欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
机床行业专题研究报告:格局优化叠加下游产业升级,高景气可持续孔子推琴

机床行业专题研究报告:格局优化叠加下游产业升级,高景气可持续

(报告出品方/作者:中信建投证券,吕娟、彭元立)一、机床产业链分析1.1 机床是制造业的加工母机机床(英语名称:Machine Tool),又称“加工母机”,是将金属毛坯等材质的工件加工成机器零部件的机器, 机床的质量、精度和加工效率等综合性能指标直接影响着制造业产品的质量水平,因此,机床工业的发展水平 是一个国家工业发达程度的重要标志之一。参考机床工具工业协会的分类方法,我们可以将机床工具分为机床和相关零部件,其中按照加工工件的材 质,机床可以分为金属加工机床、铸造机械、木工机床和其他材质加工机床。金属加工机床在机床工具中是最 重要的组成部分,主要加工材质是金属毛坯,可以分为金属切削机床和金属成形机床;木工机床主要加工材质 是木材,可以分为木工锯机、木工刨床 、开榫机、榫槽机等;铸造机械是将金属熔炼成符合一定要求的液体并 浇进铸型的设备,加工材质主要为液态金属,可以分为普通砂型铸造设备和特种铸造机械设备;其他材质加工 机床包括用于加工硅片、陶瓷片、金刚石等其他材质的机床,如玻璃精雕机、硅片切割机床等。相关零部件中, 机床附件产品主要有各类卡盘、转台、分度头、刀架、中心架、刀杆、夹头顶尖、平口钳、过滤排屑和防护装 置、制冷净化装置等;工量具及量仪包括:1)卡尺、量块及量规等量具,2)通用长度量仪、通用角度量仪、 形状和位置误差量仪等量仪;磨具磨料中,磨料包括普通磨料、超硬材料、人造金刚石、立方氮化硼、化学气 相沉积(CVD)金刚石,磨具包括固结磨具、超硬材料制品、超硬材料磨具、金刚石钻探工具等;数控装置包 括数控机床用伺服驱动单元、数控机床用伺服驱动单元和数显装置。金属加工机床是本文研究的重点,其行业消费额自 2011 年进入下降通道,2020 年降幅缩窄。2011 年之前, 受益国内制造业的发展,中国金属加工机床消费额呈现快速增长态势,尤其在“四万亿”刺激下,2011 年中国金属加工机床消费额达到 390.9 亿美元的顶峰,其后受经济增长方式转变、供给侧改革、中美贸易摩擦等影响, 行业总体呈下行态势。随着 2020 年我国制造业景气度回升,2020 年中国金属加工机床消费额虽有疫情的影响 但仅同比下降 4.48%至 213 亿美元,较 2019 降幅明显缩窄。金属加工机床中,金属切削机床占比约为 2/3,2020 年国内消费额为 138.7 亿美元;金属成形机床约占 1/3, 2020 年国内消费额为 74.4 亿美元。金属切削机床,按照切削方式,可以分为车床、钻床、镗床、刨床、铣床、加工中心、磨床、插床等种类, 其中车铣是最主要的切削方式,所以机床构成中,车床、加工中心及铣床占比明显较高。根据机床工具工业年鉴,2016 年我国金属切削机床市场中,“加工中心及铣床”占比达到 49.71%,市场空 间约为 450 亿元,车床占比次之,达到 37.61%,市场空间约为 400 亿元。金属成形机床中,机械式压力机占比 最高,达到 62.50%,市场空间约为 350 亿元,折弯机和压液压式压力机各自占比 10.12%和 9.07%,市场空间约 为 100 亿元。中国在全球金属加工机床消费额中占比较高。全球金属加工机床行业规模大概在 800 亿美元上下,2019 年 达到 821 亿美元,中国在全球金属机床消费额中占比一度超过 50%,尽管 2011 年以后逐渐下降且 2019 年占比 仅有 27.17%,但是我们认为 2020 年在全球疫情冲击和中国国内制造业回暖的影响下,中国金属加工机床消费 额降幅会明显小于全球降幅,在全球占比将出现回升。1.2 机床上游核心零部件情况梳理1.2.1 机床上游核心零部件构成以金属切削机床为例,机床的核心零部件包括数控系统、驱动系统(电机)、传动系统(主轴、丝杠/丝杆、 导轨、轴承等)、铸件(床身、底座等)、钣金件(机身、支架等)、功能部件(刀库刀架、转台、齿轮箱、光栅尺等)、辅助系统(液压系统、电气系统)。目前我国数控系统和传动系统涉及的零部件仍大量依靠进口,其中数控系统的供应商包括发那科、三菱、 西门子,国产厂商主要是华中数控、广州数控;精密轴承主要供应商为日本 NSK、德国舍弗勒 Schaeffler、德国 INA 等;丝杠、导轨主要供应商为中国台湾银泰、德国施耐博格、日本 THK 等。(丝杠/丝杠,导轨)通过分析国盛智科、海天精工、浙海德曼、纽威数控、科德数控等近两年上市的机床厂商披露的详细成本 构成,我们大致计算出各零部件在成本中的占比。其中,数控系统和驱动系统、铸件和钣金件各占 1/3,是主要 成本项;传动系统占比 14%左右;刀库、刀塔占比 4%左右;个别厂商的高端机床还需配置光栅尺做精确定位, 占比最高可达 5%,单体价值量高。1.2.2 数控装置:发那科在国内市场中占比较高2019 年,中国机床数控系统市场销量达到 25.37 万套(同比下滑 25.9% ),销售额达 95.81 亿元,同比下滑 7.4%。国内数控系统市场中,高端机床市场主要由发那科、三菱电机、西门子等国际龙头厂商占据,国内厂商如 广州数控、华中数控等企业在高端机床中占比较低,主要市场在中低端市场。发那科凭借在数控系统科研、设 计、制造、销售等方面强大的实力在国内数控系统市场中占比最高,达到 39.3%。1.2.3 电主轴:渗透率提升推动市场规模增长,国内厂商逐步追赶海外龙头我国电主轴产销量和市场规模逐年增长。2008-2019 年,我国电主轴产量和销量连续多年增长,复合增速 分别达到 20.66%、15.78%。从市场规模来看,我国电主轴市场在 2008-2019 年复合增速为 12.75%,同样维持较 高速度增长,主要由于国内金属加工机床数控化率逐步提升推动电主轴渗透率增长,并且由于中国金属加工机 床市场在全球中占比较高,电主轴供应厂商逐渐由进口转换为本土供应。我国电主轴的产业化起步较晚,与瑞士、德国、日本、中国台湾等先进水平相比,国内电主轴行业在技术实力、 产品性能、业绩口碑等方面还有一定差距。全球电主轴领先企业主要集中在欧洲和日本,其中欧洲的头部电主 轴厂商依靠业内领先的研发能力和产品性能,在电主轴的不同应用领域均占据了较高的市场份额,其中较为知 名的厂商包括瑞士 IBAG 公司、德国 Kessler 公司、英国西风等。日本的电主轴技术水平相对落后于欧洲,但产 业发展成熟,性价比较好,在中国大陆等电主轴技术相对落后的地区占有较大的市场份额。近年来,在某些细 分领域,国内部分厂家凭借日臻完善的研发实力和制造水平,已推出了具备较强竞争力的产品,并占据越来越 高的市场份额。2019 年,中国大陆上市企业昊志机电和国机精工以销量计的市场占有率分别为 8.06%和 0.95%,其中,昊 志机电的电主轴产品主要为加工中心用电主轴和印刷电路板钻孔机用电主轴,在这两个细分领域中市占率保持 稳步增长。1.3 现有机床工具上市公司梳理我们按机床类别梳理了全部上市公司主营业务,可以看出创世纪、华东重机(润星科技)主营 3C 用加工中 心,国盛智科、海天精工、日发精机主营通用型加工中心,浙海德曼、津上机床主营车床,秦川机床、华东数 控、宇晶股份主营磨床,沈机布局较全,亚威机床、合锻智能主营成形机床,零部件类公司主要包括华中数控 (数控系统)以及昊志机电(主轴),刀具类公司主要包括中钨高新、欧科亿、华锐精密、沃尔德、恒锋刀具。金属切削和金属成形机床市场竞争格局均较为分散。2019 年,金属切削机床市场 CR10 仅为 15.41%,呈现 出较为分散的市场竞争格局,其中市场份额最大的是创世纪,其机床业务收入为 21.81 亿元,市场份额为 2.23%, 其次是北京精雕,占比 2.08%。金属成形机床市场 CR10 也仅为 18.87%,同样较为分散,其中市场份额最大的是 济南二机床集团有限公司,占比达到 8.94%,亚威机床排名第二,占比达到 1.73%。1.4 机床应用场景机床下游应用行业中,汽车、通用零部件和 3C 电子占比较高。作为制造业的加工母机,机床用途非常广 泛,涵盖我国制造业的方方面面,包括汽车、通用零部件、3C 电子、模具、航空航天、工程机械等等。其中应 用占比最高的三个行业分别为汽车、通用零部件和 3C 电子,合计占比达 64%。二、机床行业竞争格局变迁,孕育投资机会2.1 我国机床行业发展历程我国机床行业发展可以分成五个阶段:第一阶段我们机床行业起步于上世纪 50 年代,诞生了声名赫赫的“十八罗汉”国营机床厂,经过 20 多年 的建设和发展,至改革开放前,已经形成产品门类比较齐全、产业体系相对完整的机床工业体系;第二阶段是 1958-1978 年,我国迎来了大规模建设阶段,尤其在六七十年代,为冲破国外技术封锁、解决 尖端工业急需,国家大力支持机床发展,缩小了与国外的差距;第三阶段是 1978-1999 年,随着原机械部属企业全部下放地方和外资机床企业的涌入,我国机床企业不适 应市场环境、行业集中程度低、缺乏行业管理能力的缺点暴露出来,大批国内机床企业陷入倒闭潮和从业人员 下岗潮;第四阶段是 2000-2011 年,受我国经济高速增长利好拉动,机床工具体量快速增长,出现了多种所有制企 业共同发展的局面,机床工具行业产值在 10 年间增长了 10 倍。同时,机床数控化率也有一定提升。但是,由 于各种所有制企业纷纷投资扩产,导致批量型的中低端机床产能急剧扩大,埋下了结构性供需失衡的隐患;第五阶段是 2011 年至今,我国机床消费额总体上呈现下降态势,直至 2020 年降幅收窄并初步出现回暖迹 象。从这一阶段机床企业的市场格局来看,国内机床企业面临“高端失守、中端争夺、低端内战”的局面,其 中高端机床主要被国外企业垄断,国产机床的主角也从国企切换为民企。2.2 国有“十八罗汉”时代落幕目前,国内机床行业可以分为三个阵营:①实力雄厚的外资企业、跨国公司:国际领先的数控机床厂商, 产品涵盖数控车床、加工中心、镗铣机床等多项产品,拥有悠久的发展历史和深厚的技术沉淀,引领着世界机 床向高速、高精、高效、高稳定性、智能化、复合化等方向进行技术革新,在技术方面具有领先实力,如马扎 克、德马吉、中村留、大隈、哈挺等均是如此;②国有企业和具备一定技术实力和知名度的民营企业:具有显 著规模的大型国企以及不断缩小与国外技术差距、性价比和服务逐步提高的部分民企;③技术含量较低,规模 偏小的众多民营企业:在汽车零部件粗加工、一般用途的民用产品等领域,产品加工精度要求不高,产品价格 便宜,对机床价格较敏感。国内企业中,以“十八罗汉”为代表的国有机床时代逐渐落幕。建国之初,沈阳第一机床厂、大连机床厂 等国有企业承担起了我国工业化的重任,为我国机床体系的建立做出了不可磨灭的贡献。但是,随着改革开放 以来市场竞争的加剧和企业管理等多方面原因,大部分国有企业或者被收购、或者被重组,更有甚者如沈阳第 三机床厂直接破产,仅有济南第二机床厂仍独立存活。整体来看,机床行业国有企业的时代逐渐落幕。国有机床企业代表沈阳机床收入萎缩并出现亏损。受益于我国经济高速增长的推动,沈阳机床营业收入在 2011 年时曾达到 96.11 亿元。然而,2011 年以后,由于:1)公司中低端产能供过于求;2)历史负担重、体制 机制不够灵活;3)国内国际扩张速度过快;4)i5 智能机床产品战略投资过大,沈阳机床收入进入下降通道, 2019 年营业收入萎缩至 10.02 亿元,并在当年归母净利润巨亏 29.88 亿元。国有机床企业市场份额下降。随着十八罗汉的落幕,国有机床企业在国内机床市场中的份额不断降低,选取国内 3 家上市的国营金属切削机床企业的机床相关业务营业收入与金属切削机床整体消费量对比可以发现, 2014 年以后,3 家国有机床企业的机床相关业务收入占比由 2015 年的 6.86%降低至 2019 年的 2.49%,降低了 4.36pct。2.3 民营机床厂纷纷登陆资本市场,灵活的机制更加适应竞争性市场登陆资本市场的机床企业主角由国企转换为民企。2000 年以前,国内机床上市企业主要为国企,例如昆明 机床、沈阳机床、秦川机床。而进入 2000 年以后国内登陆资本市场的主角则由国营企业转换为民营企业,尤其 在 2015 年以后,国内民营机床企业上市密度明显提升。民营机床企业实力持续上升,主要民营机床企业机床收入占机床总消费量比重持续上升。民营机床企业凭 借对市场的敏锐度,持续加大研发投入,企业实力持续上升。主要民营上市机床企业金切机床类业务收入占金 切机床消费额比重也呈上升态势,由 2016 年的 3.50%提升至 2019 年的 5.47%(此处选取上市企业包括创世纪、 海天精工、日发精机、浙海德曼、国盛智科、青海华鼎、华东数控、华辰装备、宇环数控)。在本轮制造业投资 长景气周期中,民营企业有望承担提高国产数控机床在中高端领域的份额的重任,逐步实现进口替代。民营企业在研发投入的比例和产出效率高于国企。民营机床厂机制普遍灵活,更能够适应市场化的竞争环 境,有助于我国机床行业提升竞争力。从研发费用率来看,我们选取上市公司中所有机床业务收入占主营业务 收入比重超过 50%的 13 家民营机床企业(包括海天精工、浙海德曼、日发精机、国盛智科、华东数控、华辰装 备、思进智能、科德数控、纽威数控、亚威股份、合锻智能、宇晶股份、宇环数控),这些企业的研发费用率均 值在过去十年间始终明显高于 3 家国有机床上市企业研发费用率均值(2019 年国有机床企业营业收入大幅缩减 导致研发费用占比非正常提升,故未纳入对比),持续高研发投入确保了民营机床企业在技术方面持续进步,虽 然在总研发投入及综合布局上不如国企,但是对比民营机床上市公司与国有机床上市公司过去几年的营收增长 来看,民营机床企业研发投入的产出效率更高。2.4 格局变化叠加疫情,机床行业进口替代加速整体来看,我国金属加工机床进口依赖程度连续两年下降。2004 年,我国金属加工机床进口依赖度达到高 点 62.53%,其后呈现明显下降趋势,近十年来波动下降。2019-2020 年,金属加工机床进口占比已经连续两年 下降,从 33.14%降低至 27.97%,减少了 5.17pcts。金属切削机床进口占比降低更为明显,从 2018 年的 44.56% 降低至 2020 年的 35.33%,减少了 9.23pcts,其中 2020 年单年度降幅达到 5.35pcts,主要是受到疫情影响,机 床进口交期延长、调试人员往来不便,客观上促进了国内优质民营机床企业国产替代进程。三、诸多指标验证机床行业高景气度及持续性3.1 我国正稳步实现制造强国的目标,制造业迎来长景气周期如果以 1992 年南巡讲话为起点,我们认为中国制造业发展至今,经历了三个不同特点的发展阶段:第一阶段,1992-2011 年,我们称之为“制造大国”阶段,凭借劳动力成本优势,中国制造物美价廉,既满 足了改革开放后国内人民群众对生活生产物资的需求,又飘洋过海享誉全球,这个阶段我们制造业更多是“走 量”,在新技术上更多是模仿、跟随策略。第二阶段,2012-2016 年,即“供给侧改革”阶段,在这个阶段,传统行业经历了或主动或被动的出清过程, 很多小企业退出市场,集中度提升,竞争格局优化。第三阶段,2017-至今,我们称之为“制造强国”阶段,其中,2017-2019 年我们认为是前奏,2020 年才是 真正的新起点。(1)为什么说 2017-2019 年是前奏?因为这几年一方面我们看到众多制造业子行业头部企业强 者恒强、个别开始超越外资品牌;另一方面,我们也看到这几年制造业经历了“去杠杆”、“贸易摩擦”“实体清 单”等方方面面的直接或者间接影响,很多企业的投资行为受到短暂抑制或者没有被充分激发。(2)为什么说 2020 年才是真正的“制造强国”新起点?一方面,在贸易摩擦、实体清单等外部压力增大的背景下,中国制造 业企业寻求突破,加大研发投入,追赶国外优秀同行;另一方面,我们不但经受住了疫情的考验,还因为疫情 迅速得到控制,相比海外,中国制造业供应体系有更好的保障,促使我们不仅在国内市场部分实现进口替代、 国产份额提升,还使得我们在海外市场的份额获得预期之外的提升。(3)展望未来,中国制造,凭借优越的性 价比,在全球范围内的份额提升将是一个不可逆的过程,因此,我们认为 2020 年,将是中国由“制造大国”逐 步实现“制造强国”的新起点。为什么我们会进入“制造强国”阶段?这其实是发展的必然,我们从三个维度加以诠释:第一,改革开放以来,我们赖以发展的重要红利——人口红利正在逐步消失。虽然总人口还略有增长,但 是中国就业人员增速自 90 年代以来持续放缓,到 2018、2019 年已经连续两年进入负增长阶段,预计未来随着 我国劳动年龄人口不断减少,就业人员总数将继续降低。人口结构的变化,会促使人工替代类的设备渗透率长 期进入上行阶段。第二,C 端、B 端、G 端的需求持续升。(1)品质生活深入人心,C 端消费者对产品品质的追求,要求制造 企业加大研发投入,投入更多的高端设备用于生产制造,从而拉动高端设备的需求;(2)经历了供给侧改革, 制造业集中度日益提升的背景下,B 端客户自身从竞争格局角度出发,也会主动加大研发投入,采用更先进的 生产设备,增强竞争力;(3)中国经济已经过了高速增长期,经济增长的质量愈发重要,中央和地方政府(G 端)都追求可持续发展以及新技术不落后,持续推动新能源化、信息化智能化,推动制造业标准升级。综上, CBG 端三方共同助推高端设备的持续发展。第三,外界压力之下,寻求自我突破的必然之举。贸易摩擦与实体清单背景下,卡脖子设备与核心零部件 急需突破,目前国内制造业已经形成注重研发与自主创新的氛围,为制造强国打下基础。3.2 PMI 生产指数证实制造业景气度持续回暖新冠疫情对制造业冲击不亚于金融危机,但是本轮制造业实力大为增强,修复迅速。2008 年金融危机期间, PMI 于 2008 年 11 月降至 38.8%;新冠疫情期间,PMI 于 2020 年 2 月降至 35.7%,可见疫情对制造业的冲击不 亚于金融危机。但金融危机后十多年间,中国制造业已经形成更好的全产业链供应体系,经历了供给侧改革, 抗风险能力明显增强,因此我们观察到在复工复产后,PMI 自 2020 年 3 月份已连续 1 年处于荣枯线以上,2021 年 3 月 PMI 指数为 51.9%,维持回暖趋势。固定资产投资方面,制造业整体回暖趋势明显。受到疫情影响,2020 年 2 月制造业固定资产投资额出现大 幅下降,累计值同比下降 31.5%。但是随着疫情影响逐渐减弱和制造业供需复苏的推动,制造业固定资产投资 额增速回暖趋势明显。2020 年 10-12 月,制造业固定资产投资完成额当月同比分别为 3.70%、12.46%、10.22%, 明显回升。2021 年 2 月制造业投资完成额累计同比为 37.5%,主要由于行业持续景气和 2020 年前两月疫情导致 基数较低。3.3 机床景气度 2020 年 4 月以来回升明显我国金属切削机床产量回暖趋势明显。2020 年 3 月,我国金属切削机床产量同比下降 21.70%,主要是新冠 肺炎疫情的影响。2020 年 4 月开始,我国金属切削机床当月同比增速转为正数且不断提升,2020 年 9-12 月同 比增速均值达到 26.93%,回暖趋势十分明显。从金属切削机床累计产量来看,新冠肺炎造成的影响在不断减弱, 累计同比自 2020 年 9 月后转正并继续提升,截至 2020 年末我国全年金属切削机床产量累计同比增长 5.9%。2021 年 2 月,我国金属切削机床产量累计同比增速达到 85.4%,延续了疫情以后的长景气。3.4 工业企业利润总额景气度领先机床需求 8 个月左右企业盈利情况改善带来企业投资的内生性驱动。企业盈利情况在疫情后迅速改善,2020 年 12 月工业企业 利润总额累计值达到 5.74 万亿元,累计同比增长 2.4%。其中,6 月以来工业企业利润总额当月同比增长迅速, 6-12 月当月平均增速达到 17.3%。企业盈利状况的改善,提升了企业的投资能力,在市场预期较为乐观的情况下为企业的扩张投资提供了内生性驱动。通过将工业企业利润总额同比增速延后 8 个月,可以看到与制造业固 定资产投资完成额同比增速相关性较高。3.5 工业企业中长期贷款余额领先机床需求 1 年左右工业企业中长期贷款余额增长态势明显,为企业投资提供外部支持。中长期贷款余额的增加,体现了国家 对工业企业发展的信用宽松政策,为企业的投资提供了外部支持。我们注意到在 2019 年 6 月份以来,工业企业 中长期贷款余额同比持续增长,2020 年末工业企业中长期贷款余额为 11.01 万亿元,当季同比增速为 20.0%, 较第 1 季度提高了 11.7pcts。同时,工业企业中长期贷款余额同比增速较制造业固定资产投资额同比增速领先 1 年左右,进一步佐证制造业固定资产投资完成额会随之提升。3.6 本轮需求高端化特征初步验证,呼应产业升级,可持续性强国内产业升级及劳动力减少带来高端机床需求,高端机床在本轮制造业投资中受益更加明显。综合来看, 本轮制造业投资有别于以往,大型企业是主角,高技术是核心,反映了制造业竞争格局持续优化,产业持续升 级。能够生产更高性能、更精密部件的高端机床厂商在本轮制造业投资中将更加明显受益。金属切削机床的数控化率呈现不断增长的态势。数控金属切削机床是一种装有程序控制系统的自动化金属 切削机床,能够根据已编好的程序使机床动作并对金属零件进行切削加工。与传统金属切削机床相比,数控金 属切削机床在复杂、精密、小批量的金属零件加工方面具有独到优势。我国金属切削机床的数控化率呈现不断 增长的态势,2019 年下半年来,金属切削机床数控化率呈现加速提升态势,由 2019 年底的 38.8%迅速增长至2020 年 12 月的 45.55%。在近年来金属切削机床制造业企业的主营业务收入有所下降的情况下,金属切削机床均价逆势增长,处于 上升通道。金属切削机床制造企业主营业务收入在 2014 年达到峰值 1710.07 亿元后,近五年来呈现逐渐下降态 势,到 2020 年略有回升至 1086.66 亿元。假设金属切削机床制造企业主营业务收入为当年金属切削机床总销售 收入,可计算得金属切削机床均价。2020 年,由于金属切削机床整体收入规模和产量双双上涨且产量增速更快 的情况下,金属切削机床均价达到 24.36 万元/台,较 2019 年略有下降但是整体上不改波动上升趋势。大型企业 PMI 持续多年领先,在疫情后恢复更快。2015 年来,除个别月份外,大型企业 PMI 指数均优于 小企业。2015-2019 年,大型企业月度平均 PMI 指数达到了 51.56%,处于荣枯水平线以上,而中小型企业同时 期月度平均 PMI 指数分别为 49.55%、48.06%,处于荣枯水平线以下。疫情以来的大型企业 PMI 表现也明显好 于中小企业,2020 年 3 月-2021 年 3 月大型企业 PMI 月度平均值达到了 52.25%,中小型企业 PMI 月度平均值 分别 50.93%、49.57%。大型企业疫情后国内外订单表现优于中小型企业,潜在营收增长能力更强。①从国内订单来看,大型企业 疫情后订单反弹明显:2020 年 3 月 PMI 新订单指数就已经达到了 53.20%,其后一直保持在荣枯水平线以上, 2020 年 3 月-2021 年 3 月 PMI 新订单指数均值达到了 53.72%;中小型企业订单在疫情后回暖情况则不如大型企 业,其中中型企业 2020 年 3月 PMI 订单指数为 51.40%,2020 年 3 月-2021 年 3 月PMI 新订单指数均值为 51.65%, 小型企业 2020 年 3 月 PMI 订单指数为 49.70%,2020 年 3 月-2021 年 3 月 PMI 新订单指数均值仅为 49.18%。② 从出口订单来看,大企业出口订单整体上恢复更好:国外疫情爆发晚于国内,出口订单恢复主要从 7 月以后, 其中大型企业2020年8月-2021年3月PMI新出口订单指数均值为51.61%,中小型企业分别为49. 34%、46.40%, 整体上低于大型企业。“去杠杆”和贸易摩擦等原因导致中小型企业亏损面较高,市场格局有所改善。2017 年起,由于受到“去 杠杆”政策的间接影响和后续的中美贸易摩擦的直接影响,工业企业整体亏损面出现明显扩大,由 2017 年末的 11.40%增长至 2018 年末的 15.10%,提升了 3.7pcts。具体来看,2018 年末大型工业企业亏损面为 13.70%,较同 时期中小型企业亏损面分别低 2.8pcts、1.3pcts。到 2019 年末大型工业企业亏损面为 13.20%,出现一定下降, 而同时期中小型企业亏损面则持续提升,大型工业企业较同时期中小型企业亏损面分别低 3.7pcts、2.6pcts,差 距出现扩大。中小企业亏损面持续扩大,使得行业竞争格局出现改善,大型企业将可以取得更多的市场份额。高技术制造业固定资产投资完成额表现强于制造业整体,高端装备设备需求持续增长。高技术制造业包括 医药制造业,航空、航天器及设备制造业,电子及通信设备制造业,计算机及办公设备制造业,医疗仪器设备 及仪器仪表制造业,信息化学品制造业等需要高端装备以满足其精密度要求的产业。2018 年以来,高技术制造 业固定资产投资完成额累计同比与制造业整体固定资产投资完成额差距明显扩大,体现出高技术制造业投资额 在制造业整体投资额中所占比例上升,对高端装备的需求增长。详见报告原文。(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)精选报告来源:【未来智库官网】。

