证明。题型总结小编大致总结了一下常见的几种微分中值定理题型,共为6种题型。其中,整理的许多题目来自考研数学真题,值得去斟酌思考。(电子版领取方式在文末)总结总结总结总结我的学习建议微分中值定理的学习,对于初学者或者是第一遍考研复习的同学而言,做题会显得十分吃力,几乎每一题都要校对答案才能明白,甚至有了答案也不明白答案的函数构造是从何思想而来。其实,这是一种正常状态。学习微分中值定理的内容,首先,就是要把几个中值定理本身的证明思想吃得通透,然后再对常见题型、常用方法进行总结归纳。事实上,考研数学也逃不过在这几个题型上反复考察。难就难在题型和方法的总结上,每一道题,每一个题型都要耗费大量的时间。现在,小编在这里总结出了完整的版本,希望这篇文章对考研同学们或初学者有所帮助。由于篇幅有限,小编只能放几张整理的题型图片,有需要电子版的同学,关注我,私信回复中值定理即可领取电子版。大学高等数学核心内容大总结,掌握这些知识,高数成绩杠杠的!
哈喽,各位小伙伴们大家好,又和大家见面了!我是Jackie,今天呢也是借着上一期的视频和大家谈一谈考研的一些知识。上期和大家分享了政治学习的一些思路,今天这期和大家聊一聊高等数学的复习和备考计划。首先,简单带大家回顾一下我前期的学习规划。一句话概括就是听课,做题,做题,做题。都知道高数是拉分最大的,不管你大学高数考多少分,考研基本都是从头再来,因为你也知道学校期末的高数试卷试题基本都是原题,这里的原题是指数据和结果都不变的;而考研的高数基本也可以认为是原题,只是这里的原题指的是同一类型的题,它不是不变的数据和结果,而是固定的解题套路。因此做了这么多题,同学们应该也有感觉,平时做的题是又怪又难,比如某某某的1000题,某某的500题之类的。然而,做过真题的朋友都知道,高数真题考的内容是真的很基础,难题就有一道而已。道理都明白,就是不愿意放弃做题的心理,万一考到怎么办?对于这种心理的同学,我可以直接告诉你,不用慌,你做的题太多了,真的遇到,你即便已经做过,你仍然还是不会。你只会说,哇!太好了,这题我见过,我熟悉,然而你会吗?不会吧!言归正传,今天我所做的这一期视频只是针对最后两个月复习时间的同学。对于高数你需要注意的是以下几点:1. 回顾真题。如果最后两个月你还想着去做题,估计是来不及了,但是你是为了保持手感和做题的熟悉感,那么你可以试一试,但是,你是否发现,最后的这段时间你根本没办法静下心来做题,并且命中率也是出奇的低,甚至连一些简单的题你都不会做了,公式定理基本已经忘记了或是记忆模糊了。那这个时候,做题是最愚蠢的了。你要做的就是,拿出你曾经做过的真题,一道一道的看,标出它的考点和解题思路。2. 回归课本和基础知识。一定要把你整理过的最基础的公式和定理进行深度熟读和理解记忆,并大概回顾他的用法。这部分基础知识才是最核心的部分。因为“舌尖效应”,我们背诵的公式和定理在考场上往往只能记住一部分或是根本就记不全。熟悉基础知识才是取胜的关键,一味的去做那些难题怪题,其实作用不大。3. 心态不好不做题。有些小伙伴确实想练一练,但是一做发现做错了好多。这时不要灰心,要正确认识,调整心态。这是一种正常的现象,你停下做题,直接去复习真题就行了。(参照1和2)4. 别攀比。在做到以上三条的前提下,保持好的心态,别随意和别人攀比和讨论难题,因为你的心态会受到影响,感觉自己知识盲点还有很多,给你的自信心造成挫伤,因此保持好的心态,最后时期自己修行,可能会有意想不到的效果。最后,其实对考研的学子而言,这是一种煎熬和无言的痛苦,无论是你不被同学理解,不被你爱的TA理解;还是你正在经历失眠和脱发的困扰,都应该勇敢的去面对。考研比到现在已经不是在比能力了,更多的是在比拼谁的心态更好。这些痛苦我也同样经历过,希望我能共同面对,再次祝愿各位同学能够考出好成绩,拥有属于自己内心的那份荣耀!好了,今天的分享就到这里。 感谢您的关注,点赞和评论,谢谢您!