首先,从当前的技术发展趋势和人才需求趋势来看,选择读研大数据方向是不错的选择,当前能够培养大数据方向研究生的专业也比较多,除了计算机专业之外,统计学、金融学、经济学等专业也有培养大数据方向研究生的能力,所以考生可以结合自身的知识结构来选择相应的专业。当前大数据行业的岗位主要集中在三大领域,分别是大数据分析(算法)岗、大数据开发岗和大数据运维岗,其中大数据开发岗的人才需求量相对比较大,近两年不少大数据方向的研究生都愿意选择开发岗,一方面算法岗的竞争比较激烈,另一方面开发岗的岗位附加值也在不断提升,目前与算法岗基本上持平了。读研大数据方向虽然是不错的选择,但是学习和科研压力还是比较大的,而且大数据方向对于数学的要求也相对比较高,这一点要做好充分的思想准备。当前不同学校会根据自身的资源整合情况来设计不同的培养方案,当前大数据与产业领域的结合点比较多,创新的机会也比较多,比如大数据与金融、医药、教育等领域的结合点就非常多。读研大数据方向一定要做好学习和科研规划,要避免三件事,其一是迟迟不能确定细分主攻方向,其二是迷失在各种研究方法中,其三是只专注于算法设计而忽略了落地应用。当前不论是从事算法岗还是开发岗,都需要具备一定的开发能力,所以在读研的过程中,要重视自身编程能力的培养。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!
首先,目前有多个专业设置了大数据方向研究生的培养计划,比如计算机专业、统计学专业、经济学专业等,在当前大数据快速发展的背景下,也有不少学科设置了与大数据相结合的方向,比如机械专业、材料专业等,所以可以根据自身的知识结构来选择具体的专业和方向。由于当前研究生考试的竞争比较激烈,所以尽量不要选择跨考。不论是选择哪个专业的大数据培养方向,都需要具备三方面基础的知识结构,涉及到数学、统计学和计算机,所以如果未来想在大数据的技术研发方向走得更远,一定要重视这三个学科的基础知识,尤其是数学基础。当然,在准备考研的过程中,数学也是非常重要的学科。由于不少高校的大数据专业都是以计算机专业为基础构建的,所以考计算机专业大数据方向研究生是比较常见的选择,计算机专业考研往往需要重点做好三方面准备,其一是基础学科;其二是专业课;其三是计算机专业知识面,其中计算机专业知识面对于复试有重要的意义,有的高校(科研院所)在复试时会随机考察一门计算机专业课,这对于考生来说是比较大的挑战。不同高校在专业课考试方面的要求是不同的,而且不同的高校在报考时也有不同的要求,考生需要重点注意一下。比如,有的高校在报考时就需要考生明确指定具体的学习方向,这也会导致不少热门专业出现激烈的竞争,往年不少高分考生考研失败与报考就有直接的关系。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!
大数据是近些年来的热点方向,大数据方向的研究生不仅有更多的发展机会,在薪资待遇方面也相对比较可观,所以不少研究生希望把自己的研究方向定在大数据相关领域。从发展趋势来看,选择大数据相关方向是不错的选择,未来的发展空间还是比较广阔的。目前不少大学的研究生教育都有大数据相关方向的设置,不同的高校在大数据教育方向上也会结合自身的教育资源进行相应的调整,所以要想选择适合自己的学校,需要考虑以下几个方面:第一:自身的知识结构。大数据是典型的交叉学科,基础学科包括数学、统计学和计算机,所以这三个专业的学生在读研期间都可以选择大数据方向,但是不同的专业在选择时也要结合自身的专业特点。比如统计学选择大数据方向时也可以选择本专业的研究生,因为统计学的研究生课题与大数据也有紧密的联系,没有必要一定要考计算机专业的大数据方向。在统计学领域,教育资源整合能力比较强的大学有北京大学、人民大学、南开大学等,不少财经类大学也有较强的学科实力,比如东北财经大学、上海财经大学也是不错的选择。第二:大数据学科的教育资源。研究生的教育质量与高校自身的教育资源整合能力有直接的关系,涉及到导师资源、实验资源、课题资源、行业资源等等,从大数据学科的教育资源情况来看,国内北京大学、中南大学、上海交通大学、中山大学、西安交通大学、对外经贸大学等都是不错的选择。第三:学校的整体实力。在考研选择学校时,应该注重学校的整体实力,整体实力较强的高校往往在专业发展上也会有较强的“后劲”,所以在选择高校时可以重点考虑一下双一流高校和一流学科高校(原985、211)。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!