伽利略

2021-2027全球及中国微机电系统(MEMS)代工服务行业研究

2021-2027全球及中国微机电系统(MEMS)代工服务行业研究及十四五规划分析报告2020年,全球微机电系统(MEMS)代工服务市场规模达到了xx百万美元,预计2027年将达到xx百万美元,年复合增长率(CAGR)为xx% (2021-2027)。中国市场规模增长快速,预计将由2020年的XX百万美元增长到2027年的XX百万美元,年复合增长率为XX% (2021-2027)。本报告研究“十三五”期间全球及中国市场微机电系统(MEMS)代工服务的供给和需求情况,以及“十四五”期间行业发展预测。重点分析全球主要地区微机电系统(MEMS)代工服务的市场规模,历史数据2016-2020年,预测数据2021-2027年。本文同时着重分析微机电系统(MEMS)代工服务行业竞争格局,包括全球市场主要企业中国本土市场主要企业竞争格局,重点分析全球主要企业近三年微机电系统(MEMS)代工服务的收入和市场份额。此外针对微机电系统(MEMS)代工服务行业产品分类、应用、行业政策、行业发展有利因素、不利因素和进入壁垒也做了详细分析。全球及国内主要企业包括:TSMCGlobalFoundriesUMC GroupSMICTower JazzPowerchipVanguard (VIS)Hua Hong SemiDongbu HiTekSSMCMicrochip Technology按照不同产品类型,包括如下几个类别:纯代工集成设备制造按照不同应用,主要包括如下几个方面:电子专业制造服务无厂半导体公司其它本文包含的主要地区和国家:北美(美国和加拿大)欧洲(德国、英国、法国、意大利和其他欧洲国家)亚太(中国、日本、韩国、中国台湾地区、东南亚、印度等)拉美(墨西哥和巴西等)中东及非洲地区本文正文共9章,各章节主要内容如下:第1章:报告统计范围、产品细分、下游应用领域,以及行业发展总体概况、有利和不利因素、进入壁垒等;第2章:全球市场总体规模、中国地区总体规模,包括主要地区微机电系统(MEMS)代工服务总体规模及市场份额等;第3章:行业竞争格局分析,包括全球市场企业微机电系统(MEMS)代工服务收入排名及市场份额、中国市场企业微机电系统(MEMS)代工服务收入排名和份额等;第4章:全球市场不同产品类型微机电系统(MEMS)代工服务总体规模及份额等;第5章:全球市场不同应用微机电系统(MEMS)代工服务总体规模及份额等;第6章:行业发展环境分析,包括政策、行业规划、技术趋势以及宏观经济情况等;第7章:行业供应链分析,包括产业链、主要原料供应情况、下游应用情况、行业采购模式、生产模式、销售模式及销售渠道等;第8章:全球市场微机电系统(MEMS)代工服务要企业基本情况介绍,包括公司简介、微机电系统(MEMS)代工服务产品介绍、微机电系统(MEMS)代工服务收入及公司最新动态等;第9章:报告结论。详细内容请参考恒州博智(QYResearch)完整版本报告,索取报告样本联系发布者。著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

冬则炀之

汽车电子产业发展研究报告

第一章 行业概况汽车电子是车体汽车电子控制装置和车载汽车电子控制装置的总称。车体汽车电子控制装置,包括发动机控制系统、底盘控制系统和车身电子控制系统(车身电子ECU)。汽车电子最重要的作用是提高汽车的安全性、舒适性、经济性和娱乐性。用传感器、微处理器MPU、执行器、数十甚至上百个电子元器件及其零部件组成的电控系统。图 汽车电子产业链图 汽车电子控制系统现代汽车电子涵盖领域极广,主要可分为发动机电子控制、自动变速控制、ABS、汽车空调、防盗系统、安全气囊、电子组合仪表、汽车音响、导航系统等细分领域。汽车电子应用状况1) 电子控制喷油装置。在现代汽车上,机械式或机电混合式燃油喷射系统已趋于淘汰,电控燃油喷射装置因其性能优越而得到了日益普及。电子喷油装置可以自动地保证发动机始终工作在最佳状态,使其在输出一定功率的条件下最大限度地节油和净化空气。2) 电子点火(ESA)。它由微机、传感器及其接口、执行机构等几部分构成。该装置可根据传感器送来的发动机各种参数进行运算、判断,然后进行点火时刻的调节,这样可以节约燃料,减少空气污染。3) 电子转向助力系统。电子转向助力系统是用一部直流电机代替传统的液压助力缸、用蓄电池和电动机提供动力。4) 自动控制系统(CCS)。在高速长途行驶时,可采用常速巡行自动控制系统,恒速行驶装置将根据行车阻力自动调整节气门开度,驾驶员不必经常踏油门以调整车速。5) 自适应悬挂系统。自适应悬挂系统能根据悬挂装置的瞬时负荷,自动地适时调节悬架弹簧的刚度和减震器的阻尼特性,以适应当时的负荷,保持悬挂的既定高度。这样就能够极大地改进车辆行驶的稳定性、操纵性和乘坐的舒适性。汽车电子特点1) 汽车工业正处于科技创新时代,传统机电产品成为高新技术产品,汽车产业已成为高新技术装备起来的产业;2) 法规和市场推动着汽车电子信息技术的发展,能源、排放、噪声、安全法规日趋严格,客户对舒适性的要求不断提高,推动着汽车电子信息技术的发展;3) 汽车和发动机系统微处理器的规模越来越大;4) 将普及电控电喷系统,提高动力系统效率,发动机已采用了电子技术,厂商也正在普及和提高;5) 线控或驱动系统迅速发展,线控转向、线控制动正加紧研究,线控将取代机械系统,汽车底盘将发生革命性变化;6) ITS正迅速兴起,包括汽车的智能化、公路的自动化和导航系统等;7) 综合控制成为汽车电子信息技术发展趋势,包括动力传动系统、底盘与安全系统、车身与防盗系统等,远程信息处理系统将使蓝牙技术广泛应用于汽车,汽车智能化将不断升级。图 汽车电子产业链相关标的汽车电子类别按照对汽车行驶性能作用的影响划分,可以把汽车电子产品归纳为两类: 汽车电子控制装置:汽车电子控制装置要和车上机械系统进行配合使用,即所谓“机电结合”的汽车电子装置;它们包括发动机、底盘、车身电子控制。例如电子燃油喷射系统、制动防抱死控制、防滑控制、牵引力控制、电子控制悬架、电子控制自动变速器、电子动力转向等, 车载汽车电子装置:车载汽车电子装置是在汽车环境下能够独立使用的电子装置,它和汽车本身的性能并无直接关系。它们包括汽车信息系统(行车电脑)、导航系统、汽车音响及电视娱乐系统、车载通信系统、上网设备等。图 汽车电子分类无论是市场重心向发展中国家转移,还是技术重心向电子技术倾斜,都将势必影响到汽车电子发展的方向。而且,其技术本身也将面临着来自性能、安全以及环保法规多方面的苛刻要求。今后10年,电子技术在汽车工业中扮演着很大的作用。第二章 商业模式和技术发展2.1 产业链价值链商业模式2.1.1 汽车电子产业链汽车电子产业链上游主要是芯片和元器件的制造;中游为主要设备和主要网架结构,网架结构主要分为三类:传输网、承载网和核心网;下游为网络运营、终端设备和一些应用场景如VR、AR、物联网、车联网等等。图 汽车电子上中下游产业链产业链上游分析上游包括Tier2和Tier3,其中Tier2厂商负责提供汽车电子的相关核心芯片及其他分立器件,主要包括如恩智浦、飞思卡尔、英飞凌、瑞萨半导体等IC设计厂商以及如车载大功率二极管厂商分立元器件厂商,Tier3后段厂为Tier2厂商提供代工及封测服务,包括TSMC、GlobalFoudries等。产业链中游分析中游为汽车电子的系统集成商(Tier1),主要进行汽车电子模块化功能的设计、生产及销售,Tier1 系统集成商行业集中度高,呈现出寡头垄断格局,例如博世、大陆、德尔福、日本电装等公司。产业链下游分析下游整车厂(OEM)及维修厂(AM)。汽车电子对于安全性要求高,行业具有TS16969、ISO26262、AECQ100等多种认证标准,认证周期较长,厂商进入整车厂配套体系大概需要2~3年的认证周期。目前汽车电子产业链主要掌握在国外几个大厂手中,行业集中度较高,随着信息技术与消费电子等应用逐步渗透其中,传统汽车行业或将面临来自移动互联网、消费电子行业等新型行业的冲击。2.1.2 商业模式从全球整体变革进程上来看,消费者对电动汽车的兴趣进一步提高,自动驾驶技术也取得了明显的进步。各国开放了更多的自动驾驶测试道路,企业研发活动以及人工智能和出行领域的风险投资均有增长。这些都为新的出行解决方案提供了非常优越的发展条件,推动行业向共享出行、无人驾驶、智能网联与新能源等四大趋势加速迈进。图 汽车电子系统产业链在成熟的汽车产业链中,整车制造的利润占15%,零部件占22%、销售占5%、维修占17%、汽车金融占24%、二手车占13%、汽车租赁占4%。传统汽车产业采用经销商模式,制造和服务分开,汽车销售和后服务由经销商承担,整车厂仅赚取制造环节的利润。终端消费者未必需要拥有汽车,行业商业模式转变为以每次出行服务的里程数,以及在途·中所使用的服务项目来计费。·满足消费者需求,而是要在既有的软件服务平台上不断优化内容、最大化提升用户出行的服务体验,围绕用户全旅程的体验来设计和改善服务内容,形成动态的、可持续的业务闭环。整车销售模式它源于西方人对电动汽车发展的最初思考,即每家都有电,每家都有车库,只要晚上找到电源充电,就可以实现自由出行;但是这种模式除了过于理想化情景判断,还面临着充电标准化管理的问题,其全球商业化运营并不容易实现,同时由于电池价格的高昂,导致特斯拉电动汽车的销售价格并不亲民,它不得不首先主打豪华车市场,特斯拉构建了完整封闭的生态:包括电池工厂、整车工厂、直营店、服务中心、超级充电站、二手车,以及无人驾驶租赁服务等;汽车销售完成后,车主仍将持续为特斯拉贡献利润:联网/云服务、软件升级、维修服务、超级充电站、二手车认证、无人驾驶租赁等;特斯拉的汽车全生命周期价值量可能达到制造环节的3—4倍。整车租赁模式这种模式典型代表是比亚迪电动汽车,它由传统燃油车汽车租赁商业模式演变而来,其最初是进入公共交通领域,它服务于机构融资和个人用车两端,即服务于机构融资的直租和售后回租等形式的融资租赁,以及个人用车的以租代购、合约租赁、短租及分时租赁等用车租赁方式;这种模式获得整车企业的认可,同时也规避了政策及技术领域尚未解决的难题,是电动汽车进入民用市场的捷径。裸车销售及电池租赁模式这种模式通过分拆电动汽车销售和动力电池销售,以实现电动汽车销售价格下降,解决电池充换兼容问题,同时可以协调车企、电池技术企业、国家电网及充电桩布点的利益,因此得到了国内学者及有关部门的重视及支持,深圳市公交系统首先采用这个模式,江苏省也在极力推广这种模式。2.2 技术发展对国内汽车电子行业的各个专利申请人的专利申请量进行统计,排名前十的做汽车电子线管业务的公司依次为海康威视、东软集团、德赛西威、星宇股份、和而泰、信维通信、兆易创新、欧菲光、亚太股份、日海智能等。图 汽车电子行业主要专利数量统计1) 传感器交叉融合,ADAS应用日渐丰富自动驾驶的冗余度和容错性特性,要求越是高阶的自动驾驶需要越多的传感器。L2-L3标志着汽车的操作权正式由人类驾驶者移交给无人驾驶系统,对自动驾驶系统的冗余度和容错性的要求均有着质的提高。从传感器数量来看,毫米波雷达的数量将从L2的3个左右提升到6个以上,摄像头也从1个大幅提升至4个以上,甚至会开始装配激光雷达。进入到L4/L5层级,传感器的数量也将水涨船高,毫米波雷达届时有望达到10个以上,摄像头也会翻番,达到8个以上,激光雷达或会随着成本的快速下降而有所新增。总之,高阶自动驾驶对传感器的数量要求会越来越多,以尽可能地保证行驶的安全性。图 高阶自动驾驶2) 智能驾驶舱智能驾驶舱是对传统座舱的数字化、液晶化与集成化。智能驾驶舱是由不同的座舱电子组合而成的完整体系,它包括车载信息娱乐系统、流媒体中央后视镜、抬头显示系统HUD、全液晶仪表及车联网模块等。与传统座舱相比,智能驾驶舱对中控、后视镜及仪表盘等硬件进行数字化、液晶化,并纳入抬头显示器HUD、后座显示屏等HMI多屏,且底层嵌入操作系统、车联网服务、内容软件、ADAS系统等应用以满足日益增长的人机交互需求。图 智能驾驶舱的液晶化3) 毫米波雷达毫米波雷达分为近距离探测(SRR)和远距离探测(LRR),通常车企会在车的前部装配一个毫米波雷达,用于在行车过程中探测前方障碍物,一般探测距离在150米以上,在高速驾驶中,自适应巡航系统(ACC)是最受驾驶员欢迎的ADAS系统,大幅减轻了司机的驾驶强度。4) 车载信息娱乐系统第四代综合车载信息娱乐系统已经能实现三维导航、实时路况、网络电视、辅助驾驶、故障检测、车辆信息、移动办公、无线通讯、基于在线的娱乐功能及TSP服务在内的一系列应用,集中体现了汽车智能化、电子化、互联化水平。屏幕从无到有,尺寸从小到大;与外界的连接方式日趋多样化;人机交互越来越智能。图 车载信息娱乐系统全球市场竞争格局5) HUD 渗透率有望持续提升HUD是智能座舱后端落地环节,当前渗透率还较低,但发展潜力较大。爱信精机、德国大陆、日本电装、美国伟世通、德国博世等企业早有布局,并几乎瓜分全球市场份额,其中市占率分别为55%、18%、16%、3%与3%。此外现代摩比斯等巨头也收到了中国整车厂的HUD订单,预计中控屏、液晶仪表盘等主要玩家都将纷纷涌入该市场,未来竞争激烈程度将加剧。表 HUD分类6) 车联网通信网络架构的角度看,车联网主要包括云---管---端三个层次。云端有中心系统,管侧是通信网络,端侧为车载单元OBU和路侧单元RSU。随着国内T-BOX的技术的不断成熟,国产车载T-BOX产品的质量、性能也将逐渐提升,目前已经占据国内大部分市场份额,未来有望在国产替代的趋势下打入国际市场。2.3 政策监管1) 汽车电子行业主管部门及管理体制汽车电子行业的管理体制是在国家宏观经济政策调控下,遵循市场化发展模式的市场调节管理体制,采取政府宏观调控和行业自律管理相结合的管理方式。国家发展和改革委员会、工业和信息化部是行业宏观管理职能部门,共同负责制定行业的产业政策,拟定行业发展规划,指导调整行业结构,引导行业技术改造,以及审批和管理投资项目。2) 行业自律组织行业的自律组织为中国汽车工业协会,主要职责有:收集、整理并分析行业统计资料,为政府制定产业政策和行业规划提供依据;协助政府部门组织和修订行业标准,包括技术标准、经济标准和管理标准,组织推进标准的贯彻实施,进行行业检查与评定;建立行业自律性机制,规范行业自我管理行为;面向企业开展信息服务,提供政府有关政策、法规和国内外技术经济情报和市场信息;协助有关部门进行贸易争端调查与调解,开展国际交流与会展服务等。第三章 行业估值、定价机制和全球龙头企业3.1 行业综合财务分析和估值方法图 综合财务分析图 行业估值与市场比较汽车电子行业估值方法可以选择市盈率估值法、PEG估值法、市净率估值法、市现率、P/S市销率估值法、EV/Sales市售率估值法、RNAV重估净资产估值法、EV/EBITDA估值法、DDM估值法、DCF现金流折现估值法、NAV净资产价值估值法等。表 境外汽车电子领域公司估值对比表 中国上市汽车电子概念公司估值对比3.2 行业发展和驱动机制及风险管理3.2.1 行业发展和驱动因子汽车电子产业的发展与汽车工业的发展密切相关。随着汽车的智能化和电动化发展,以及消费者对安全性和节能环保要求的不断提高,汽车电子产业增速加快,逐渐成为各大整车厂商差异化竞争的焦点。在一定程度上,电子技术主导着汽车技术进步的方向,未来汽车技术的竞争将越来越多表现为汽车电子技术的竞争。而汽车电子技术的发展本身是一个不断迭代和完善的过程,朝着集成化和智能化的方向演变,在此过程中,汽车电子的内涵和外延将不断拓展。从全球市场来看,美国、欧洲和日本是全球主要的传统汽车市场,也是汽车电子产业的技术领先者,掌握着国际汽车电子行业的核心技术,并孕育了包括大陆、电装、德尔福等在内的一批全球汽车电子巨头。全球汽车电子市场规模在未来几年将保持较高的增速,且高于整车市场。图 全球汽车电子市场格局汽车电子将成为国内进行汽车产业结构调整的突破口汽车电子具有技术含量高、开发难度大、开发成本高和产品附加值多的特点,对汽车在使用过程中提高安全性、节约能源、减少排放有重要影响。目前,全球汽车行业正在向更加节能、安全、环保和智能的方向发展,使汽车电子在汽车领域中的使用逐渐增加。根据上海科学技术情报研究所发布的报告,在过去十多年中,汽车电子技术的应用使世界汽车工业安全性提高了10倍,总体排放物减少了70%,油耗减少了40%。我国在加快推进产业结构调整,走新型工业化道路的战略主导下,为实现从汽车大国向汽车强国的跨越,在政策层面对汽车电子产业给予了持续有力的支持。电子电器架构当前的汽车里,基本上每个功能都对应一个独立的ECU,其结构会很复杂。逐渐地,将一些功能合到一个ECU里去运行,即上图中描述的功能集成,减少控制器节点,降低复杂度和成本。慢慢地,控制器要往“域”方向发展,目前车辆上主要有动力域、车身域、自动驾驶域、底盘域、信息娱乐域,这些域控制器可以去完成各自域内协调的工作,可以实现中央化软件集成平台,便于软件管理和车辆变形(比如说,当车辆动力系统拓扑发生变化,域内节点增加或减少,可通过更新域控制器软件就可以实现变形)。再往后,就会朝向跨域和车辆与云端进行交互,以满足不同的应用场景。图 电子电器架构发展趋势图 对域控制器的主要影响和需求驱动因素1) 从汽车发展历史上来看,汽车电子已经成为汽车控制系统中最为重要的支撑基础,汽车电气化成为汽车产业革命的标志,随着新能源车、无人驾驶、车载信息系统技术日渐成熟,未来汽车产业将沿着智能化、网络化以及深度电子化方向发展。2) 当前汽车电子已经进入新一轮技术革新周期,汽车电子渗透率及单车价值量都将会得到大幅提升,市场空间超万亿;国内汽车市场作为全球汽车产业引擎,保有量迅速增长。国内市场将在新一轮汽车电子化技术革命中将扮演重要角色并助力国内产业链相关公司快速成长。3) 国内汽车市场高速增长,单车电子系统价值性不断提升,汽车电子市场量价齐升,一些细分领域如ADAS,Telematics将会实现超高速成长;5G时代,针对V2X的特殊场景,新型的通信技术需要被提出,商用规划逐步明确,云、管、端三层架构,运营商、设备商、整车厂多方参与。4) 高阶自动驾驶需要催生越多传感器需求,毫米波雷达和摄像头数量摄像头陡升,激光雷达逐步应用,CMOS图像传感器、镜头、马达、柔性电路板等主要器件再度升级行业集中度仍较高,门槛较高,验证周期长,国内厂商已在细分行业逐步突破,能够构建更稳定的竞争格局。图 推升汽车电子需求的三大核心要素5) 安全与舒适需求不断推升智能化需求人们对汽车安全、舒适度、节能和环保性能要求的不断提升,而这种需求满足绝大部分需要相应的汽车电子技术来实现, 对安全的追求催生了被动安全系统和主动安全系统的快速发展,对舒适的需求催生了车载娱乐和车载通讯等系统的迅速成长。从全球来看,汽车电子产业发展整体上是一个由高端车型向低端车型渗透,由发达地区向发展中国家地区逐步渗透的进程。6) 节能环保需求推升新能源汽车产业爆发。技术替代产业化正在实现。汽车电子在新能源汽车中的价值占比高达47%,远高于传统汽车20%左右的水平,新能源汽车产业的爆发将推升汽车电子产业的景气度。3.2.2 行业风险分析和风险管理1) 政策风险汽车电子行业,是国家鼓励发展的行业,享受国家产业政策的支持。同时,行业属于技术密集型行业,行业内主要企业被评定为高新技术企业,享有高新技术企业的所得税优惠。未来国家产业政策的改变或者对高新技术企业所得税优惠政策的取消都将对行业内的企业带来一定的不利影响。2) 市场竞争风险市场竞争,是市场发挥资源配置作用的直接表现。随着市场竞争加剧,企业的整合与分化将会频繁发生,利润也会在不同企业间不均匀地分配。在一些企业依然获得高额利润的同时,另一些企业则会陷入经营困境,会被并购或被淘汰。3) 技术更新风险随着市场竞争的加剧,技术更新换代周期越来越短。技术的创新、新产品的开发是企业核心竞争力的关键因素。如果行业内的企业不能及时准确把握行业、产品的发展趋势,将削弱企业已有的竞争优势。4) 资金不足风险本行业属于资金、技术密集型行业。本行业不仅初始投资量和需要持续投入的资金较大,而且对生产企业的技术、装备、工艺水平、检测水平、开发能力等方面有较高的要求,新进入者往往难以拥有如此雄厚的资金支持。汽车整车制造属于大批量生产,整车厂商对零部件供应商的供货能力和供货质量要求较高,因此只有具备较大生产规模与较强质量保证能力的制动系统厂家才具有为大中型整车厂商按时、按质、按量供货的能力,而新进入者往往在短期内难以达到相应的规模。3.3 竞争分析汽车电子行业市场竞争激烈,行业集中度低且细分市场格局不一,高端产品领域目前供应商主要为欧美、日本等国的汽车零部件厂商。由于技术水平领先、先发优势明显、品牌实力突出,全球前十大知名零部件厂商如伟世通、大陆、德尔福等在汽车电子市场拥有较高的市占率,且较早纷纷进入中国布局。全球汽车电子市场亦主要集中于欧洲、北美、日本等地。图 全球主要汽车电子厂商及进入中国情况图 汽车电子厂商国内汽车电子企业强于算法和系统集成,但是底层基础软硬件仍是短板。硬件方面,Tier1(一级供应商)进入门槛较高,认证周期长,行业壁垒高,产业格局相对稳定。伟世通、大陆集团、德尔福等厂商由于技术水平领先,优势明显品牌实力突出,较早进入中国布局,占据了我国中高端汽车电子市场。而我国 Tier1起步相对较晚作为产业后来者,面临较大的切入压力,关键技术及制造水平与国外差距较大产品主要集中于低端市场。软件方面,国内既在汽车操作系统、车控软件等方面积累薄弱,缺少类似标准,不利于培育成熟产品,又缺乏类似 Adaptive AUTOSAR的统一软件架构标准,国内企业主要活跃于与人工智能密切相关的自动驾驶和生态体系。总体看来软硬件方面仍有短领域,而在传统汽车电子自动驾驶核心算法与系统集成型升级的窗口期,弥补短板。图 全球十大知名Tier1厂商市场占比汽车电子行业进入门槛高汽车电子从属于汽车零配件产业,上游为原材料与部分零部件,下游为汽车行业。与消费电子行业相比,汽车电子行业技术门槛更高,认证周期更长,行业壁垒更大。技术壁垒高。由于与安全性直接相关,汽车电子对元器件的要求苛刻。汽车电子要求在承受高温、高压、震动和有水等环境条件下仍能保证高精度和准度,技术门槛高。行业内严格的汽车召回制度也逼迫厂商提高汽车电子产品质量的门槛。3.4 国内竞争情况中国汽车电子市场的高端产品基本被海外汽车电子巨头所垄断,在相对低端产品领域,由于门槛相对较低,成为国内汽车电子企业的突破口,但是竞争相对激烈。图 中国汽车电子行业竞争态势3.4 中国企业重要参与者中国主要企业有华域汽车[600741.SH]、德赛西威[002920.SZ]、科博达[603786.SH]、均胜电子[600699.SH]、威孚高科[000581.SZ]、万向钱潮[000559.SZ]、旭升股份[603305.SH]、岱美股份[603730.SH]、富奥股份[000030.SZ]、华阳集团[002906.SZ]、英恒科技[1760.HK]、华众车载[6830.HK]、元征科技[2488.HK]、正道集团[1188.HK]、浙江世宝[1057.HK]、瑞丰动力[2025.HK]、协众国际控股[3663.HK]、新晨动力[1148.HK]、新焦点[0360.HK]、京西国际[2339.HK]等。图 A股及港股上市公司1) 德赛西威[002920.SZ] 是国际领先的汽车电子企业之一,是智能网联技术积极推动者。德赛西威专注于人、机器和生活方式的无缝整合,为智能驾驶舱、智能驾驶以及车联网技术提供创新、智能、具有竞争力的产品解决方案和服务。德赛西威多年来在开发设计、质量管理和智能制造领域的专业能力,确保公司能够满足汽车制造厂商的多元需求,为客户提供卓越的产品和服务,与国内外汽车制造商建立了良好的合作关系。2) 科博达[603786.SH]是汽车智能、节能电子部件的系统方案提供商,立足全球汽车产业平台并全面参与全球高端市场的竞争,专注汽车电子及相关产品在智能领域的技术创新与产业化,致力成为全球汽车电子高端产业链中富于创新和竞争力的卓越企业,公司是少数几家进入国际知名整车厂商全球配套体系,同步开发汽车电子部件的中国本土公司。公司终端用户主要包括大众集团(包括其下属子公司奥迪公司、保时捷汽车、宾利汽车和兰博基尼汽车)、戴姆勒、捷豹路虎、一汽集团及上汽大众等数十家全球知名整车厂商,且部分新产品已进入福特汽车、宝马汽车、雷诺汽车的供应商体系,在全球汽车电子尤其是汽车照明电子领域中享有较高的知名度。3) 均胜电子[600699.SH] 是一家全球化的汽车零部件顶级供应商,主要致力于智能驾驶系统、汽车安全系统、新能源汽车动力管理系统以及高端汽车功能件总成等的研发与制造。2011年至今,公司先后收购了汽车电子公司德国PREH、德国机器人公司IMA、德国QUIN、汽车安全系统全球供应商美国KSS以及智能车联领域的德国TS。通过企业创新产品升级和多次国际并购,公司实现了全球化和转型升级的战略目标。凭靠领先的创新设计、生产制造、品质管理及优秀服务,公司成为宝马、奔驰、奥迪、大众、通用和福特等全球汽车制造商的长期合作伙伴,并屡获保时捷、大众、通用等汽车制造商优秀供应商奖。3.5 全球重要竞争者全球非中国主要企业有安波福(APTIV)[APTV.N]、曼格纳国际[MGA.N]、李尔[LEA.N]、博格华纳(BORGWARNER)[BWA.N]、真泰克[GNTX.O]、德国大陆[CON.DF]、HELLA[HLE.DF]、舍弗勒[SHA.DF]、ELRINGKLINGER[ZIL2.DF]、SAF-HOLLAND[SFQ.DF]、CONTINENTAL[0LQ1.L]、VALEO[0RH5.L]、AUTOLIV INC DEPOSITORY RECEIPT[0MI0.L]、FAURECIA[0MGR.L]、日本电装[6902.T]、BRIDGESTONE[5108.T]、住友电气工业[5802.T]、MAGNA INTERNATIONAL[MG.TO]、HYUNDAI MOBIS[012330.KS]、HANON SYSTEMS[018880.KS]等。图 国外上市企业1) 伟世通[VC.O]是全球知名汽车零部件集成供应商,位居美国财富500强。其总部位于美国密歇根州,制造工厂、技术中心、销售中心和合资企业遍布世界各地。伟世通公司致力于为全球汽车生产厂商设计和制造创新的空调系统,汽车内饰,以及包括照明在内的电子系统,并提供多种产品以满足汽车售后市场的需求。伟世通在汽车电子领域提供的主要产品包括音响、信息娱乐、驾驶信息、动力总成控制和照明。2) 安波福(APTIV)[APTV.N](原名:德尔福汽车公司)是一个全球性的汽车零部件制造商,为全球汽车和商用汽车市场提供电子/电器架构、动力总成系统,保险装置和热工艺解决方案。公司设有四个部门:电子/电气架构;动力总成系统;电子与保险装置以及热处理系统。电子/电气架构部门提供完整的车辆的电子结构设计。动力总成系统部门提供完整的系统集成的汽油和柴油发动机管理系统。电子产品和保险装置部门提供关键零部件、系统和先进的软件,保证旅客的安全性、舒适度和娱乐性。热处理系统部门提供动力系统的冷却和加热以及通风和空调(HVAC)系统。3) 博世集团是德国的工业企业之一,从事汽车与智能交通技术、工业技术、消费品和能源及建筑技术的产业,以其创新尖端的产品及系统解决方案闻名于世,位于世界500强第76名。博世集团是全球第一大汽车技术供应商,2012年销售额达到674亿美元,其中在中国销售额达到274亿人民币。博世的业务范围涵盖了汽油系统、柴油系统、汽车底盘控制系统、汽车电子驱动、起动机与发电机、电动工具、家用电器、传动与控制技术、热力技术和安防系统等。博世在全球雇员约275,000名,其中在中国雇员约21,200名。博世汽车技术正在大举进入中国,从而投身于迅猛发展的中国汽车工业。第四章 未来展望未来汽车将面向“新四化”:智能化、网联化、电气化、共享化,网联化主要包括车内信息娱乐、V2X通信、云端服务、OTA更新及远程车辆诊断;智能化主要包括兼容不同类型传感器、支持复杂算法、信息融合等,以支持自动驾驶;电动化主要是车辆传动系统电气化,如混合动力系统,纯电动动力系统的应用;共享化方面更多的是一种商业模式。以下为汽车电子行业发展的五个趋势:1. 汽车将在云端结合车内及车外信息虽然非车企以外的企业参与程度仍取决于监管法规,非敏感数据(即非隐私或安全相关数据)仍然有望更多地在云端进行处理。随着数据量的增长,大数据分析将被越来越多地应用于数据处理,并将基于数据处理结果制定相应的行动方案。基于数据的自动驾驶的应用及其他各项数字化创新将依赖于不同企业之间的数据共享。当然现在仍然不清楚不同企业间的数据共享将如何实现、由谁实现,但主要的传统供应商和技术企业已经开始建立有能力处理此种海量数据的集成化平台。2. 汽车将应用双向通信的可更新部件通过车载测试系统,汽车可以实现自动检查功能和集成更新,从而推动生命周期管理,以及增强或解锁产品的售后功能。所有ECU都会与传感器和执行器交换数据,并检索数据包来支持创新性用例,如基于车辆参数的路线计算。车辆将在全寿命周期内获取功能性及安全性升级。监管部门可能强制要求软件维护,来确保车辆设计的安全完整性。更新和维护软件的责任将在车辆维护与运行领域催生新业务模式。3. “汽车以太网”势不可挡,将成为整车支柱数据量的提升、HAD的冗余要求、互联环境下的安全保障,以及跨行业标准协议的需求很有可能催生汽车以太网,并使其成为冗余中央数据总线的关键助推因素。以太网解决方案可以实现跨域通信,并通过添加以太网扩展,例如音-视频桥接(AVB)和时间敏感网络(TSN)等,来满足实时性要求。本地互联网络、控制器区域网络等传统网络将继续在车辆上运用,但仅用于封闭式的低级网络,如传感器和执行器等。FlexRay和MOST等技术有可能被汽车以太网及其扩展(如AVB、TSN等)取代。4. 电子技术比重逐渐上升电子技术的比重将大于机械技术的比重,并将进一步向集控方向发展。发动机控制系统和自动变速控制系统集成为动力传动系统,称为PCM;将汽车防抱死控制系统、牵引力控制系统、电子稳定控制系统和驱动防滑控制系统集成为汽车稳定性控制系统;通过总线对动力传动、制动、转向灯控制系统进行连接,由中央控制器进行集中控制。5. 嵌入式操作系统将成为电控单元控制策略开发的主流它的出现伴随着集中控制系统的出现,或者说中央控制系统的出现,也是伴随着汽车电子模块化设计的要求而出现的。除了中央控制单元,每一个电控单元的控制软件将对应一个操作系统下的驱动程序而运行,就像Windows XP下的打印机、MODEM、光驱等。Cover Photo by Matthew Henry on Unsplash