当下,大数据、人工智能等词汇频频出现在大众视野,大数据专业更是站在了时代的风口。很多学生也在高考的时候选择大数据,大数据领域还属于初期,需要大量的高端应用型人才,本科学习大数据,研究生的选择也非常广:大数据科学和工程、人工智能、计算机与大数据相结合的方向、金融方向等都是非常不错的选择。1、大数据科学和工程大数据专业的主要应用,数据管理、系统开发、海量数据分析与挖掘,几乎所有行业的都会涉及到数据的获取、管理和分析,所以大数据专业的研究生前景非常好,一个行业想要发展就需要更多高端人才,大数据的本科生继续从事大数据研究是一个非常不错的选择,这个专业属于新开专业,我们选择需要的时候需要多注意学院的研究实力。2、人工智能人工智能也是随着时代发展应运而生的专业,人工智能与大数据,二者密不可分,智能就是通过大数据学习内在的规律,从而达到智能,分析的数据越多,越有可能接近真实,大数据是人工智能的基础,本科把大数据学习扎实过后,在研究生阶段跨考到人工智能,你拥有扎实的大数据理论知识,有助于人工智能的研究,考研选择人工智能是一个不错的选择。3、计算机与大数据相结合的专业这是一个互联网时代,计算机肯定不能缺席,计算机+大数据是一个非常好的组合,计算机科学与技术(数据挖掘方向),在没有单独独立大数据专业之前,主要还是计算机专业在研究大数据,只是那时候没有单独拎出来说。学院的老师具有丰富的研究经验,当你进去过后能够给你很好的帮助。4、金融方向金融与大数据也是息息相关,复旦大学大数据学院就开设有金融硕士,本科学习大数据,研究生跨考到金融也是一个不错的选择。因为大数据专业属于新开专业,供选择的学校较少,如果你对经济、金融比较感兴趣,选择金融(大数据方向)也是非常不错的选择。“大数据+”已经涉及到生活的方方面面,本科学习大数据,选择上面的4个大方向都是一个非常不错的选择。
在考研的前期准备中,择校择专业是一个最基础也是决定全盘输赢的关键因素。在择校的过程中,我们首先要做的就是先择专业,如何更好的选择专业呢?未来职业规划,即以后想从事的方向,攻读本专业或跨专业根据研究方向来选择接下来,小编就先来和说说“大数据”研究方向在2021年的专业招生情况以“大数据”为研究方向,考408的专业(081200)计算机科学与技术(077500)计算机科学与技术只有武汉纺织大学的数学与计算机学院在招生(081001)通信与信息系统仅中国航天科工集团第三研究院一所考试范围:英语一;数学一(0811J2)社会计算(081201)计算机系统结构复旦大学有两个研究方向都含有“大数据”,都是考英语一和数学一(081202)计算机软件与理论一、复旦大学复旦大学计算机软件与理论专业招生1人,共有7个研究方向,同属计算机科学技术学院二、辽宁石油化工大学(081203)计算机应用技术(081203)计算机应用技术在云南师范大学招生数最多,共16人,研究方向为大数据技术与应用(0812Z1)信息安全(0828Z3)农业信息工程值得注意的是,华中农业大学的农业信心工程考试范围为英语一、数学二(083500)软件工程(0837J2)航空运输大数据工程招收(0837J2)航空运输大数据工程专业的只有中国民航大学研究方向:(02)民航大数据智能处理方法、(01)基于大数据的智慧机场关键技术专业招生:6人(083800)公安技术中国人民警察大学的公安技术考试范围为:英语一、数学二(083900)网络空间安全(085400)(专业学位)电子信息上海电力大学招收研究方向为(02)人工智能与大数据的专业共41人考试范围考408的专业在英语和专业课一中,多数考察的是英语一和数学一同时考英语一和数学一的专业只有(085400)(专业学位)电子信息,涉及的高校有中国民航大学、河北大学、郑州大学、武汉纺织大学、复旦大学、上海电力大学、上海大学、辽宁石油化工大学考数学二和英语一的专业有华中农业大学的(0828Z3)农业信息工程和中国人民警察大学的(083800)公安技术两个专业小编总结:在考研的时候,虽然说择校择专业都比较重要,但是,在一定程度上,择专业比择校要相对重要点,毕竟以后从事的行业大多与研究生所读专业相关的行业。