道安

智能巡检机器人行业研究报告

图片来源@视觉中国文丨梧桐树资本 ,作者丨马龙“当前数据中心建设属于新基建重点,机器人行业将进入新一轮爆发期。从投资角度看,全球整体市场仍在快速增长,服务机器人将迎来发展黄金时代。本文选自梧桐树资本风险投资团队投资总监马龙的《智能巡检机器人行业研究报告》部分内容。”「重要结论」智能巡检机器人属于特种机器人范畴,需求较为前沿,因此必须找到:1、有特殊工作环境(高危、艰苦、人工作业有短板),对专业服务机器人具有需求刚性;2、有政策引导;3、有较大需求和支付能力的下游领域,才能够支持企业的长期发展,所以对企业的技术、渠道能力(营销教育能力)和战略眼光(市场选择)等都要求较高。虽然当前特种机器人市场规模相比工业和狭义服务机器人较小,但其作用和意义重大,增长速度快。目前智能巡检机器人主要引用的大行业有:电力、数据中心、城市综合治理。智能电网建设和增强供电可靠性已上升为国家战略,电力系统的智能巡检机器人刚需最强。变电站巡检机器人市场潜在规模400~550亿元,配电站巡检机器人市场潜在规模在200~300亿元,在技术和政策双重利好的影响下,电力巡检无人机处于成长期到成熟期的过渡期,预计年市场规模在30-50亿元。目前变电站巡检机器人的上市公司和准上市公司已经很多,基本以区域为划分,市场格局比较成熟。电力无人机巡检需求较刚,市场规模较大,目前发展较好的公司基本完成B轮融资,处于C轮阶段,也有部分A轮左右公司,但是和头部公司体量差距较大。数据中心建设属于新基建重点,将进入进入新一轮爆发期。2019 年-2022 年中国 IDC 业务市场规模复合增长率为 26.9%,预计2022 年,中国 IDC业务市场规模将超过3200.5亿元,同比增长 28.8%。数据中心巡检痛点明显:1)巡检工作量大,漏检误检率高;2)缺乏对网络设备及服务器主机的硬件状态监控:3)外包运维工作安全性明显:4)IT资产数据僵尸化;5)灾备机房无人管理:6)IT运维成本居高不下。因此数据中心智能巡检机器人刚需较强。整体来看,EDC智能巡检机器人潜在市场规模应该在百亿左右,运营商IDC智能巡检机器人的潜在市场规模在300~450亿。数据中心智能巡检刚需程度较强,巡检机器人市场规模较大,目前发展较好公司基本处于A轮阶段。城市综合治理的内涵非常广,包含安防巡检、交通巡检、消防应急巡检、设施巡检等,其中安防巡检机器人市场规模最大,按照2020年智能安防市场450亿,安防机器人占比3%计算,2020年安防巡检机器人市场13.5亿元。市场规模较小、刚需成都较弱、落地难度较大。01 机器人行业发展概述根据机器人的应用环境,国际机器人联盟(IFR)将机器人分为工业机器人和服务机器人。现阶段,考虑到我国在应对自然灾害和公共安全事件中,对特种机器人有着相对突出的需求,中国电子学会将机器人划分为工业机器人、服务机器人、特种机器人(专业机器人)三类。机器人分类:全球整体市场仍在快速增长,服务机器人迎来发展黄金时代。中国电子学会发布的《中国机器人产业发展报告2019》数据显示,2019年全球机器人市场规模达到294.1亿美元,2014-2019年的平均增长率约为12.3%。其中,工业机器人159.2亿美元,服务机器人94.6亿美元,特种机器人40.3亿美元。2019年全球机器人市场结构:(一)工业机器人工业机器人一般为多关节机械手或多自由度的机器装置,可以按照人类指挥或提前编排的既定路径进行运动,替代人工从事重复度较高的生产制造工作,可以替代人工从事上下料、锻造切割、焊接、喷涂、装配、码垛等工业生产作业工作。工业机器人应用集中在汽车、电子、金属制品、橡胶和塑料等行业。汽车行业目前仍是国内工业机器人最主要的下游应用,随着中国制造业产业升级和转型的不断深化,工业机器人的应用将有望更深入衍射到 3C、半导体、新能源、物流仓储等领域,需求更加多元化。2016-2018年我国工业机器人下游应用占比及 2018 年其他类详细占比情况:(二)服务机器人广义服务机器人的定义为“以服务为核心的自主或半自主机器人”,是除工业机器人以外的,用于非制造业并服务于人类的各种先进机器人的统称。服务机器人应用范围很广,涵盖了维护、保养、修理、运输、清洗、保安、救援、巡检等领域。服务机器人根据应用场景的不同又可分为家用服务机器人(狭义的服务机器人)和特种机器人(专用服务机器人)两大类。常见的家用服务机器人有扫地机器人、娱乐机器人、烹饪机器人等。相比工业机器人,服务机器人属于新兴行业,但增速更快。服务机器人萌芽于上世纪90年代,2000年至2010年为起步阶段,全球规模较大的服务机器人企业产业化历史也多在5-10年,大量公司仍处于前期研发阶段,2011年至今,依托人工智能技术进步,服务机器人应用场景和服务模式不断拓展延伸,带动全球服务机器人市场规模高速增长,当前服务机器人市场规模的增速远高于工业机器人,2014年以来全球服务机器人市场规模年均增速达21.9%。2019年全球服务机器人市场结构:(三)特种机器人(专业服务机器人)特种机器人(专业服务机器人)包括国防机器人、农场机器人、医疗机器人、电力机器人等。智能巡检机器人属于特种机器人范畴。近年来,世界各国主要研发的专业服务机器人重点在医疗、物流、军事、极限环境等特殊领域。考虑到特殊领域的工作环境条件往往比较恶劣或者具有危险性,对专业服务机器人具有需求刚性。因此,未来特殊工作环境的应用场景将会不断催生出专业服务机器人新品种,当前特种机器人市场规模相比工业和狭义服务机器人较小,但其作用和意义重大,未来潜力巨大,2013 年至今,全球特种机器人销售额始终保持两位数增长。根据IFR 的预测,至 2020 年,全球特种机器人市场规模预计达到 49.5 亿美元。目前,国内外特种机器人行业部分较为知名的企业代表如下:02 广义服务机器人产业链广义服务机器人产业链图谱:(一)上游:硬件(基础层)及技术支持(技术层):服务机器人上游为核心零部件厂商,核心零部件包括芯片、传感器、控制器、减速器及伺服电机等。一般这类厂商都属于技术类公司,注重核心技术研发,硬件及核心零部件厂商以提升技术和降低成本为主要任务,AI技术公司则以算法和数据为核心竞争力。硬件及技术支持类公司:硬件中芯片和智能传感器具有极高的技术门槛,且生态搭建已基本成型,目前芯片的主要贡献者是Nvidia、Mobileye和英特尔在内的国际科技巨头。智能传感器领域主要被博世、欧姆龙、ST、罗姆、NXP、ADI、英飞凌、楼氏电子、索尼、三星等巨头企业垄断。跨国公司占据了87%的市场份额,但国产替代在加速,核心零部件方面,国内有寒武纪科技、遂源等AI芯片企业,有思岚科技、镭神智能等传感器企业。伺服系统与控制器市场较为集中,减速器寡头垄断。IFR 数据显示,机器人的成本主要集中在零部件端,其中核心零部件的比例在 70%左右,减速器、伺服电机、控制器占比分别为 36%、24%、12%。控制器领域,“四大家族”(ABB、库卡、发那科、安川)全部实现自给自足。伺服电机领域,安川是市场上的有力竞争者,2018年在中国伺服系统销量份额达到 15%,与松下同处第一阵营;发那科掌握核心技术,无需外购;欧系ABB和库卡由外部供应。减速器领域,技术含量最高,“四大家族”尚无突破,市场主要由日本的纳博特斯克和哈默尼克两家企业把控。“四大家族”通过掌握零部件端、本体、集成应用端的技术,建立对成本和产业链的把控力。AI技术公司中,在核心算法和基础理论领域,美国是目前人工智能基础理论和算法发展水平最高的国家,Facebook、谷歌、IBM和微软等科技巨头均重点布局人工智能算法及算法框架等高门槛技术。技术层解决具体类别问题,这一层级主要依托运算平台和数据资源进行海量识别训练和机器学习建模,开发面向不同领域的应用技术,包括语音识别、自然语言处理、计算机视觉和机器学习技术。科技巨头谷歌、IBM、亚马逊、苹果、阿里、百度都在该层级深度布局。中国人工智能技术层在近年发展迅速,发展重点聚焦于计算机视觉、语音识别和语言技术处理领域,除BAT等平台型科技企业之外,还出现了如商汤(图像识别)、旷视(图像识别)、科大讯飞(语音识别)、图灵机器人(语义识别及操作系统)等诸多公司,处于发展上升期。(二)中游:机器人主体(应用层):服务机器人中游是机器人本体厂商,向下到系统集成商,包括控制/伺服系统、操作系统、导航及路径规划、感知交互等。一般这类厂商都属于产品类公司,产品类公司注重需求定位,其产品质量、品牌、营销以及生态构造是重要壁垒。得益于技术类公司的基础和AI算法的开源,应用层进入门槛相对较低。目前,产品类公司的规模和数量在服务机器人产业链分布中占比最大。产品类公司:应用层解决实践问题,是应用硬件和技术针对行业提供产品、服务和解决方案,我国应用层企业将硬件和技术集成到自己的产品和服务,从特定行业或场景切入,其核心是商业化。我国目前机器人产业链中的优势环节在系统集成,而系统集成属于下游“销售”及“品牌、服务、循环”环节,增加值相对较高,有望为企业带来较为丰厚的回报。系统集成商符合盈利能力强、收入规模大的特点,具备进入良性循环并做大做强的基础。宏碁集团创办人施振荣先生在 1992 年提出制造业“微笑曲线”:机器人系统集成:因此,在技术门槛较低机器人本体零部件和的功能零部件上,最好是能够做到颗针对性地对不同的应用场景做出适应性的调整,比如在数据机房中,地板下出风,需要做独立悬挂,但整机产业链达不到及时的调整,就需要厂商自己去设计和找人代加工独立悬挂的底盘。在控制系统中,最好在软件、机光电一体化设计、导航及路径规划、感知交互上,最好能够在大数据的基础上针对行业特性做出适当的调试和优化,比如在机房巡检中,通过视觉识别算法,对机房设备指示灯状态及仪表进行识别,但视觉只是识别的一部分,真正核心的是在后端的产品逻辑,机柜指示灯识别的关键是拓扑关系建立,角度不同指示灯的形状会呈现不同的梯形状态,建立拓扑公式后能解决特殊形状指示灯的识别问题。另外,所有标示的指示灯可选配,客户关注什么提取什么,解决了客户误报的问题。可以说,人工智能的核心是算法设计,但是算法设计的基础却是数据和行业认知。(三)下游:各类细分应用场景下游按照不同服务细分领域针对不同应用场景,例如:家用、物流、医疗、安防、电力、机房、军用等领域。家用服务机器人国内市场仍具广阔空间,是极具潜力的新兴产业。2018年国内扫地机器人渗透率7.5%,远低于2017年以前的美国(16%),该领域头部企业科沃斯2018年实现营业收入56.94亿元,同比增长25.11%。石头科技2018年实现营业收入30.51亿元,同比增长172.72%,扫地机器人营业收入30.09亿元,该业务占到总营收98.63%。由于特种机器人的需求较为前沿,发现痛点到研发出针对性产品有一定周期,再加上必须要找到有较大需求的下游领域才容易放量、做到盈亏平衡,所以对企业的技术、渠道能力(营销教育能力)和战略眼光(市场选择)等都要求较高。目前来看,国内在消防机器人(中信重工这块规模已经很大)、高温炉前机器人(博实股份订单已经开始放量)以及变/配电站巡检机器人(亿嘉和收入体量已经接近8亿)等特种机器人领域已经开始出现成规模且具备较强盈利水平的企业,且均具备特有的技术、渠道壁垒,正在逐渐打破特种机器人不好上量的固有印象。03 智能巡检机器人智能巡检机器人是特种机器人(专业服务机器人)的一种,一般是基于感知、认知(或者决策)、执行三个核心要素,在某种特定环境(高危、艰苦、人工作业有短板)进行智能化巡检的应用型机器人。智能巡检机器人的产业链的三个层面:(一)智能巡检机器人的类型 :目前,智能巡检机器人可以分为三大类:地派—无轨智能巡检机器人和有轨智能巡检机器人、天派---智能巡检无人机、水派---水下智能巡检机器人,分别应用在不同的细分行业中。1、地派---无轨智能巡检机器人和有轨智能巡检机器人无轨智能巡检机器人一般采用组合SLAM技术,对复杂环境实时自适应地图构建,实现高精度定位与导航,采用可见光相机、红外成像仪、拾音器等多传感器融合技术,实现表计识别、设备状态识别、红外测温及三相比对、环境检测等功能。无轨智能巡检机器人主要引用与室外设备巡检,以及室内环境复杂的设备巡检,主要应用行业为:电力、数据机房、安防等。无轨智能巡检机器人:有轨智能巡检机器人一般采用轨道移动方式,搭载高清摄像机、红外热成像仪、拾音器等设备。随着城市的高速发展,除了基础的地上轨道交通以外,充分和高效利用城市地下通道资源成为城市发展的必须。有轨智能巡检机器人主要运用于内部环境封闭,人工难以实现全天实时监控,但布局较为简单的隧道场景。目前主要应用行业:电力、低下轨道交通等。有轨智能巡检机器人:2、天派---智能巡检无人机无人机是无人驾驶飞机(UnmannedAerial Vehicle)的简称,是利用无线电遥控设备和自备程序控制装置的不载人飞机。无人机可以在无人驾驶的条件下完成复杂空中飞行任务和各种负载任务,可以被看做是“空中机器人”。无人机具有设计灵活、体积小、重量轻;续航时间长,空间利用率高,载荷能力强;安全系数高,自主控制能力强;无人员伤亡,可在高风险空域飞行等优点。这类机器人需要额外关注自动飞行技术、充电技术。无人机按技术特征可分为固定翼机、多旋翼机、无人直升机、无人飞艇、无人伞翼机。当前的无人机市场以固定翼和多旋翼无人机为主,其主要特点为:固定翼无人机:多旋翼(多轴)无人机:中国目前在无人机方向发展领先世界(以大疆为代表),无人机商业化应用场景也及其多:但目前来看,无人机商用的主要场景集中在:电力输电线路巡检、城市综合治理巡检、交通应急巡检。3、水派---水下智能巡检机器人水下智能巡检机器人主要解决人体无法长时间作业及不能下水的安全限制,降低人员伤亡,提高检测效率、监测范围、数据化及信息的实时性,降低检测成本。由于水下环境较为复杂,目前水下智能巡检机器人还是以人工操作为主。主要应用行业在渔产、水电站维护巡检、水下科考、海洋探索等。这类机器人需要额外关注防水密封能力、水下图像识别:解决感光畸变和折射问题。水下智能巡检机器人关键零组件及算法组件:(二) 智能巡检机器人行业发展趋势:1、机器人平台化趋势日趋明显作为智能巡检机器人系统的重要载体,机器人本体通过搭载实现巡检功能的传感器在特定工作环境下自主运行,完成软件系统的数据融合与分析、通信传输、接口规范、应用对接、专家系统等功能,随着产品不断趋于成熟,主要体现在以下几个方面:(1)机器人结构功能趋于一致:机器人的硬件结构、传感器、防护等级、设计规范等要求趋于统一;同时,机器人硬件基本由感知、控制、驱动等部分构成,这样有利于用户及行业标准化的制定,也便于产业链形成以及行业管理;(2)机器人软件核心功能趋于标准化:随着机器人应用的不断成熟,机器人核心功能的量化及应用为运维工作带来了重大变化,目前巡检机器人的核心功能包括环境感知、视觉识别、红外测温、音频检测、安防监控、呼叫平台等,上述每一个功能的量化目标、接口规范、数据标准已不断明确,使得机器人软件开发有章可循,核心功能数据趋于标准化并不断成熟;(3)用户接口及应用趋于平台化:机器人平台化主要包括硬件平台化、软件平台化以及核心功能平台化等三个方面。随着应用场景及核心功能的不断成熟,机器人应用已从早期的演示推广发展到目前的核心功能数据接入使用和运维操作平台化建设。具体而言,一方面,数据接口在应用过程中不断规范化;另一方面,根据最终用户需求,在对接不同平台时呈现更加符合其运维需要的数据信息。从机器人角度来看,平台化一方面便于客户使用及规范化操作,另一方面,也可以促使产业链不断发展。2、由“感知”向操作、协作发展巡检功能属于智能系统中“感知”功能的突出表达,具体包括环境感知、设备状态感知等。鉴于应用场景具有一定的特殊性,正常运维人员不能解决的往往是“感知”任务的复杂性和操作难度,为此,当前最为紧迫的是用机器人来实现运维的“感知”功能,而随着智能巡检机器人的成熟使用,具备更多感知、操作及人机协作功能的智能机器人将会是未来的发展方向。此外,由于“感知”信息后需要对信息进行“处理”和“操作”,因此操作机器人会成为智能巡检机器人的后续功能延伸和发展;同时,从操作的角度来说,“感知”和“操作”是一个从手动遥控操作到人机协同,再到自主作业完成复杂操作的过程。3、物联网带来的单体智能向系统智能化发展单体智能和多体智能是智能机器人系统的重要应用形式,单体智能突出机器人本体从感知、表达、控制、决策等方面的智能化程度,多体智能突出协作性、关联性和系统性。巡检机器人从单体智能的角度来看,突出巡检机器人的自动运行、环境适应性、多模态数据采集与融合、图像识别、专家系统等功能,直观来说,就是机器人能够完成自主、复杂、多样的任务。从多体智能角度来说,更强调多系统的融合,包括机器人与环境传感器、被测对象、其他智能设备和系统、运维人员等主体(智能体)的数据融合,同时,能够与其他主体(智能体)数据关联分析,以及协同完成特定任务等功能。单体智能目前已经趋于平台化、标准化和规范化,而多体智能则将成为行业发展的趋势,促进系统整体优化提升,为运维系统带来新的发展。4、多模态数据融合呈现多样化价值应用目前,智能巡检机器人主要功能是实现不同形态的数据采集、数据识别、判断与决策。其采集的数据主要包括环境数据(温湿度、声音、电磁场强度等)、安全数据(防跌落、外力破坏、人员入侵、火源等)、被检测设备状态数据(红外、图像数据、紫外等数据)等,由于上述数据关联性、重要性以及用途不一,因此呈现多模态形式,具体情况如下:(1)工作环境数据;(2)设备状态数据判断与预警;(3)运行数据呈现与管理(运维平台)。随着智能巡检机器人行业的不断成熟,对数据的选择性应用已成为趋势,也进一步提升了数据采集的有效性和应用价值。5、人工智能引领行业快速发展智能巡检机器人无论在机器人自主移动、控制与驱动、定位导航以及传感器数据采集、图像处理、语音采集与处理、专家系统分析与决策、大数据分析等方面都用到人工智能技术,换一个角度来说,人工智能在每一个领域的突破和发展,都会对智能巡检机器人核心功能、平台特性、数据运维管理、专家决策与预警等起到推动作用。进一步来说,从以下几个方面会受到相应人工智能发展的影响:(1)环境智能监控;(2)机器人即时定位与地图构建(SLAM);(3)机器人控制与决策;(4)机器人数据采集与处理;(5)大数据平台与专家系统。6、机器人成为精益管理的重要载体,智能化程度越来越高未来,随着各行业的发展以及智能化、自动化水平的提升,机器人将成为重要的载体和工具,是信息获取和运维的重要手段。此外,由于机器人技术的发展以及人工智能水平的不断提升,机器人将会走向多种应用场合,实现更为复杂、多样的任务,包括维修维护、消防安全、操作运行等工作,满足无人值守、协同操作等更为智能的运维及管理功能。(三)智能巡检机器人主要应用行业及市场分析:智能巡检机器人的需求较为前沿,发展也相对落后于工业机器人以及狭义的服务机器人,因此必须找到:1、有特殊工作环境(高危、艰苦、人工作业有短板),对专业服务机器人具有需求刚性;2、有政策引导;3、有支付能力的下游领域,才能够支持企业的长期发展。目前来看,智能巡检机器人主要引用的大行业有:电力、数据中心、城市综合治理。1、电力行业:(1)智能巡检机器人应用于电力智能运维检测领域的情况:在电力系统中,由于电能生产、输送、分配和使用的连续性,对系统中各设备单元的安全可靠运行都有很高的要求。特别是随着电力工业向着大机组、大容量、高电压的迅速发展,保障设备运行的可靠性更成为安全生产的突出课题。因此,电力设备的运维检测,特别是一些先进技术、方式、方法在设备故障诊断中的应用也越来越受到普遍的重视。我国电力系统的构成电力系统由发电厂、输电环节、变电环节、配电环节及电力用户组成,其构成如下图所示:电力设备的运维检测是指通过对电力设备的运行状态进行检测或监测,获取电力设备状态信息,及时发现各种劣化过程的发展状况,并在可能出现故障或性能下降到影响正常工作前,及时进行维修、更换,从而保障整个电网运行的安全性、稳定性和可靠性。电力设备的运维检测手段主要包括带电人工检测、带电在线监测和离线检测等三种。其中,带电人工检测一般采用便携式检测设备,对运行状态下的电力设备进行的现场检测;带电在线监测一般采用相关设备或仪器,安装在被监测环境中,用来对被监测设备进行不间断实时的在线监测;而离线检测则一般通过定期对停止运行的设备进行规定项目的检查,发现设备的问题和隐患。随着我国国民经济的快速发展和电力需求的不断增加,电力用户对于供电安全性、稳定性和可靠性要求不断升级。为了更好的满足电力用户需求,同时尽可能降低检修的成本,两大电力公司从“十一五”时期开始逐步加大了对电力设备状态检测、监测技术的研发和试点力度,从而替代以人工巡检为主的巡检方式。然而,现有的巡检方式和技术与电力生产的安全性要求相比仍有相当的距离,因此,通过电力智能巡检机器人取代人工巡检,实现电力检测、运维功能,具有重要意义。在“2009 特高压输电技术国际会议”上,国家电网公司提出了“坚强智能电网”概念,智能电网的概念涵盖了提高电网科技含量、提高能源综合利用效率、提高电网供电可靠性、促进资源优化配置等内容。2010 年,“加强智能电网建设”被写入《政府工作报告》。国家电网公司、南方电网公司先后分别制定了《国家电网智能化规划总报告(修订稿)》、《国家电网 2015-2020 年电网智能化滚动规划指南》、《南方电网“十三五”智能电网发展规划研究报告》、《南方电网发展规划(2013—2020 年)》等发展规划。目前,我国电网建设已经实现大范围覆盖,但离智能电网高可靠性、高自动化率的目标尚有一定差距,因此,智能电网是我国电网建设持续投入的趋势和方向。根据《国家电网智能化规划总报告(修订稿)》,2016-2020 年为智能电网建设第三阶段,电网规划总投资 1.4 万亿元,其中智能化规划投资 1,750 亿元,占比为 12.5%。若再加上南方电网投资部分,未来智能电网投资存在较大空间。随着国家智能电网战略的推进,电力行业智能机器人市场规模快速增长。电力行业是国民经济的基础性、支柱性、战略性产业,其发展水平关系到人民生活和社会稳定,是国家经济发达程度的一个重要标志,而智能电网是提高能源利用效率和电网安全稳定水平的重要保障。因此国家和有关部门陆续制定了一系列产业政策支持我国电力行业的技术发展及智能电网的建设。与智能电网行业相关的主要产业政策如下:电力智能巡检机器人应用的核心场景:智能电力巡检机器人是国家电网智能化管理要求下,输、变、配环节实现无人化、运维一体化建设的重要内容,大大提升运维检测效率,覆盖面广,结合大数据专家后台实现变电站、配电站智能化运行,提升电网智能化。传统的变电站、配电站巡视主要通过人工方式,综合运用感官以及一些配套的检测仪器对相关设备进行以简单定性判断为主的检查,该方式除了对劳动力要求较高外,还存在巡检不到位,巡检结果无法数字化等缺陷,不符合智能电网的发展方向。而智能巡检机器人集最新的机电一体化和信息化技术于一身,采用自主或远程遥控方式,克服了传统的人工巡视电力线路及设备存在的劳动强度大、检测质量分散、主观因素多等缺陷。此外,智能巡检机器人可以替代人工在高压及超高压环境下自主定位、自主巡检和自动充电,对电力设备实施全天候、全方位、全自主智能巡检和监控,实现设备环境、外观、分合状态、压力、泄漏电流、噪声等巡视监测数据全覆盖和智能识别,同时利用先进的人工智能算法,对巡检数据进行对比和趋势分析,及时发现电网运行的事故隐患和故障先兆,从而有效降低运维人员劳动强度,满足国家电网改造中对电力系统提出的智能化、无人化要求,为智能变电站、配电站和无人值守站等提供创新性的技术检测手段和全方位的安全保障。对于高压架空输电线路,传统的人工巡线方式存在劳动强度大、工作条件艰苦和劳动效率低等劣势,在遇到电网紧急故障和异常气候时,人工巡线尤其困难。发展无人机巡检是适应现代化电网建设的要求。2013年3月,国家电网公司出台《国家电网公司输电线路直升机、无人机和人工协同巡检模式试点工作方案》指出,建立直升机、无人机和人工巡检相互协同的新型巡检模式是坚强智能电网发展的迫切需要。2013年,变电站智能巡检机器人首次进入国家电网招标目录,标志着变电站智能巡检机器人产品在国家层面上形成了统一的技术标准和准入门槛。配电站智能巡检机器人目前尚未列入国家电网集中采购名录,由各省级电力公司依据国家电网公司招标流程的规范要求,在其权限范围内根据各地实际需求自主发起招标。2014年以来,变电站机器人市场迎来一次较大规模的爆发,亿嘉和、浙江国自、朗驰欣创、申昊科技等公司通过研发,先后推出了变电站巡检机器人产品。随着电力机器人国内市场需求的增加,越来越多的厂家投入到变电站巡检机器人的研制中,促进了变电站巡检机器人自主移动、智能检测、分析预警等技术的进步。(2)电力智能巡检机器人行业市场容量分析:目前,智能电网建设和增强供电可靠性已上升为国家战略。在此背景下,两大电网公司分别提出了建设智能电网和推广状态检修的明确规划,并在操作层面制定了具体的应用标准及配置原则,且还在进一步制订可行的现场应用导则,从而为电力设备状态检测、监测行业的快速发展奠定了坚实的基础。电力设备状态检测、监测作为近几年发展起来的新兴行业,呈现出巨大的成长潜力和发展空间。变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施。“十二五”以来,我国智能电网建设进入全面快速发展的新阶段。在变电网领域,根据国家电网公司制定的发展规划要求,2016-2020年期间要实现新建变电站智能化率100%,新建智能变电站约8,000座,原有枢纽及中心变电站智能化改造率100%。截至2014年底,我国正在运行的各电压等级变电站具体数量如下表所示:2019年全国变电站数量分别为3.7万个,按照每台75~100万的均价计算,市场容量约为277~370亿人民币(100%渗透率),变电站室内导轨巡检机器人按照每台30~50万的均价计算,市场容量约为111~185亿人民币(100%渗透率)。变电站巡检机器人整体行业规模400~550亿元。配电站一般是指10kv及以下安装有配电屏柜对负荷进行分配、供给的场所,广泛分布在住宅小区、商业中心、办公楼宇中。根据统计,一般一个地级市配电站数量从500座至5,000座不等,直辖市、省会城市、经济发达城市数量较多,小城市、经济欠发达城市则较少。考虑到不同城市规模、经济发展水平差距,以及“十三五”期间国家大力开展智能配电网建设等因素,按平均每个地级市1,000座配电站估计,全国297个地级以上城市(含4个直辖市)大约拥有配电站30万座。由于配电站智能巡检机器人目前尚未列入国家电网集中采购名录,若假设20%配电站采用智能化巡检设备,则也有接近6万个配电站需要采购智能巡检机器人,假设单台配电站巡检机器人售价30~50万,这部分市场潜在规模也有200~300亿元。目前变电站巡检机器人的上市公司和准上市公司已经很多,基本以区域为划分,投资机会不大。变电站巡检机器人主要公司:《国网架空输电线路无人机智能巡检作业体系建设三年工作计划(2019-2021)》要求无人机巡视比率不低于60%,全无人机巡视比率不低于10%,无人机自主智能巡检作业率不低于90%,巡检影像人工智能识别覆盖率不低于80%,无人机巡检影像缺陷智能识别算法准确率不低于80%。在技术和政策双重利好的影响下,电力巡检无人机处于成长期到成熟期的过渡期,预计年市场规模在30-50亿元。2015 年我国 110kV 以上高压输电线约为 52 万公里,GlobalData 预测,中国输电线路建设的年复合增长率将达到 6%,2020 年电力巡检的总工作路线为70万公里。无人机在电力巡检领域中的具体应用主要为精细巡检、定点巡检、范围巡检及其他巡检,一般精细巡检需要全面细致地搜集数据和检查,单次巡检速度较慢,定点巡检速度适中,而范围巡检速度较快;据新华报业网,使用无人机巡检 62 公里的输电线路仅需 3 小时。综上,假设平均而言,无人机电力巡检速度为每小时 20 公里。根据草根调研电力巡检工作人员了解到,巡检线路基本是以半个月为单位,一般各级别线路每月安排一次常规巡检,如果线路属于保电线路或者特殊巡视维护线路就要按相关规定增加巡视的次数,除了日常巡视检查,还有遇故障需要排查的临时巡检,特殊时间如阅兵、高考、中考、春运、冬夏用电高峰期的特殊巡检等,据此估算,电力线路每年巡检次数在24次左右。一般招标方在采购时,不仅购买无人机单机,还购买相应的配套系统,目前一台电力巡检无人机配系统售价在20-100万元左右,取中间数70万元。一旦接到电力故障的消息,相关公司会及时抢修,而无人机能高效及时地发现、排查、处理电力故障,为了应对潜在的突发的电力故障,相关公司会多购置无人机,因此在预测中,我们分别考虑了“不放量”以及“1.5 倍放量”两种情形。电力无人机巡检需求较刚,市场规模较大,目前发展较好的云圣智能、中飞艾维基本完成B轮融资,处于C轮阶段,也有部分A轮左右公司,但是和头部公司体量差距较大,后面会详细介绍。2、数据中心:(1) 数据中心分类及发展情况:数据中心按照功能和业务可分为IDC、EDC、ODC三大类,如下图所示:IDC是引领数据中心建设的标杆,主要为三大运营商和BAT等互联网信息服务商,超大型机房多来源于IDC,此部分机房规模较大。EDC为企业级数据中心,多为企业为自身业务需求而建设,比如金融系统、电力系统、铁路系统、教委等国企和政府部门。该部分数据中心虽不是数据中心建设的标杆,大型数据中心的规模也不如IDC。虽然EDC的规模无法与IDC相比,但是数量众多,也是一个不可忽视的巨大市场。ODC为外包数据中心,代表公司有世纪互联、鹏博士等,主要为外部企业提供场地出租、设备托管、运行代维等服务。此部分规模相对较小。IDC和ODC都是对外提供基础实施服务,属于广义的IDC,这一部分会有较为公开的数据统计。EDC即各类企业级数据中心,数据统计不完整。随着 5G、工业互联网和人工智能等信息技术逐渐应用于社会各行业领域,中共中央政治局常务委员会、工业和信息化部、中国广电等政府和企事业单位加强数据中心建设,及网络资源业务整合,推动 IDC 行业客户需求充分释放,拉升 IDC 业务市场规模增长。根据中国 IDC 圈预测,2019 年-2022年中国 IDC 业务市场规模复合增长率为 26.9%,预计2022 年,中国 IDC业务市场规模将超过3200.5亿元,同比增长 28.8%,进入新一轮爆发期。2014-2022 年中国 IDC 业务市场规模及预测:(2)数据中心巡检痛点:目前国内大部分机房巡检采用的是人工巡检的方式,而人工巡检目前主要有以下痛点:1)数据中心设备巡检工作量大,漏检误检率高:数据中心机房设备进行24*7全天候运行,服务器与网络设备设计寿命通常在6-7年左右,但国内用户由于业务割接迁移的复杂度和难度决定了很多核心业务系统是运行在7年以上的核心交换机和服务器硬件上,如IBM的AIX小机上承载的业务都是客户非常重要的业务系统,运行10年以上比比皆是,这样的设备,越是到后期,巡检的工作量越大,随时面临着业务宕机需要及时发现,快速恢复的境况,所以巡检工作变得非常重要。另外,由于每个设备有十几个,甚至几十个硬件状态指示灯,采用人工巡检的方式,很容易发生漏检或者误检的状况,需要一套能够自动化巡检,并做到数据完全准确的自动化巡检管理系统。2)缺乏对网络设备及服务器主机的硬件状态监控:从全球着眼来看,国内的IT运维相比国外来讲建设起步较晚,从2008年国内开始重视网管系统、运维管理,从2010年才开始引入基于ITIL的先进理念管理系统,如国内的北塔软件、广通信达,勤智数码、H3C、锐捷、网强、游龙等厂商开始开发基于运维管理的产品,国外做的比较早,相对成熟的有IBM、HP、BMC、CA四大厂商,但无论是国内还是国外厂商的运维管理系统都是基于IP的所谓“智能”管理系统,要求被管设备不仅必须要有IP地址和完整的MIB库才可以管理,而且只能取到设备一半的硬件状态信息,对于非智能设备完全无法管理。如机房消防设施状态,老式UPS的供电情况和空调系统的温湿度等信。总而言之,目前的运维产品仍然无法实现对机房硬件设备全面的监控管理目的,因此需要一套能够全面、实时监控各种智能及非智能设备的状态管理系统,出现故障后进行实时告警。3)外包运维工作安全性:近年来,央企部委及政府单位由于国家政策改革,编制只减不增,工作内容项却随着业务系统对IT的依赖度成大幅度线性增加,编制内运维人员与厂商服务人员数量比例上严重倒挂,各单位IT服务人员与业务实际数量及维护工作量的失调,导致其只能采用外包服务或各厂商驻厂服务方式来解决运维日常出现的问题。缺点是外包服务人员的素质参差不齐,技术水平不一,部门人员纪律性不强,所以通常客户为了业务的安全,在运维管理制度上都要求外部人员进机房需要公司方人员在场,也就是所谓的“随工”,随工的时期短则30分钟,长则几个小时,在此段时间内客户的时间完全被无效占用,但不随工又违反了管理制度,且即使随工在现场也不能保证记录外部人员在机房的一举一动,机房的安全性无法完全得到保障,需要一套能够对外部人员在机房工作的自动化跟踪记录系统,起到远程监工的作用。4)IT资产数据僵尸化:由于经历了近10几年的IT基础设备及系统的建设,运维管理工作越来越细化,各单位领导层也意识到对资产管理的重要性,IT资产管理的意义主要有四,一是可以降低设备软硬件投入比,二是可以提高设备使用率,三是可以了解所有资产的整个生命周期,四是使年前预算更准确,清楚的使后期设备的采购配比更接近于业务的增长,避免预算超标,年底有钱花不出去的浪费或经费不足导致关键业务无法上线等情况。但就IT资产的管理必须在保证数据完整性、时效性、准确性三个方面做好,IT资产的管理才会充分的发挥作用,实际情况是机房设备位置会不定期的调整,客户并不能保证每次的调整都会及时的更新资产数据,长期以往,统计的资产数据与实际数据严重不符,差距较大,使IT资产的管理完全失去意义,即使通过管理制度做到与实际相符,但对运维人员来说,带来的工作量会相对较大,但一线运维人员的角度来讲,及时更新数据成为一项被动性的工作负担,总体来讲,目前国内客户的IT资产的完整性、时效性、准确性方面还处于比较差的状态,需要一套能够自动更新客户资产的位置,状态等相关信息的自动化管理系统。5)灾备机房无人管理:近年来出于国际形势的多变化,以及国家对于数据的绝对安全性考虑与重视,各央企部委及政府单位数据中心的建设均要求采用“两地三中心”方案,即同城灾备中心结合异地灾备中心的“两地三中心”,国内以政府、央企牵头的客户大都在北京,同城主机房通常在总部办公楼,同城的备机房离主机房位置相对都较远,几十公里以外,异地的灾备机房建设在偏远的西北地区,如中国人民银行灾备机房在拉萨,且只能由编制内人员进机房维护管理,最终造成严重的公司方IT运维人员不足,工程项目延误,工作效率低下等问题,急需一套高效的无人值守远程维护解决管理系统。6)IT运维成本居高不下:据GartnerInc.公司统计,围绕着日常运维保障工作,其中70%的工作是完全重复的,有规律性工作,如对公司员工的邮件&管理域&OA&ERP等账号新增注销变更,网络设备及服务器主机的定时开关机,对VLAN的划分,IP地址的分配等工作,30%是需要人参与并进行分析后对网络的调整优化工作和对业务系统的调整,如果能够供助一套自动化、智能化的运维管理系统去完成70%的重复性工作,对运维的效率及质量会得到质的提升,同时大大降低运维的人员成本投入。拿北京金融资产交易所机房举例,在北京金融街总部有2个机房,分别由5个运维工作人员24小时不间断值守巡检,5年综合单位支出在500-600万元左右,如果用2台机器人执行巡检,并且配合2个人员进行补充和应急处理,综合成本在300万元左右,综合降低运维成本30-50%之间。(3)智能巡检机器人市场规模测算:目前来看,智能巡检机器人可以服务的客户主要是是EDC以及IDC中三大运营商。ODC对价格及其敏感,这类客户可以接受的价格是5万元以内;IDC中的互联网信息服务商由于整体智能化运维能力较强,对机房巡检机器人的需求较低。1)EDC智能巡检机器人市场规模:EDC即各类企业级数据中心,数据统计不完整。企业数据中心的服务器可以自己购买,也可以从IDC租用,运营维护的方式也很自由,既可以由企业内部的IT部门负责运营维护,也可外包给专业的IT公司运营维护。自建或者自运维数据中心的企业主要是一些金融、能源、交通、政府、教育、医疗企业,这些企业主要出于隐私、安全、稳定性、性能、带宽的需求,他们的很多服务只运行在内网或者专网上,由于有物理隔离,比起放到云上安全性更高。从金额来看,核心的EDC客户就是电力和金融行业客户,其中金融行业的市场规模(80.2亿)远大于电力行业市场规模(5.6亿左右),另外还有一些零碎的交通、政府、教育客户,整体来看,EDC智能巡检机器人市场规模应该在百亿左右。2)IDC智能巡检机器人市场规模:IDC和ODC都是对外提供基础实施服务,属于广义的IDC,这一部分会有较为公开的数据统计。我国 IDC发展尚处于以新建为主的粗犷式发展阶段,根据前瞻产业研究院统计数据,2019年中国数据中心数量大约为 7.4 万个,大约能占全球数据中心总量的 23%,且增速极快。2018年国内IDC市场格局:中国国内电信运营商早在上世纪90年代就开始以托管、外包或者集中等方式为企业客户提供大型主机管理服务。基于客户和资金等方面的优势,电信运营商目前已成为国内IDC市场的主要参与者。联通和电信长期经营宽带网络服务,通过自建IDC吸引客户,IDC建设规模国内领先,截至2018年国内市场份额分别为41%和21%。中国移动自2013年获得宽带运营牌照以来,发力布局IDC业务,2018年市场份额达到9%。三大运营商占比在70%,简单测算,2019年IDC中运营商的数据中心数量应该在5万个左右。工信部联合发改委、能源局等五部委出台的《关于数据中心建设布局的指导意见》,将数据中心的建设规模分为三类:中小型数据中心、大型数据中心以及超大型数据中心。中小型数据中心是指规模小于3000个标准机架的数据中心;大型数据中心是指规模大于等于3000个标准机架小于10000个标准机架的数据中心; 超大型数据中心是指规模大于等于10000个标准机架的数据中心;一般来说超过3000个机柜的数据中心才会被纳入IDC的统计,我们按照一个数据中心3000个机柜计算,单个机房机柜数量在100-300个机柜,那么单个数据中心的机房数量在10-30个机房。那么2019年运营商IDC数据中心的机房数量在100万个,由于三大运营商属于国有企业,有一定垄断性质,受政策影响大,对前瞻性需求会比民办企业更加强,但是近几年通讯业务遇到的竞争较多,预计其可接受的价格应该在10-15万,渗透率按照30%计算,运营商IDC智能巡检机器人的市场规模在300~450亿。机房巡检机器人市场规模较大,刚需程度略弱于电力无人机巡检,目前发展较好公司基本处于A轮阶段,后面会详细介绍。3、城市综合治理:城市综合治理的内涵非常广,包含安防巡检、交通巡检、消防应急巡检、设施巡检等,其中安防巡检机器人市场规模相对大。城市综合治理支付方以政府单位为主,吃财政预算,购买受到政策影响较大。城市综合治理算是智慧城市下面的一个分支。智慧城市获得国家政策支持,2014 年 3 月,中共中央、国务院印发《国家新型城镇化规划(2014-2020 年)》,提出推进智慧城市建设,指出智慧城市建设方向包括:信息网络宽带化、规划管理信息化、基础设施智能化、公共服务便捷化、产业发展现代化、社会治理精细化。同年 8 月,发改委、工信部、科技部等八部委发布《关于促进智慧城市健康发展的指导意见》,指出到 2020 年,建成一批特色鲜明的智慧城市。智慧城市从上游到下游主要包含:顶层设计、硬件、软件、系统集成、运营、应用等部分。在应用方面,主要包括:安防、政务云、智慧交通、智慧医疗、智慧能源等。其中,安防、政务云、智慧交通、智慧医疗涉及民生的基本刚性需求,且在我国亟待发展,有望在智慧城市的建设中先行。智慧城市产业链:2018 年中国智慧城市市场份额:(1)安防巡检机器人市场规模:安防巡检机器人以识别系统、仿神经分析系统和反制系统为主,属于人工智能安防范畴。识别系统通过毫米波雷达、红外热成像、人脸识别等探测系统对目标进行数据采集,通过机器人大脑—“仿神经智能分析模块”进行智能化分析,对触犯规则的目标通过反制系统进行诸如喷射抓捕网、催泪瓦斯等智能处理。安防机器人主要用于对油田、监狱、海关、港口、军事警戒区、重大危险源等重要安保防护单位的周界、边界防护、可代替或协助人类进行安防、巡查、反制等方面的工作。广义人工智能安防涉及领域众多,从客户类型看,可划分为公共安全安防、其他政府安防、行业安防、消费者安防等。AI安防行业具有强政策导向性,政府发布的公安大数据、雪亮工程、智慧监狱、明厨亮灶、建筑工人实名制电子打卡等相关政策极大地推动了行业繁荣。2022年G端与B端市场规模有望突破700亿元。2016年是AI+安防商业化元年,2018年,我国AI+安防软硬件市场规模达到135亿元,部分头部安防厂商AI业务在总营收中占比从大约4%提升至超过8%,部分典型AI公司安防业务则占接近一半的营业收入。2018年城市公共安防中AI渗透率达到2.6%。2019年市场仍将保持高增速,到十三五收官之年2020年增速开始稳定,届时市场规模可达到453亿元(城市公共安防AI渗透率达到11%),2022年市场规模有望突破700亿元(城市公共安防AI渗透率达到25%),从2017年到2022年CAGR达到78.3%。2017-2022年中国AI+安防市场规模:2018年市场规模中,视频监控占比近90%,中心侧份额最大(中心侧包括分析服务器、技术服务、系统平台等,边缘侧指智能化一体机、智能NVR、人脸识别盒子等产品,端侧指AI摄像机产品)。安防智能机器人占比仅1.5%,市场规模仅2亿元。2018年AI+安防软硬件细分市场占比:由于传统静态安防技术体系过于成熟,已难以取得新的突破,为此安防企业纷纷紧跟人工智能技术的进步与革新步伐,开始尝试人工智能技术在安防领域的应用探索,通过技术融合创新逐步衍生出安防机器人等一系列创新产品和新服务模式,持续引领安防机器人由概念机、实验机向实地场景落地。按照2020年智能安防市场450亿,安防机器人占比3%计算,2020年安防巡检机器人市场13.5亿元。(2)交通巡检机器人市场规模:无人机指挥交通巡检的主要应用场景包括:高速公路&服务站,市区郊区道路,交通枢纽,核心价值在于:快速到达事故现场;喊话指挥,减少二次事故;缓解交警不足压力;远程处理事故&劝阻违章。智慧高速公路和智慧城市交通是智慧交通最大的两个细分市场,根据智研咨询数据统计,2017 年中国智能交通市场规模为 1167.1 亿元,其中城市智能交通市场规模为 470.1 亿元,占比为 34.88%;高速公路智能交通市场规模为 409 亿元,占比为 35.04%。值得注意的是,指挥交通的核心是交通监控系统、交通指挥与诱导系统、交通违章管理、不停车收费系统、智能化停车场管理系统,前三项主要靠视频监控解决,而且城市交通涉及到较为严格的航线管理,目前交通巡检机器人的可行性较低,市场规模极小。