因此要慎重选择专业!我们致力考研更轻松,院校选择不迷茫,更多考研资讯请关注我们,点关注不迷路,也欢迎大家私下交流,如若认同请帮忙分享转发。感谢你的阅读!如果有专业院校选择问题,可以在评论区留言,或者私信我。
首先,如果有条件和能力读研的话,还是应该首先考虑读研,一方面读研能够从根本上提升自身的人才层次水平,从而打开更多的就业渠道,另一方面读研也会有一个更加系统的学习过程,能够全面丰富自身的知识结构,而且也会提升自身的视野。职业教育更注重学生实践能力的培养,注重各种应用技能的培养,主要的培养目标是技能型人才,而研究生教育则以创新型人才为主要培养目标,所以如果未来想在技术领域走得更远,首先应该考虑读研。当然,相对于职业教育来说,读研的过程会占用更多的时间,学习的难度也会更大,对于学习者的学习能力也有较高的要求。实际上,每年都有一部分大数据方向的研究生会由于种种原因而选择延期毕业,比较常见的原因就是科研成果没有达到要求。从当前大数据领域的就业情况来看,由于目前大数据尚处在落地应用的初期,所以目前大量的大数据岗位都集中在研发领域,这一点在2019年的秋招中就有比较明显的体现,所以读研会有一个更好的就业前景。当然,随着大数据技术的落地应用,未来大数据技能岗位的人才需求量也会逐渐得到释放。最后,不论是否选择读研,学习大数据分析知识都需要一个系统的过程,这个过程涉及到的知识量还是比较大的,而且也有一定的学习难度。大数据分析目前有两种基本的方式,一种是统计学方式,另一种是机器学习方式,这两个方式都需要学习者具有一定的数学基础。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
首先,大数据与数据挖掘是一个大的研究方向,在这个大的研究方向下还有很多细分研究方向,研究生要结合自己所处的科研环境(课题组),以及导师的具体要求来制定学习方案。对于大数据与数据挖掘方向的研究生来说,在制定学习计划时,要结合自己未来的发展规划,如果要从事开发岗位,那么需要重点关注三方面内容,其一是编程语言的学习,当前开发岗可以重点学习一下Java,其二是大数据平台的学习,大数据平台的内容比较多,学习周期也相对比较长,其三是积累行业场景知识,大数据开发与行业场景的结合非常紧密。目前对于硕士研究生来说,选择主攻开发岗位会更容易实现就业,而且开发岗位的人才需求类型也比较多元化。随着工业互联网的落地应用,未来产业领域会释放出大量的高端应用型人才需求,所以如果没有继续读博的计划,一定要重视多做一些与产业领域相结合的科研实践。如果未来要从事算法岗,那么也需要重视三方面内容的学习,其一是编程语言的学习,当前编程能力对于算法岗位也是比较重要的,算法工程师也需要完成一些程序设计任务,其二是算法相关知识的学习,其三是机器学习知识,包括深度学习等内容。近几年算法岗的竞争还是比较激烈的,但是进入到2021年之后,算法岗的需求有所复苏,未来可能呈现出一个温和的上升趋势。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!