目如明星

城市更新写入政府工作报告,对传统五金机电市场有何影响?

“城市更新”写入政府工作报告2021年政府工作报告提到,深入推进以人为核心的新型城镇化战略,加快农业转移人口市民化,常住人口城镇化率提高到65%,发展壮大城市群和都市圈,实施城市更新行动,完善住房市场体系和住房保障体系,提升城镇化发展质量。这是“城市更新”首次写入政府工作报告。中国城市更新系统理论专家、东中西部区域发展和改革研究院院长于今在接受某媒体记者采访时表示,城市更新被写入政府工作报告,说明城市更新工作已经上升到国家战略层面,意味着在“十四五”时期以及未来一段时间,国家将全力实施城市更新行动。同时他还表示,城市更新是由大规模增量建设转为存量提质改造和增量结构调整并重,国家实施城市更新行动,内涵是推动城市结构优化、功能完善和品质提升,转变城市开发建设方式;路径是开展城市体检,统筹城市规划建设管理;目标是建设宜居、绿色、韧性、智慧、人文城市。同时也有业内人士表示,城市更新上升到国家战略层面,建设宜居、绿色、韧性、智慧、人文城市的过程中,将有不少城市对不适宜城市更新的内容进行疏解或升级。城市更新中传统与现代碰撞以北京为例。据了解,面对城市更新,北京这座千年古都坚定不移的走减量发展、绿色发展、创新发展之路,是全国第一个实现减量发展的城市。过去五年,党中央、国务院相继批复了《北京城市总体规划(2016年—2035年)》《北京城市副中心控制性详细规划(街区层面)(2016年—2035年)》《首都功能核心区控制性详细规划(街区层面)(2018年—2035年)》,构建起首都规划的“四梁八柱”,为首都高质量发展、高水平治理提供了规划引领,也确立了北京“控增量、促减量、优存量”的城市更新思路。值得一提的是,在城市更新的思路之下这座城市的传统与现代之间产生了碰撞。数据显示,截至2020年底,北京市不予办理新设立或变更登记业务累计达2.34万件,全市累计退出一般制造和污染企业2872家,疏解提升区域性批发市场和物流中心980余个。意味着,城市更新路上阻碍或者不适宜城市更新的内容被更新或升级已经成为事实。业内人士表示,政府对五金机电专业市场的疏解拆迁也是城市更新众多内容的其中之一。传统市场疏解、拆迁或提速虽然并没有明确的数据显示,在城市更新的过程中北京有多少五金机电专业市场被疏解,或者拆迁,但是我们能够明确的了解到几大五金机电市场已经为城市更新进程“让路”。了解五金机电专业市场的人都清楚,中国的五金机电市场土地利用率低、堵塞交通、消防隐患、环境脏乱差等诸多因素在一定程度上阻碍了城市的更新进程,因此政府开始了对五金机电市场的整顿,一批五金机电市场因此外迁,另一批则直接退出了历史的舞台。据悉,2017北京最早成立的,华北地区规模最大的北京京开五金机电建材市场疏解拆迁,2020年北京朝龙五金机电市场疏解拆迁……曾经为当地经济做出过不少贡献的五金机电专业市场,也为北京的城市更新“贡献了自己”。其实,城市更新并不是仅仅在北京才实施,各地都在推进城市更新进程。以五金机电专业市场疏解拆迁为城市更新让路为例,2017年华东地区最大的上海九星五金建材市场拆迁升级;2018年上海北京东路改造升级,上海开埠以来闻名的“五金一条街”疏解搬迁,北京东路被打造成24小时活力街区,历史街区被赋予新的生命力;2019年西南地区影响力最大的建材市场,成都府河桥建材批发市场谢幕……业内人士分析,“实施城市更新行动”是“十四五”时期对进一步提升城市发展质量作出的重大决策部署,未来各城市或都将加码推动城市可持续发展、高质量发展、高水平治理的系统工程,以期在城市更新中取得新成效。同时该人士表示,五金机电专业市场曾经为经济发展贡献过重要力量,但是随着市场的不断扩大,周边逐渐形成了小仓储、小物流业态,环境杂乱,外来人口聚集。此外,市场内进出的日均车流量大,一定程度上也加剧交通拥堵,与城市更新思路相左。因此,城市更新加码之后,五金机电专业市场的疏解拆迁或许也将提速。该人士建议,传统市场要有防范于未然的意识,及时做好转型升级规划,不要等到疏解拆迁文件下发之后才思考新出路。

聪明衰矣

航空零部件项目可行性研究报告-航空制造业中流砥柱,前景广阔

航空零部件项目可行性研究报告-航空制造业中流砥柱,前景广阔1、航空零部件产业:航空制造业中流砥柱1.1航空零部件制造:航空基础性产业,工序复杂种类繁多航空零部件,种类繁多技术精湛。广义的航空零部件是飞机各种零组件的总称,而狭义的航空零部件专指飞机机体零部件。飞机机体是指构成飞机外部性质和主要受力的部分,包括机身、机翼、尾翼、起落架等主要部件,并广泛涉及大梁、桁条、翼粱、翼肋、框类等主要零部件。航空零部件制造,工序复杂专业性强。航空零部件制造行业主要是指航空飞机各种零配件的制造。包括飞机机体零构件制造、航空发动机零部件制造、仪表、机载设备、液压系统和附件等的制造,不包括零部件装配、航空发动机总装和整机总装等。飞机零部件依据各分系统结构、需求、用途、性能等要求有所区别,种类繁多平均在2-4万件类,且航空器由于高稳定性、高速、高安全性及多次使用的特殊要求,对各个环节零部件设计、制造、加工和装配有着极高的工艺要求与技术壁垒。航空零部件制造是航空制造业的基础性产业。根据《中国飞机制造业行业市场需求预测与投资战略规划分析报告》显示,飞机制造业通常采取“整机制造商----多级供应商”的制造模式。产业链第一级为整机制造商,第二级为大型关键航空分系统制造商,其提供的分系统包括机体、发动机、航空电子系统等机载设备;第三极包括众多提供结构件、零部件、电子产品、舱内配套设施等供应商,其部件产品供货给二级供货商进行集成;第四级为产业链上游的电子元器件、复合材料、金属原材料等企业。航空零部件企业众多,大多集中在三级供货商环节,是航空制造业的基础性产业,奠定了航空产业的产品质量与技术标准。以军用飞机为例,航空制造产业供应商关系图1.2机体制造由机翼、机身及尾翼构成,军民飞机价值量不同按飞机用途可分为军用航空零部件及民用航空零部件。依据使用功能不同,军用飞机更注重于产品的可靠性高、材料坚硬质地轻、一致性强等特点,民用航空零部件注重安全性强、多次使用质量保证等特点,任何用于民用航空产品或者拟在民用航空产品上使用和安装的材料、仪表、机械、设备、零件、部件、组件、附件、通信器材等均依据飞机机体结构设计进行定制化生产制作。机体零部件分类军民飞机因用途的显著不同,各组成部分价值占比差别较大。对于军用飞机,动力系统占整机价值比最高,达25%,航电系统次之,机体结构占比约为20%;对于民机,机体结构占整机比超过1/3,达到36%,动力系统次之,航电和机电系统合计占30%。其中机体部件数量庞大,以民机波音737飞机,至少需要3万个大小各异的结构零件及数控零件组成。军机各组成部分价价值占比民机各组成部分价值占比1.2.1机翼:飞机重要组成部件,内外皆可装载功能设备机翼:飞机重要组成部件。机翼主要作用是产生升力,与尾翼一起形成良好的稳定性与操纵性。另外可以在机翼内部装载弹药、设备和油箱,在机翼上可以安装起落架、发动机、悬挂导弹、副油箱以及其他外挂设备。机翼通常是由翼梁、纵墙、桁条、翼肋和蒙皮等构件组成。机翼按照的基本受力构件包括纵向(沿翼展方向)骨架、横向(沿气流方向垂直于翼梁方向)骨架和蒙皮。纵向骨架有翼粱、纵墙和桁条,横向骨架有普通翼肋和加强翼肋。机翼结构翼梁:纵向受力件。翼梁由梁的腹板和线条组成。翼梁是单纯的受力件,主要承受弯矩和剪力,它是机翼主要的纵向受力件,承受机翼的全部或大部分弯矩。翼梁大多在根部与机身固接。桁条是与蒙皮和翼肋相连的元件,由铝合金挤压或板材弯制而成,铆接在蒙皮内表面,承受机翼弯矩引起的部分轴向力,是纵向骨架中的重要受力元件之一。除上述承力作用外,桁条和翼肋一起对蒙皮起一定的支撑作用。翼肋:机翼的横向骨架,包括普通翼肋和加强翼肋,横向垂直于翼展的方向,安装方向垂直于机翼边缘,用来支撑蒙皮,维持机翼的剖面形状。普通翼肋的作用是将纵向骨架和蒙皮连接成一体,把由蒙皮和桁条传来的空气动力载荷传递给翼粱,保持翼剖面的形状。加强翼肋就是承受有集中载荷的翼肋。纵墙:纵墙与翼粱十分相像,二者的区别在于其缘条比翼梁的缘条弱(但大多强于一般长桁),其长度有时仅为翼展的一部分。纵墙通常布置在机翼的前后缘部分,与蒙皮组成封闭盒以承受机翼的扭矩,同时还有封闭机翼内部容积的作用,靠后缘的纵墙还可以悬挂襟翼和副翼。蒙皮是包围在机翼骨架外的构件用粘接剂或铆钉固定于骨架上形成气动力外形。为了使机翼所受的阻力尽量小,蒙皮应力求光滑。为此应提高蒙皮的横向弯曲刚度,以减小它在飞行中的凹凸变形。从受力看,气动载荷直接作用在蒙皮上。因此,蒙皮受到垂直于其表面的局部气动载荷。此外蒙皮还参与机翼的总体受力,它和翼梁或翼墙的腹板组合在一起,形成封闭的盒式薄壁梁承受机翼的扭短;当蒙皮较厚时它常与长翼一起组成壁板,承受机翼的弯矩引起的轴向力。壁板有组合式或整体式两种。某些结构形式(如多腹板式机翼)的蒙皮很厚,可从几毫米到十几毫米,常做成整体壁板形式,此时蒙皮将成为承受弯矩最主要的,甚至是唯一的受力元件。1.2.2机身:连接飞机整体部件,依飞机型号区别设计机身:机身由机身、短舱、尾撑等筒形结构组成,主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如机翼、尾翼及发动机等连接成一个整体,约占飞机总造价的10%-20%。机身后段由隔框、长桁、蒙皮和机尾罩等组成。其结构特点是长桁数量多,桁条结构较强,没有设置大梁,弯矩引起的轴向力由长桁和蒙皮承受。机身后段共有8个主隔框和5个辅助隔框,机身后段开口较少,大多数长桁是连续贯穿整个后机身的。尾喷管采用了引射式收敛喷管,机尾罩分为两段安装在隔框上,前段由铝合金板材制成,后段由高温合金钢板材制成,将发动机喷管完全包住形成固定外罩的引射器。1.1.3尾翼:让飞机具有操纵性及稳定性尾翼:保证飞行平衡,分垂直水平两类。飞机尾翼指的是用于保证飞机的纵向和航向的平衡与安定性,以及实现对飞机的操纵的结构部件,主要有水平尾翼(水平安定面和升降舵)和垂直尾翼(垂直安定面和方向舵)组成。尾翼的存在让飞机具有操纵性及稳定性,是极为重要的存在,其价值约占飞机总造价的5%-10%。2产业模式:转包生产合作模式,位于整机制造产业链中游2.1位于航空整机制造产业链中游上游金属/复材,下游分系统制造维修。航空零部件产业链上游包括制造各种航空零部件所需的金属非金属等原材料及成型材料,金属材料主要有:结构钢、不锈钢、铝合金、镁合金、钛合金和高温合金等;非金属材料包括航空陶瓷、特种橡胶和碳纤维等。下游则由民用航空飞机整机制造、航空发动机制造和航空维修三大部分构成。飞机零部件相关产业链2.2转包生产为主要供应链合作模式航空“转包”生产是全球航空飞机及发动机制造商普遍采用的一种基于“主制造商-供应商”的供应链合作模式。在全球转包生产形式下,飞机及发动机制造商主要负责总体设计和细节设计,承担主要结构件和系统间设计和制造工作,并负责最后的总装。供应商根据主制造商需要参与具体各个部件的生产制造中。主制造商通过合同约定以及考核的方式对供应商的进度、质量、成本和交付进行严格管理。转包业务有助于降低企业成本,增强研发能力。按照国际航空发展规律,航空飞机及发动机产品的输出方(如波音、GE等)至少得向输入市场转包生产不低于20%的零部件转包生产份额,即“补偿贸易额度”。鉴于此,主制造商通过转包生产模式充分调动了全球产业链分工降低了自身产品制造成本,使得其可以将主要精力投入于下一代产品的研发,加强其在国际市场的竞争力。航空零部件转包是国际巨头普遍做法,国际航空巨头往往将众多零部件业务进行转包生产,且该比例随着技术发展和市场竞争加剧进一步提升。以波音为例,20世纪90年代,波音777项目外包份额约为30%左右,21世纪的787等项目外包比例已高达70%左右。国际转包市场总体规模也在逐渐增长,根据普拉迪相关行业报告显示,国际航空转包市场年均复合增长率达9.71%。根据工信部《中国民用航空工业年鉴》的数据,2019年中国航空零部件转包规模上升到123亿元,约占国际航空零部件市场总规模的8%。国际航空零部件制造转包市场规模逐年扩大我国航空分包市场占全球市场份额逐步提升国内转包市场规模稳步提升,逐步成为世界航空产业重要组成部分。近些年来,中国航空企业一直通过国际航空转包生产以及大量合资企业建设的方式,不断提升国际主力机型结构部件、金属型材、金属零部件等方面的生产能力和产品质量,逐步成为世界航空产业重要的组成部分,提升了国际化发展能力。中国民用航空零部件转包交付金额不断扩大,波音、空客等零部件转包需求持续增长,中国企业获得的民航转包生产金额呈稳步上升趋势,国内民营航空企业获得的国际航空转包份额也有所提升。目前国内企业承接的航空国际转包业务主要还是由中航工业和中国航发两大军工集团的旗下个主机厂或成立的合资公司承担。据统计,目前中航工业整体承担了约80%的航空发动机转包业务。3市场规模:军品随主战型号爆发增长,民品国内外市场齐发力3.1军机航空零部件市场:随下游主战型号放量及集团外包比例提升爆发增长我国军用飞机未来增长潜力巨大,预计未来10年整机市场将达万亿市场空间:根据《世界空中力量2020》数据显示,我军现在尚有超50%比例的二代战斗机在服役,在战斗机更新换代加速的背景下,预计未来10年,我国战斗机将保持每年新增+替换100架左右的需求,共计新增1,000架;运输机--大型运输机缺乏,未来爆发式增长。根据国防大学《中国军民融合发展报告》预测,我国未来需要至少400架以上运-20系列运输机才能满足我军在亚洲地区执行任务。预计未来10年,我国大型运输机将需要200架;目前中国陆军每万人军用直升机拥有量仅为8.8架,美国为99.5架,俄罗斯为28.7架,我国陆军部队对直升机需求迫在眉睫。预计未来10年,我国陆军每万人军用直升机拥有量将达到30架左右,预测新增军用直升机1,800架;特种飞机已经成为了现代战争中快速反应、远程机动、立体作战战略打击的关键手段。在未来的特种飞机市场上,美国、日本、以色列和欧洲都将占据一席之地。预计未来10年新增需求量为120架;相较美国,我国教练机的数量明显不足。预计未来我国空军教练机/战斗机数量比可能接近0.4,据此推测我国未来10年教练机需求量400架。2018-2024年军用飞机增速预测(单位:架)军用飞机增量预测图(单位:架)我国军用飞机零部件制造产业未来10年规模预计超3000亿元。受益于“十四五”强军强国政策的大力推进实施,以及我军现在新型号主战机型的不足和原有旧机型的更新换代,未来3-5年将迎来下游主战型号飞机更新换代的高峰。考虑到我军未来十年各种机型的新增数量以及旧机型机身零部件的维修保养、零件更新等工作,军用飞机航空零部件产业市场预计新增需求超2000亿,已有飞机维修更新市场需求近1000亿,合计超3000亿航空零部件制造市场需求。鉴于该行业属于高壁垒、长积淀、深度跟踪的小众行业,未来行业内稀缺龙头将显著受益。军用飞机未来10年市场需求规模预测(单位:亿元/架)航空零部件制造业或将显著受益于军工集团业务外包比例增加。目前我国军工企业外部竞争环境变化正在不断加快,社会分工不断细化,未来利用外部社会资源降低生产成本、提高生产效率、充分发挥自身核心竞争力,军工企业将非核心的生产制造环节转让给具有合格专业技术的生产厂家已成为主要发展趋势。未来随着军工集团“大产业链+小总部”模式的不断建设,军工产业集群将以军工集团为核心,以关键加工装配工厂为辅助形成区域性航空制造产业园。军工集团为保证自身的效率与利润,未来有望将非核心生产环节外包比例逐渐提升,从而使零部件生产、机加工、装配等企业显著受益。3.2民用航空市场:国际分包业务扩量+国产大飞机需求放量共促发展国内民用航空转包业务进入快速发展阶段,国际地位逐步提升,预计未来10年国内需求+国际分包将超1800亿市场规模。中国的航空工业外贸转包生产始于1980年,先后与美国波音、欧洲空客、加拿大庞巴迪、巴西航空工业公司等世界先进飞机制造公司以及美国通用电气公司、英国罗罗公司、美国普惠公司等发动机制造公司建立了工业合作关系,开展了广泛的航空零部件外贸转包生产,项目涉及机头、机翼、机身、尾段、舱门、发动机部件等多种产品。随着中国航空工业的发展,产品技术水平与质量逐渐获得国际市场的认可。近年来中国航空转包生产发展非常迅猛。中国将在国际航空转包市场上与世界各民用飞机制造商包括中国商飞、波音、空客、庞巴迪、巴西航空等开展全方位的合作。目前全球知名飞机制造商均有采用中国产品,以波音公司为例,在全球飞行的6000架波音飞机当中,均有中国制造的零部件及零件。国内转包市场规模稳步提升,逐步成为世界航空产业重要组成部分。近些年来,中国航空企业一直通过国际航空转包生产以及大量合资企业建设的方式,不断提升国际主力机型结构部件、金属型材、金属零部件等方面的生产能力和产品质量,逐步成为世界航空产业重要的组成部分,提升了国际化发展能力。中国民用航空零部件转包交付金额不断扩大,波音、空客等零部件转包需求持续增长,中国企业获得的民航转包生产金额呈稳步上升趋势,国内民营航空企业获得的国际航空转包份额也有所提升。而国内航空零部件转包业务承接方主要分为国资背景及民营企业,主要由中航工业和中国航发两大军工集团的旗下个主机厂或成立的合资公司承担。据统计,目前中航工业整体承担了约80%的航空发动机转包业务。ARJ21与C919航空零部件与维修市场规模国内自身分包市场规模:国产飞机需求扩产达1400亿市场规模,国际分包稳定增长。在国际转包业务持续推进的同时,我国大型自主商用飞机谱系的建设也快速发展,随着商用飞机航空制造产业链的不断成熟,航空零部件制造规模及分包比例也将随下游大飞机放量获得明显增长。我国C919大飞机于2015年11月2日完成总装下线,2017年5月成功试飞。根据官网数据显示,目前C919已获得28家客户累计815架订单;国产支线飞机ARJ21交付不断增加,目前确认+意向客户超700架。按照各自售价及零部件占飞机总价值30%/36%比例计算,考虑已有订单及已落地飞机后期维修更新替换工作,我国未来10年可贡献零部件制造分包收入近1400亿元。2010-2030年我国国际航空制造分包市场规模预测(单位:亿美元)1、总论1.1航空零部件项目背景1.2可行性研究结论1.3主要技术经济指标表2、项目背景与投资的必要性2.1航空零部件项目提出的背景2.2投资的必要性3、市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论4、建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应5、工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案6、总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程7、节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地8、环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价9、劳动安全卫生及消防9.1劳动安全卫生9.2消防安全10、组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理11、项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排12、投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表13、工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表14、财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论15、项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究16、结论与建议16.1结论16.2建议关联报告:编制单位:北京智博睿航空零部件项目申请报告航空零部件项目建议书航空零部件项目商业计划书航空零部件项目资金申请报告航空零部件项目节能评估报告航空零部件行业市场研究报告航空零部件项目PPP可行性研究报告航空零部件项目PPP物有所值评价报告航空零部件项目PPP财政承受能力论证报告航空零部件项目资金筹措和融资平衡方案

魂气

赛文研究院联合阿里云发布《2020智慧高速市场观察报告》

以前,在高速公路领域的智能交通,基本都是指的高速公路机电三大系统,监控系统、收费系统、通信系统,已经做了很多智能化的工作,例如:ETC,自主发卡,自动车牌识别等等。此外,视频自动识别交通事件、基于BIM的建设养护管理、自由流收费、手机智能导航APP等新技术也在不断丰富完善,为高速建设、管理、养护、服务、收费的全面智慧化提供技术基础。近年来,各地方已陆续开展了“智慧高速公路”的试点建设,侧重的建设内容也不尽相同。2012年,浙江省率先探索“智慧高速公路”技术应用……2017年,江西省首条“智慧高速公路”建成试运营……2018年,广西首个高速公路物联网智慧警示系统在合那高速公路装备……2019年,甘肃省开展自动驾驶车路协同测试及试验运营、自动驾驶及智慧交通商业化模式试验……2020年,浙江省交通运输厅发布了《智慧高速公路建设指南(暂行)》……何为智慧高速?如今,我国高速公路正朝数字化、网络化、智能化、智慧化等方向发展,逐步形成了“智慧高速公路”的科技理念,“智慧高速公路”的建设已经成为我国交通发展的首要任务。“智慧高速公路”的建设引入了互联网思维和技术,对传统高速公路机电系统和管理服务进行重构再造,利用物联网、云计算、大数据、人工智能等先进信息技术,与高速公路管理、运营服务等传统理念进行深度融合。云计算、大数据等技术提供了必要的计算资源、网络资源、存储资源,提高了数据的分析能力,物联网借助微传感和控制技术,将人、车、路、环境联合成一个实时网络,使智慧高速建设有了技术支撑。多项交通部针对智慧高速的政策指导文件,明确要在基础设施数字化、路运一体化车路协同、北斗高精度定位综合应用、基于大数据的路网综合管理、互联网+路网综合服务、新一代国家交通控制等多个方向全面深入发展,使智慧高速建设有了政策保障和方向指导。智慧高速公路的发展获得前所未有的良好环境,在实践中不断发展、不断完善的,随着技术进步和认识提升, 智慧高速公路的内涵也会更加丰富,即持续利用新理念、新技术、新机制、新模式, 实现管理和服务更加智慧的高速公路。结合以上的理解,应当结合智慧高速的发展趋势,提升方向包括:1、基础设施数字化;2、交通工具智能化;3、交通出行幸福化;4、交通管理智慧化;5、交通运输一体化。智慧高速的整体框架 智慧高速应当是以云控平台为核心中枢,实现构建以数据驱动的云-边-端高速公路协同管控与创新体系,探索新基建背景下智慧高速建设、收费和运营模式,不断夯实云控平台的数据底盘和技术底座的基础上,能针对新的业务场景需求快速实现应用创新,同时支撑智慧高速向车路协同和自动驾驶的平滑过渡。具体框架上,智慧高速将采集高速基础数据、行业业务数据、外场监测检测数据,同时构建面向主题及综合分析需求的数据资源体系,构建交通管理、资产管理、信息服务、应急管理、综合监测的基础业务应用,以及车路协同、智慧隧道、智慧服务区、准全天候通行的创新特色应用,各系统之间协同工作,形成面向交通不同层级和不同应用的控制决策,对高速公路本地、通道以及网络不同层级交通运行系统实施精准控制,能有效提高智慧高速通行效率和安全保障。此外,建设高精度定位和地图,未来可以支持车路协同更多应用场景,自动驾驶车辆安全稳定运行和切换,以及人工驾驶车辆车道级的管控和服务。云控平台 传统高速运营管理系统,基本每个系统都是孤立数据体系和业务系统,存在重复建设,标准不统一,数据孤岛等情况,数据资产没有充分利用,无法很好支撑智慧高速创新应用的快速落地。随着高速公路快速发展,前端感知设备越来越多,接入数据量级越来越大,系统智慧化水平要求越来越高,需要有成熟的云计算和大数据能力作为底层技术保障,主要技术需求有云资源虚拟化管理需求、大数据平台支撑需求和数据中台应用需求,具体业务需求有交通安全保障需求、管理效率提升需求、服务水平加强需求。基于机电系统发展需求的理解,阿里在高速公路领域依托云计算、大数据、人工智能、物联网等新数字基建技术,并引入阿里的互联网思维,构建以数据中台为核心的高速公路协同管控与创新服务体系,实现高速公路的管理科学化、运行高效化和服务品质化。在这个过程中,阿里不断迭代和丰富云控平台的内涵,形成了人-车-路-云协同的云控平台3.0。目前阿里云控平台3.0已可以提供5大智能引擎,分别是视觉智能引擎、融合感知引擎、决策分析引擎、服务触达引擎以及控制执行引擎。通过这五大引擎能力,有效的在高速交通态势、事件处置闭环、公众信息服务诱导、在线收费稽查、车路协同等高速应用场景实现智慧云控。收费系统上云 在撤销省界站的大背景下,传统清分结算业务系统负荷急剧增大,需要处理的交易数据增量约为原有交易数的10倍,需要对原有传统方案进行改造,将收费系统推动上云,存在以下挑战:满足同时处理大量离线与在线数据的清分业务需求、安全的数据传输需求(公安部三级等保)、安全的数据存储需求。建立IaaS平台、PaaS平台、安全防护平台、管理运维平台后,将具备以下优势:1、先进的技术落地,用云计算的可弹性伸缩扩展特性,应对交易笔数的激增;用多副本备份技术与加密的数据传输技术,实现了云上云下数据库的副本实时同步;2、安全的系统架构,为了实现数据安全传输、数据稳定存储、应用的安全访问,运用了数据库的加密传输技术、云存储的一主两备份技术、应用缓存技术、访问权限统一控制、堡垒机统一控制等技术手段与策略,从数据传输、存储与业务应用安全的三个层面,保证了清分结算系统的整体安全、稳固、可用;3、合理的功能设计,为保证业务可靠性、连续性,如何与原有系统打通、利旧,平滑实现新旧替换,不冗余,不缺失,合理利用了一站式数据迁移与同步组件产品与良好的分布式技术,并且在业务层做了良好的分库分表,保证了原有系统与云上的传输能高效、平稳地进行。自由流AI稽核 大数据AI稽查是通过大数据和AI等先进技术为传统的稽查收费赋能,解决自由流收费中的偷逃、遗漏、错收等异常行为,构建以数据为核心的高速公路协同管控与创新服务新模式。高速自由流收费稽核解决方案是基于强大的云计算底座、业界领先的大数据和人工智能的能力,助力高速公路由传统模式向云端一体化模式转型,实现不停车自由通行、业务管理的实时审计、对大量车辆交通记录和应收费率的实时准确核算,让每辆车的每个行程每笔费用都不遗漏。该方案包含了感知层、决策层、业务层等三层业务架构。具备以下优势:1、利用人工智能和大数据技术对高速公路偷漏逃费行为进行稽核分析;2、云边一体、全局协同。路段布设了边缘计算能力,同时在联网中心布设了中心技术节点,实时获取信息,进行相应的处理;3、多源推理,轨迹还原。融合路段RSU数据、视频图像数据、互联网地图数据,还原车辆行驶轨迹;4、以图搜图。融合车辆特征识别、车辆通行行为识别等多种技术,实现车辆身份的准确推理;5、特征档案。建立基于路网车辆特征的档案库,一车一档案,一行一轨迹,自动、准确识别各类通行异常行为;6、一键稽查。准确高效。通过多源推理还原车辆行驶,形成证据链,高效协助通行费稽查补缴。自由流在线计费 通过搭建部级在线计费服务平台、省级在线计费服务平台,一方面,可以实现精准路径识别和费率在线计算的功能,在线还原门架计费过程,与车辆通行时的计费过程保持一致,提高出口收费的准确性;另一方面,出口混合车道还可依托各级在线计费服务平台的有效支撑,建立出口车道-省中心-部中心的联动通讯机制和计费整合能力,提高出口车道获得车辆通行全程精准路径与计费结果的响应速度,实现出口特情高效处理,完成最终车辆的放行和收费处理工作。在线计费平台主要依托现有收费系统天线感应的通行和教数据,牌识数据,云计算大数据架构实现在线计费的基本功能,必选组件主要由数据接入子系统、路径还原子系统、计费服务子系统及特情App构成。在线计费平台方案由两部分组成:在线计费功能平台和在线计费交互平台,在线计费功能平台是从算法和数据角度解决精准计费的问题,但算法和数据不能解决百分之百的问题,特别是在路径点丢失严重,导致二义性路径的时候就需要在线计费交互平台通过可视化的方式把可能的路径展示给司机,通过收费员与司机的交互确认最终的精准路径,通过两种方式结合,保障完成部里面要求99.99%的业务目标。未来的智慧高速公路 智慧高速公路,需要加快推动大数据、移动互联网、人工智能、区块链、IOT等新技术与交通行业深度融合,对交通传统基建进行数字化、智能化改造和升级,实现人、车、路、环境信息互联互通。未来的高速公路,将支持车路协同更多应用场景,自动驾驶车辆安全稳定运行和切换,以及人工驾驶车辆车道级的管控和服务,其中核心支撑能力包含云平台、数据中台、AI中台、AIOT中台四大块内容。1、云平台:过去是按照单项业务目标去匹配算力,容易造成极大的资源浪费,发展趋势将基于云计算平台,统一部署运筹算力基础设施,提供计算、存储、网络、安全、数据库、大数据等服务能力,保证数据的高可用、高容灾。2、AIOT中台:过去是面对各种标准不统一,系统封闭的设备,接入耗费巨大的定制开发工作量,发展趋势将基于AI+IOT技术,实现对多种类设备的自动接入和管控,从通讯规则、协议适配、控制策略、跨系统连锁等全过程进行调度、监控与执行。3、数据中台:过去各系统独立部署,互不关联,数据都是孤岛,发展趋势将基于高精度地图底盘,多源静态和动态的交通数据的汇聚、管理和调度以数据资源池的形式构造,保证数据集中管理、深度融合,以及统一对外服务。4、AI中台:过去数据只为单一业务系统服务,大量有用信息没有挖掘利用,发展趋势将基于AI智能算法,从视频画面中提取更丰富多维的人、车、路、环境的结构化信息,同时提供宏微观一体,以真实数据做自动标定的仿真引擎,嵌入到交通管理控制的各个业务环节中提供场景还原与预测能力。结语 2020年,智慧交通正在迈入新阶段。作为数字基建的重要组成部分,交通强国战略的主要发力点,中国智慧交通建设驶入快车道,加快推动大数据、互联网、人工智能、区块链、超级计算等新技术与交通行业深度融合,对交通运输传统基建进行数字化、智能化改造和升级。智慧高速云控平台发展以及自由流稽核全面感知的技术,必将带领智慧高速向着基础设施数字化、交通工具智能化、交通出行幸福化、物流运输一体化、交通治理智慧化五个方面的推进,为“交通强国”助力。以上内容摘自赛文研究院和阿里云联合发布的《2020智慧高速市场观察报告》,关注【赛文交通网】微信公众号后,回复“2020智慧高速”即可下载完整版。