大数据专业是一个典型的交叉学科,基础学科包括数学、统计学和计算机学,另外辅助经济学、社会学、医学等学科,所以统计学是大数据专业最为直接的相关学科之一,因此统计学专业的本科生在读研的时候是完全可以选择大数据专业的。统计学专业的相关知识在大数据时代依然起着非常重要的作用,以大数据分析为例,目前大数据的分析方式主要以统计学方式和机器学习方式为主,而且统计学方式与机器学习方式相比在某些领域更加成熟,理论体系也相对完备,所以大数据专业的学生通常都要系统的学习统计学相关知识,从这个角度来看,统计学专业读大数据方向还是具备一定优势的。在大数据时代,统计学有了进一步的发展和变化,这个变化就来自于数据本身的变化。统计学的分析方式通常以“抽样”为主,通过对样本的分析来寻找整体的规律,从而得出分析结论。通过大量的历史经验来看,如果样本的选择没有问题的话,统计学的分析方式具有非常高的准确度。但是在大数据时代,数据从抽样变成了“全样”,数据分析的方式和方法都产生了较大的变化,这对于统计学来说就需要积极的适应这种变化,并积极顺应大势时代的发展,投入到大数据领域的研发中。从目前大数据行业的发展来看,统计学确实对于大数据的发展做出了重要的贡献,大量的统计学专业人才陆续投入到大数据领域,也进一步完善并丰富了大数据的知识结构。近些年来,我多次作为评委,参与了不同类型的研究生大数据专业大赛,其中有大量的选手来自财经类大学的统计学专业,这给我留下了较为深刻的印象,其中也有不少学生取得了不错的成绩。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网方面的问题,也可以咨询我,谢谢!
首先,当前往环境大数据方向发展是不错的选择,对于研究生来说,选择环境大数据也有比较强的实际意义,未来环境建设也需要大数据技术的赋能,环境领域也需要大量大数据专业人才。对于计划往环境大数据方向发展的研究生来说,要做好三方面的准备,其一是要有数据来源,这一点是非常重要的,当前能够提供环境数据的渠道包括各级环保部门的数据中心,以及一些专注于环保领域的公益,或者半公益组织。当前环保部门的数据中心正在不断完善,数据使用体验也在不断提升。其二是环境大数据本身也有很多细分方向,要选择好自己的切入点,这个过程需要完成大量的初期积累,要全面了解当前的研究现状,以及目前已经取得的一些最新研究成果,可以重点看一下最近5年之内的一些研究成果,尤其是最近3年以内的,这对于自己的研究会有比较大的借鉴意义。其三是要有一个较好的交流和科研环境,对于研究生来说,如果往环境大数据方向发展,最好要找相关方向的导师来进行指导,这一点对于提升学习和科研效率有比较大的影响,而且导师往往也会提供一些具体的数据来源,也会讲解一下当前的主流研究方法,这会使自己少走一些弯路。最后,虽然当前大数据技术体系已经趋于成熟了,但是大数据技术与行业领域的应用才刚刚开始,还有大量的创新点可以挖掘。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!
大数据和人工智能方面的人才培养就是从研究生阶段开始的,然后逐渐开始向本科阶段普及,所以硕士研究生选择大数据和人工智能相关研究方向是比较常见的,而且大数据和人工智能领域的研究方向还比较多。从人才培养体系来看,目前大数据专业既有研究生培养方案,也有本科生和专科生培养方案,研究生阶段主要以培养具备创新能力的研发型人才为主,本科生阶段主要培养具备初级研发能力的应用型人才,而专科教育则主要以培养技能型人才为主。硕士研究生阶段如果选择大数据方向,需要重点考虑一下本学校的资源整合情况,最好选择学校具有一定优势的细分方向,这样不仅能够获得更好的学习(研究)体验,往往也会有更多的就业渠道。目前除了计算机专业能够培养大数据方向的研究生之外,统计学专业和经济学等专业也能够培养大数据相关方向的研究生,只不过侧重点会有所不同。人工智能方面的人才培养主要以研究生教育为主,一方面人工智能涉及到的知识体系比较复杂,另一方面人工智能的学习和研发对于环境(实验室)的要求也相对比较高,所以在研究生阶段学习人工智能会有更好的学习效果。从近两年研究生的就业情况来看,大数据相关岗位的数量比较多,但是算法岗位相对比较少,而且岗位竞争比较激烈,这对于人工智能相关方向的研究生来说,是一个不小的挑战。如果想提升自己的就业竞争力,不仅应该注重自身研发能力的提升,也应该注重实践能力的锻炼。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!