旄丘

铁路设备行业深度研究报告:2020,不一样的轨交周期

如需报告请登录【未来智库】。一、不一样的轨交周期,铁路投资 8000 亿不再是核心投资参考指标轨交分为大铁路市场和城市轨道交通市场,过去的 15 年间经历了 2 轮典型的由高铁建设带来的增量周期。第一轮 (2008-2010)由投资拉动,基建相关更为受益,第二轮(2013-2015)侧重设备交付,叠加进口替代,车辆及零部件 弹性大。当前时点,我们认为,动车组将再迎来一轮交付高峰,而城轨市场仍为增量市场,二者叠加将呈现不一样 的轨交周期。(一)复盘:轨交历经两轮增量周期,龙头股票水涨船高 1、铁路投资快速增长告一段落,未来几年投资额趋于稳定 自 2014 年开始,我国铁路建设投资每年稳定在 8000 亿元左右,2020 年全国交通运输工作会议召开,会上明确,2020 年交通运输将完成铁路投资 8000 亿元,短期内投资规模不会改变。由此可知,轨交市场会继续稳健发展,而从另一 个角度也说明,增量市场无法像以前一样快速扩张,未来几年铁路投资 8000 亿不再是核心投资参考指标。2、两轮经济周期关乎轨交周期,相关企业借势起飞 纵观过去 10 年历史,基建投资总在特定的历史时期起到其“稳经济”的宏观调控作用,比较显著的是 2008-2009 以 及 2012-2013 两个时期。 2008 年-2009 年之间,由于四万亿的作用,基建投资增速从 2018 年 2 月份的最低点(3.56%) 回升至 2019 年 6 月份的高点(50.78%),绝对值从 2008 年的 3.84 万亿提升至 2009 年的 5.47 万亿。2012-2013 年之 间,基建投资增速从 2012 年 2 月份的最低点(-2.63%)回升至 2013 年 8 月份的高点(24.74%),绝对值从 2012 年 的 7.72 万亿提升至 2013 年的 9.36 万亿。通过比较研究,每次基建投资回升都面临相同的宏观环境:外部冲击、房地产调控、资金面趋紧,宏观经济数据整 体表现疲软。2008 年面临次贷危机引发的全球金融危机、2010 年欧盟发生欧债危机,欧洲经济增速下滑,影响了与 中国的贸易额。且两次基建投资回升中,轨交(铁路+地铁)均在其中扮演了重要角色。 第一轮轨交周期:四万亿带动下的高铁建设全面开花 在 2008 年金融危机的大背景下,政府投入 4 万亿救市,适逢国内基础设施建设步入成熟期,铁总发布了《中长期铁 路网规划(2008 年调整)》,提出“四纵四横”,高铁网络快速布局,资金迅速向高铁基建板块聚拢,推动第一轮轨交市场快速扩张。晋亿实业、时代新材等与高铁轨道铺设相关的企业受益,在 2008-2011 年股价上扬。在第一轮全国铁路投资快速增长的大背景下,对主营业务的分拆显示,时代新材和晋亿实业的铁路相关业务均有显 著提升。时代新材是国内唯一的国家轨道交通高分子材料及制品检测中心,形成了材料技术、系统与结构、工艺装 备、检测分析等核心技术,实现了新材料领域和产品结构技术相结合的重大突破。晋亿实业是国内紧固件行业龙头 企业,主营各类紧固件产成品、中间产品的研发、生产和销售。 第二轮轨交周期:高铁名片享誉全球,车辆国产化率迅速提升2011 年温甬铁路事故后,高铁领域投资放缓,但随着高铁线路不断通车,高铁给人们出行带来的便利不断显现,高 铁网络化布局并没有中段, 2014-2015 年是高铁的第一轮通车高峰期,两年通车里程分别达到 5491 公里、 3306 公里, 通车高峰带来车辆交付数高峰,两年车辆交付数分别达到 453 组、473 组,加上南北车合并事件催化,中国中车作 为整车龙头企业在次轮股价腾飞。同时,中国高铁技术在应用中不断进步,自主化程度越来越高,高铁核心配件的 进口替代加速,以康尼机电、鼎汉技术、永贵电器为代表的轨交零部件企业也实现了股价的大幅上涨。中国中车作为全球规模最大且技术领先的轨道交通装备供应商,是反应第二轮轨交增量周期的代表企业,加入北车 轨交业务回溯调整后,显示其铁路设备相关业务在 2013-2015 年迎来快速增长。公司主营业务涉及铁路机车车辆、动车组、城轨车辆等。公司坚持自主创新、开放创新和协同创新,持续完善技术创新体系,不断提升技术创新能力, 建设了世界领先的轨道交通装备产品技术平台和制造基地,以高速动车组、大功率机车、铁路货车、城市轨道车辆 为代表的系列产品。业务持续性和高弹性是第二轮轨交周期中和核心标的选择思路,通过业务拆分显示,几家主营轨交车辆配套设备企 业在第二轮轨交周期表现优异。鼎汉技术是一家从事轨道交通高端装备研发、生产、销售和服务的高新技术企业, 其主营业务发展可分为两个阶段:第一阶段主要产品为通信电源系统、信号电源系统等多项轨交电源系统,第二阶 段主要通过并购的方式切入车辆装备。康尼机电于 2014 年上市,主营业务为轨交门系统及轨交装备配套产品,自上 市后其轨交业务业绩稳健增长,城轨门业务始终占据半壁江山,动车门实现进口替代后市占率不断提升。永贵电器 主营轨交连接器,轨交业务在 13-15 年快速增长,其自主研发的轨交连接器打破国外垄断。3、增量逻辑不同,促成两轮轨交周期 第一轮轨交周期:高投资促迎基建高峰,基建标的企业首先受益。2008-2010 的铁路投资额分别为 4168 亿元、7013 亿元、8426 亿元,其中 2008 年和 2009 年投资同比增长 65%和 68%,形成了铁路投资快速增长的局面,铁路资金快 速涌入基建市场。轨交项目一般持续 4-6 前,前三年为基建部分,包括轨道采购与铺设、桥梁、隧道、车站的建设 等,约占总投资的 40-50%。在基建方面,工程机械、桥梁及隧道专用钢铁、水泥、电力、建筑材料、工程承包等直 接受益;在铺轨环节,轨道专用钢材、轨道加工生产、轨道减震部件、紧固件等均从中受益。第二轮轨交周期:设备需求高,车辆配套装备市场机会大。机车车辆的购置(包括铁路机车、车辆的整车和配件) 约占总投资额的 10-15%,同样占据不小市场份额。在车辆和配套设施采购环节,机车及车厢生产商,钢铁、车轴、 轴承、座椅、信息信号设备、计算机控制系统将受益。(二)投资逻辑发生变化,铁路关注结构性与存量市场,城轨仍是增量市场 1、详细拆解建设周期,从通车高峰期推断市场增长点 (1)轨交建设可分四阶段,整个周期约为 4-6 年 铁路和城轨建设均可以根据 4-6 年的建设周期分为四个阶段。 阶段一:立项设计。分为初步设计和施工图两个子阶段。初步设计阶段是指在在批准的可行性研究报告的基础上开展定测、现场调查,通过局部方案比选最优方案,施工图 设计阶段是指在初步设计的基础上组织开展补充定测、施工设计,并组织编制施工图投资检算和施工图审核。 阶段二:站前土建工程。分为开工准备和开工建设两个子阶段。开工准备阶段主要工作包括组织施工及监理招标、签订征迁实施协议、编制上报开工报告等。开工建设阶段主要工 作包括组织队伍进场、组织技术交底、组织征地拆迁及三电迁改、组织单位工程验收等。 阶段三:站后机电工程(四电集成)。 四电集成就是电气化铁路必备四大系统:通信、信号、电力、牵引供电。这些四电工程通常由至少 20 多个子系统所 构成,在铁路沿线,与站前主体工程(路基、桥梁、隧道等)紧密结合。 阶段四:车辆交付,联调联试。 铁路基础建设完备后就要进行轨交车辆交付和联调联试。联调联试是指利用轨检车、综合检测列车、试验列车按照 大纲要求对列车运行状态下的工程质量全面检查确认,并通过运行试验对整体系统在正常和非正常运行条件下的行 车组织、客运服务以及应急救援等进行检验的过程。(2)回顾高铁和城轨通车里程的年增加量,总体呈上涨趋势且存在显著高峰期。 高铁在国家两轮五年计划的驱动下,在 2014 年和 2019 年出现显著里程增长。截至 2019 年底其中高铁里程约为 3.5 万公里稳稳位列世界第一。城市轨道交通呈现出稳步增长的态势,且同样反映出“十二五”和“十三五”计划的周 期性,在每个五年计划的后半程出现通车高峰。2019 年末全国城市轨道交通(不含有轨电车)运营线路达到 6426.84 公里,成为世界城市轨道交通大国。其中拥有地铁运营线路的城市 38 个,城市之多和线路之长都位居世界首位。(3)通车高峰结合轨交建设周期,回溯重点企业业绩可发现结构性投资机会 阶段一:立项设计。城轨设计的公司为城建设计公司,它是为城市轨道交通、综合交通枢纽、地下空间开发、工业 与民用建筑、市政、桥梁和道路工程建设等项目提供多样化服务的综合性勘察设计咨询单位,其主营业务有持续性需求,业绩呈现稳定上涨态势。阶段二:站前土建工程。中国中铁为基建阶段标的公司,铁路建设业务表现符合铁路建设周期。从 2014 年和 2019 年两个通车高峰年可倒退两轮土建阶段约为 2010 年和 2015 年。中国中铁具有中国国家住房与城乡建设部批准的铁 路工程施工总承包特级资质、隧道工程和城市轨道交通工程专业承包资质,公司业务范围涵盖了几乎所有基本建设 领域,其中主营业务为基建建设,而其中铁路建设占了大头。阶段三:站后机电工程(四电集成)。中国通号自 2016 年上市后主营业务稳步增长。从 2019 年这个通车高峰年可 以推出 2017 年左右是站后机电工程建设的高峰期,而中国通号专注于轨交信号控制系统技术的研究与探索,满足站 后机电工程建设相关要求,其主要业务包括:1)设计集成,主要包括提供轨道交通控制系统相关产品的系统集成服 务及为轨道交通工程为主的项目建设提供设计和咨询服务;2)设备制造,主要包括生产和销售信号系统、通信信息 系统产品及其他相关产品;3)系统交付,主要包括轨道交通控制系统项目施工、设备安装及维护服务。阶段四:车辆交付,联调联试。中国中车作为整车标的企业,第二轮车辆交付周期中动车组业务迎来快速增长。高 铁通车当年为动车组交付高峰期,动车组订单设备周期在 1 年之内,地铁通车前半年到一年同样为地铁车辆的交付 高峰期,但根据地铁业务的不同设计规划,地铁车辆设备订单周期可能长达 2-3 年。中国中车是目前全球规模最大、 品种最全、技术领先的轨道交通装备供应商,以高速动车组、大功率机车、铁路货车、城市轨道车辆为代表的系列 产品,从通车高峰年倒推出的车辆交付期中,中国中车铁路城轨装备相关业务均有良好表现。2、轨交车辆保有量攀升,创造存量市场需求 各类轨交车辆保有量均屡创新高。预计截至 2019 年末,铁路车辆的保有量达到动车组 3534 标准组,机车拥有接近 2.2 万台,客车 4.7 万辆,货车超过 85 万辆,城轨车辆保有量达到 3.5 万辆。预计到 2020 年,动车组保有量将接近 4000 组,机车保有量超过 2.2 万台,客车保有量超过 4.8 万辆,货车保有量超过 90 万辆;到 2025 年,动车组保有 量将超过 5000 组,机车保有量 2.6 万辆,客车保有量 5 万辆,货车保有量超过 110 万辆。2016 年以来,我国工业通过供给侧改革逐步完成了产能去化,制造业粗放式投资的时代已经过去,传统制造业升级 趋势明显。设备行业与下游制造业投资需求紧密相关,具有较强的周期属性,机械设备公司尤其是轨交行业的公司 往往被贴上周期股的标签。随着制造业投资增速放缓,步入稳态,铁路市场需求的增量逻辑正在被逐步弱化,存量需求逐步占据主导地位。在整个轨交领域,维修更新时间较短(即所谓耗材)的零部件产品以及与运营维保相关的 业务将随着保有量市场的增长而增长。3、关注增量市场——城市轨道交通 2020 年受疫情影响,全年经济增长承压,逆周期调节有望发力,“新基建”成为拉动投资扩大需求的方向。新基建 涉及七大领域,其中“城际高速铁路和城际轨道交通”赫然在列。从我国人口布局来看,城市轨道交通发展潜力巨 大。截至 2018 年底,我国城市轨道交通运营里程为 5761 公里,其中地铁 4354 公里,远期规划城市轨道交通里程达 3.5 万公里,其中地铁 2.7 万公里。按目前项目进展情况,十四五新增运营里程相比十三五将再上一个台阶,城轨市 场仍处于增量阶段。二、短期:2020 将迎来动车组交付弹性之年,地铁仍为增量市场新增通车里程维持高位,动车组缺口进一步扩大,2020 年有望迎来设备交付弹性之年。城轨发展潜力大,仍为增量 市场,远期规划城市轨道交通里程达 3.5 万公里,其中地铁 2.7 万公里。按目前项目进展情况,十四五新增运营里程 相比十三五将再上一个台阶。(一)高铁市场:通车高峰期带动车辆设备交付高峰 2019 年新增高铁通车里程达历史次高,带来新增车辆设备需求。2019 年高铁投产新线 5474 公里,为历史次高,最 高为 2014 年 5491 公里,其中包括兰新线的 1786 公里,兰新线由于地理位置特殊里程长但配车密度低,2019 年的 通车里程对应的车辆需求量实质应为历史最高的一年。未来三年高铁通车里程仍维持高位,动车组缺口进一步扩大,2020 年有望迎来设备交付弹性之年。截至 2019 年底 高铁运营里程为 35378 公里。动车组由于 2019 年复兴号 CR300 新车型未如期落地交付数低于预期,新增车辆数预 计不足 300 组,则截至 2019 年底动车组保有量约为 3500 组,车辆密度为 0.79 辆/公里,远低于近三年平均水平 0.9 辆/公里,车辆缺口进一步扩大。通过自下而上的梳理,我们预计未来三年(2020-2022 年)高铁平均通车里程超过4000 公里,仍然处于高位。按照保守假设 0.8 辆/公里的配车密度,则未来三年需新增动车组 1212 组,平均每年 404 组。其中,2020 年为补缺口(交付推迟的 CR300)叠加通车增长,或为弹性最高的一年。高铁取代普铁承担客运任务,客运量占比逐年提升,车辆密度进一步提升是未来趋势。自 2008 年高铁逐步运营,客 运量和客运周转量逐年攀升,替代普铁成为承担客运的主要力量。 2018 年高铁客运量占铁路客运量总比重达到 60.9%, 且有进一步提升的趋势。京沪高铁上市,作为连接全国前二大城市的主干线,未来配车将逐步采购 17 编组动车组来 取代其他编组,以提升运能。高铁车辆密度有望进一步提升。(二)城轨市场万亿空间,十四五通车里程再上台阶1、十二五以来城轨市场蓬勃发展十二五以来我国城轨市场蓬勃发展,地铁是我国城市轨道交通最重要的组成部分。根据中国城市轨道交通协会的统 计,截至 2018 年末,中国内地已开通城市轨道交通包括地铁、轻轨、单轨、市域快轨、现代有轨电车、磁浮交通、 APM 七种制式。其中,地铁运营线路长度达 4354 公里,占比 76%,具有绝对的主导地位,其次是市域快轨(占比 11%)和现代有轨电车(占比 6%)等其他城轨制式。我国第一条地铁线路于 1969 年在北京运营,经过之后 40 年发展,截至 2010 年地铁运营里程为 1167 公里,十二五 期间的 5 年全国新增地铁通车里程 1257 公里,开始上台阶式发展。2、新增通车里程再迎高峰,十四五再上台阶,远期发展空间大 预计十三五新增 3941 公里,2019-2020 年为通车高峰。根据自下而上的线路梳理,预计 2019 年新增地铁通车里程 937 公里,2020 年新增通车里程 1208 公里,同比增速分别达到 76.69%、28.98%。十四五新增通车里程有望再上台 阶,预计 2021 年新增通车 1594 公里。从我国人口布局来看,城市轨道交通发展潜力巨大,地铁远期规划 2.7 万公里。地铁车辆需求量测算:根据以前年份的地铁通车里程数和车辆保有量计算,我国历年地铁通车密度均高于 6 辆/公里 的水平。保守估计,按照 6 辆/公里的通车密度计算,2020-2021 年地铁车辆新增需求将分别达到 7250 辆/9564 辆。3、52 号文推动城轨多层次有序发展,中小运量制式城轨发展空间广阔 国务院于 7 月 13 日发布《关于进一步加强城市轨道交通规划建设管理的意见》(即 52 号文),提高了城市修建地 铁及轻轨的条件。相比原来的 81 号文,52 号文主要变动有:一般公共预算收入方面,地铁的门槛由原来的大于等 于 100 亿元,变为大于等于 300 亿元;GDP 方面,地铁的门槛由原来的大于等于 1000 亿元,变为大于等于 3000 亿 元;人口方面,数字没有改变,但把“城区人口”变为“市区常住人口”。52 号文实质不是收紧,而是要求城轨分制式有序发展。此次新规不能简单认为是收紧,而是明确什么样的城市应该 发展何种制式的城轨,划清界限之后,所有城市可明确对号入座。城市轨道交通分为多种制式,不同制式适用不同 的运量。大运量制式如地铁一般用于客流量较大的地区,而轻轨、跨座式单轨、中低速磁浮等则属于中小运量制式, 适用于客流量较小的地区。新规实际上是要求各地按照经济适用原则,合理选择系统制式,控制工程投资,从而提 高城市轨道交通投资效益。长期来看中小运量的城轨制式发展空间广阔。据测算,每年一二三线城市的交通客流量大约以15%-16%的速度增长, 而道路的增长只有 2%-3%,城轨由于大多以地下或高架方式铺设,发展潜力巨大。随着二三线城市迅速发展,交通 压力也会逐渐增大。由于许多二三线城市人口尚未达到建造地铁的标准,中小运量制式的城轨具有较大市场空间。 另外一线城市郊区的加密需求也在增加。目前在一线城市的城轨建设中,对郊区的覆盖尚有欠缺。而由于郊区客流 量小,若是建地铁将会造成资源浪费,因此一线城市在进行郊区加密线建设时,对中小运量制式的城轨(如轻轨、 跨坐式单轨等)的需求也将会增加。虽然对比地铁,其他制式城轨的造价小很多,但主要影响的土建阶段的投资额, 车辆设备的采购不会因制式结构转变受到太大影响,所以整个市场长期前景十分乐观,利好车辆设备以及相关配套 自动化设备。 三、长期:更新和运维是“卖水者”市场长期角度来看,轨交市场必将从增量转向存量,中国是轨交大国,对标海外,行业内“卖水者”受益。随着新增量 增速趋缓,而存量市场越来越大,行业需求的增量逻辑将被逐步弱化,存量需求逐步占据主导地位。这样的行业是 能够诞生“卖水者”的行业。所谓卖水者,是指那些提供的产品或服务能够穿越经济周期,实现长期稳定收益或增 长的公司。轨交零部件和运营维保企业就是行业里的卖水者,在庞大的存量规模且存量市场不断增长下,卖水者的 业务将随之增长。轨交零部件在增量市场逐渐进入平稳期的市场环境下,依靠庞大的存量市场依然有更换需求。运 营维保业务随着运营线路里程数的增加而增加。(一)庞大轨交存量,寻找存量逻辑受益方向 1、车辆大修周期至,零部件市场潜力大 上一轮集中购置的车辆正逐步进入大修期。我国高铁动车组于 2008 年投入运营,第一轮采购高峰为十二五末的 2014-2015 年,按照中车公布的高级修检修表披露的检修时间,高峰期投入运营的车辆将在近两年步入检修。城轨地 铁的维修分为架修和大修,架修时间是 5-7 年或 60-80 万公里;大修翻倍,时间为 10-15 年或 120-140 万公里。我国 城市轨道交通在十二五期间实现了上台阶式的发展,车辆保有量迅速提升,十二五期间投入运营的车辆也在近两年 逐步步入架修。庞大的车辆保有量孕育广阔的零部件市场机会,随着车辆进入大修期,后市场空间将远大于新造需求。动车组和地 铁车辆的零部件大致可分为车身系统,电气系统,牵引系统,控制系统和转向系统。动车组和地铁车辆零部件的更 新周期都有所不同,基于我们对不同零部件更新周期的了解,多数动车组和地铁车辆零部件将在大修期进入维修替 换周期,叠加过去 10 年动车组和地铁车辆增量的规模效应,我们预计未来零部件维修替换市场将超越新增市场,零 部件供应公司,尤其是整合能力强的零部件供应公司将有望从中受益。增量释放叠加存量更新,未来两年,我国动车零部件年均市场空间超 370 亿元。基于我们对动车组零部件价格测算 和各个零部件维修替换周期的了解,以及对未来新增动车组的估计,可以推算出 2020-2021 年动车组主要零部件总 市场空间为 352.6 亿元和 403.3 亿元。未来两年,城轨零部件系统年均市场空间 180 亿元。城市轨交方面,基于对零部件价格、替换周期以及未来新增城 轨数量的估计,考虑新增和替换需求,我们预计 2020-2021 年城市轨交零部件系统市场空间将分别达到 163 亿元和 195 亿元。零部件供应认证周期长,招标门槛高:铁路及城轨系统对零部件的可靠性和性能要求高,需要经过严格的测试和试 运行才能获得资质认证,认证周期长,且铁总招标时会对部分关键零部件的供应商的过往供应业绩提出明确要求, 只有具备稳定可靠供应业绩的厂商方能获得招标资格。因此,已经通过认证并形成稳定供货能力的零部件企业能够 持续抢占增量市场,并且出于系统运行稳定性和安全性的考虑,车辆制造企业一般会与零部件厂商保持长期稳定的 合作关系,不会轻易更换,存量市场竞争格局相对稳定。国产替代稳步推进:2012 年以前处于技术保护期,基本被国外品牌垄断,2012 年以来开展中国标准动车组设计研制 工作,动车组相关核心零部件国产化进程加速。2、结合产业链发展,轨交运维市场步入扩张期 轨道交通行业产业链可以分为建筑施工、车辆制造、运营维修保养后市场三大环节。过去十年,是我国轨道交通行 业的大规模投资建设期,是建筑施工和车辆制造环节企业的黄金发展期,在相应领域均诞生了营收数千亿、市值超 千亿的大型企业:中国铁建、中国中车。展望未来,伴随着轨道交通运营线路里程的持续增长,我国运营维修保养 后市场料将步入黄金发展期。过去十年是我国轨道交通的大规模投资建设期,2000 年全国铁路基本建设投资总计仅为 517 亿元,而 2014 年以后 年投资总额均超过 8000 亿元,与 2000 年相比年投资额增长超过 15 倍。城市轨道交通方面,年投资额仍呈快速增长 态势,2018 年完成投资额超过 6000 亿元,同比增长接近 20%。大规模投资建设期呈现出的行业状态为工程施工市 场容量远大于车辆制造和运营维保。展望未来,铁路投资从 2014 年之后进入平稳期,预计未来将逐渐进入收缩期; 城市轨道交通仍处在投资建设高峰期,未来十年新建投资额仍能保持稳定增长,但十年之后随着建设的日益完善和 成熟,年新增投资额也将进入平稳期。随着投资建设的逐渐完成,运营维保线路将持续增长,运营维修保养后市场 有望成为轨道交通行业最具发展前景、空间最大的产业环节。(二)海外轨交产业变迁看轨交投资逻辑变化 1、从美日德看海外成熟铁路现状,已发展为存量市场 海外基建潮早于中国,成熟市场铁路总里程已不升反降。美国第一条铁路诞生于 1830 年,至今已走过了近 180 年的 发展历程。20 世纪 20 年代,美国完成了大规模铁路建设。1916 年,美国铁路总里程达到历史最高峰,约 41 万公里。 此后,铁路经营状况迅速恶化,大量线路被拆除和封闭,路网长度不断缩减,但迄今仍以约 22.1 万公里(13.7 万英 里)的线路里程遥居世界各国铁路路网规模首位。日本第一条铁路——京滨铁路(新桥—横滨)于 1872 年建成,目 前形成由 JRs 线路和其他轨道交通方式线路组成的网络。日本也是世界上第一个发展高速铁路的国家,1964 年世界 上第一条高速铁路——东海道新干线建成通车,在此后的 40 余年间,新干线线路不断发展。20 世纪初,德国铁路 网已基本形成。二战后,路网规模大为缩小。德国于 1971 年开建其第一条高速铁路线路(汉诺威-维尔茨堡),并 于 1991 年开通运营。2、海外轨交市场积极寻求合并,形成高度集中度的市场格局 从世界范围来看,轨交装备不论是整车还是零部件市场均呈现高度集中的态势。目前,行业内轨交整车巨头包括中 国中车、加拿大庞巴迪、法国阿尔斯通、德国西门子以及日本日立等,零部件巨头包括德国克诺尔和美国西屋制动。 纵观海外轨交巨头的发展史,并购整合是一大趋势,近期,法国阿尔斯通拟收购加拿大公司庞巴迪旗下轨交业务主 体,若收购顺利,将催生出一个铁路制造业巨头,其营业收入将仅次于中国中车。世界轨交整车巨头发展以及对中国的启示 (1)德国西门子:交运部门稳定发展,业绩位居世界前列 西门子交通(SIEMENS Mobility)是西门子旗下的交运业务子公司。作为 160 多年来运输解决方案领域的领导者,西门 子交通不断创新其在机车车辆、铁路自动化和电气化、智能交通系统以及相关服务等核心领域的产品组合。通过数 字化,西门子交通使全球的轨交运营商能够使基础设施智能化,在企业运营周期内可持续地创造收益,增强乘客体 验并保证可用性。截至 2019 年 9 月 30 日的 2019 财年,西门子交通实现收入 89 亿欧元,在全球拥有约 36800 名员 工。利用先进的技术优势,西门子的轨交业务不断走向海外市场。西门子 2019 年轨交业务显示,其整车业务和基础设施约占 50%,另外一半交运业务由车辆零部件、智能交通、服 务等其他业务组成。随着德国高铁里程逐渐走向稳定,德国轨交市场不再处于高速增长阶段,西门子交通现阶段业 务可以体现其整车业务比重不再是最主要的轨交业务。西门子交通积极发展其他轨交业务,在干线铁路方面,西门 子交通提供先进的信号系统、机车、高速列车关键零部件以及维修维护服务;在城市轨道交通方面,西门子交通成 功参与了北世界各地的轨交项目,包括国内的北京、上海、广州、深圳、南京等城市;在道路交通领域,西门子城 市交通控制系统、智能交通解决方案及停车管理系统已帮助众多国家主要城市提高道路交通效率。(2)法国阿尔斯通:剥离业务专注轨交,收购庞巴迪进行中 阿尔斯通公司(原名通用电气阿尔斯通)是为全球基础设施和工业市场提供部件、系统和服务的主要供应商之一, 也是全球轨交设备行业的领军企业。公司业务覆盖轨交设备各细分领域,包括轨交车辆、信号、系统和服务等,为 客户提供完整的轨道交通解决方案。纵观阿尔斯通的发展历史,公司从收购扩张到剥离转型,阿尔斯通开始专注轨 交业务。 阶段一:兼并扩张,覆盖业务广。 阿尔斯通诞生于公司合并,形成多样化业务。1826 年,阿尔萨斯机械工程公司(SACM)的成立,其主要业务为铁 路机车的建造。1928 年,阿尔萨斯机械工程公司与托马斯-休斯顿法国公司(CFTH)公司合并为阿尔斯通公司,现 阶段公司拥有轨交设备、锅炉印刷设备、压缩机等广泛的业务。轨交技术持续提升,拓展船舶制造业务。20 世纪 50 年代,公司的 CC7100 型机车以其优秀性能、高可靠性,以及在 1954 年、1955 年先后两次打破铁路车辆最高速度的世界纪录,成为法国在第二次世界大战之后最著名的电力机车车 型之一,其改进型更被出口至多个国家。1958 年,阿尔斯通进入中国市场,建立了中国第一条电气化铁路——宝成 铁路。1976 年,阿尔斯通与大西洋船厂合并为阿尔斯通——大西洋公司,增加船舶制造业务。轨交,电力逐渐发展为公司两大核心业务。1989 年,阿尔斯通开始积极扩张电力方面业务:收购了 ACEC 交通运输 部门;和 英国通用电气的电力业务合并成为通用电气阿尔斯通;收购了英国铁路车辆生产商都城嘉慕(Metro Cammell)。 1994-1997 年,阿尔斯通收购了德国铁路机车供应商 LHB,1998 年公司继续收购了法国电气工程承包公司西技莱克 (Cegelec)。 阶段二:剥离累赘业务,谋求转型。 阿尔斯通遇业务困境,面临亏损。2003 年,阿尔斯通发现自身的经营状况开始进入了恶性循环之中,此种状况可以 追溯到当时刚从ABB收购的燃气轮机存在严重设计缺陷,而后公司改进ABB燃气轮机的工作又陷入重大技术瓶颈, 不得不延迟产品制造,使公司订单大量被取消在商业和财务方面面临困境。2001 年,公司亏损 1.39 亿欧元,2002-2003 年,公司净亏损更是分别高达 14.32 亿欧元和 18.36 亿欧元。战略转型,剥离业务。从 2003 年-2015 年,阿尔斯通开始采取持续的业务剥离和转型举措。2003 年公司开始的战略 方向从之前的轨交和电力扩展为轨交和能源,2003-2005 年,公司收购数量相比以往大量降低,同时剥离了工业汽轮 机、输配电业务、电力转换业务等。与此同时,当时的阿尔斯通董事长柏珂龙宣布了连续两次增资的决定,让未来 的投资者对公司保持信心。 阶段三:专注轨交业务发展。 从 2015 年开始,阿尔斯通转型成为仅专注于轨交设备业务的轨交设备供应商,致力于成为轨交行业巨头。2016 年, 阿尔斯通积极谋求与西门子的合并,但好景不长,在 2019 年该合并案因涉嫌垄断被欧盟否决。2018 年,阿尔斯通 发公告称计划出售与美国通用电气公司在 2015 年成立的三家能源合资公司中持有的股份,将其所有股权全部转让给 通用电气,总金额达 25.94 亿欧元,这也标志着阿尔斯通将完全致力于轨交产业的发展。目前,阿尔斯通正计划现 金收购庞巴迪的轨交业务部分,该收购案正在进行中。阿尔斯通收购庞巴迪进行中,从海外轨交巨头看发展模式2020 年 2 月 17 日,阿尔斯通发布公司公告,称已与加拿大公司庞巴迪就收购其旗下轨交业务主体(Bombardier Transportation)的 100%股权事项签署了谅解备忘录,该收购若顺利进行完成,营业收入将排名世界第二,将形成又 一世界轨交行业巨头,与业务排名第一的中国中车形成抗衡局面。(3)海外整车巨头的发展对中国中车的启示 中国中车的主要业务与阿尔斯通和庞巴迪相似,为轨交车辆装备业务。此外中车自 2015 年开始积极贯彻新发展理念, 以战略性新兴产业尤其是高端装备制造业为主攻方向,依托轨道交通装备核心能力,大力发展新能源、新材料、生 态环保、工业互联网等相关多元业务,新产业成为公司新的业务方向。中国中车的服务业务比重不高,发展空间大。未来国内以中国中车为首的中国轨交企业应该重视轨交服务业发展, 根据中国国情,按照“做强实体经济”的要求,坚持“产融结合、以融促产”,加强统筹协调,突出风险防范,规 范打造金融服务平台、投融资平台和金融租赁平台,推进制造业与服务业融合发展,促进轨道交通核心业务快速发展。探索互联网+服务,加快供应链服务平台建设,发展智慧物流,拓展供应链贸易,推进现代物流服务业务规范发 展。中国中车轨交业务基本集中在中国大陆,海外空间广阔。阿尔斯通和庞巴迪的轨交业务将近一半分布在欧洲,此外 还有亚洲,美国等世界其他国家,而中国中车 90%的业务集中在中国大陆。背靠中国这个大市场,中国中车取得了 快速发展,但参考国际成熟轨交巨头经营模式可以看到,拓展海外市场将是未来大方向。分洲际看,亚洲和欧洲仍 是未来高速铁路的主要增量市场。根据世界铁路联盟 2017 年 4 月发布的《High Speed Lines In the World》报告,亚 洲、欧洲高速铁路远期规划里程分别达 1.51 万公里和 1.16 万公里,分别占全球高速铁路远期总规划里程的 44%和 33%,因此亚洲和欧洲将是未来高速铁路的主要增量市场;另外,非洲和北美洲高铁未来规划里程也分别达 2870 公 里和 2619 公里,尽管相对亚洲、欧洲市场规模较小,但仍不容忽视。阿尔斯通近几年业务情况显示,其整车业务占比开始下降,车辆配套系统业务逐渐上升。随着法国高铁里程逐渐走 向稳定,轨交市场增量逻辑已不适用,作为轨交巨头的庞巴迪近几年开始逐步缩减整车业务所占比重,积极拓展零 部件和车辆配套系统市场,在存量市场中寻找发展方向。世界轨交零部件巨头发展以及对中国的启示 (1)德国克诺尔:生于德国铁路黄金时代,制动系统起家,并购打造国际领先的轨交零部件企业 克诺尔集团(Knorr-Bremse),总部设在德国慕尼黑,是世界领先的轨道车辆和商用车辆制动系统的制造商。克诺 尔集团是技术发展方面的先驱,早在 114 年之前便对现代制动系统的研发、生产、销售和服务起到了显著地引导作 用。2018 年,集团的销售额为 66.16 亿欧元,全球雇员人数达 28,500 以上。 生于德国铁路黄金时代,以制动系统起家 1905 年,工程师乔治克诺尔在柏林创办了克诺尔制动系统有限公司。公司成立之时正值德国铁路快速发展的“黄金 时代”,1840 年-1917 年德国的铁路总里程数由 549 公里增长至 61159 公里,77 年内增长 110 倍,实现爆发式增长。成立之初,公司致力于货运列车现代制动装置的研发,并取得突破。1918 年,公司成功为货运列车开发了压缩空气 制动装置,并与普鲁士国家铁路公司签订供货协议,帮助公司取得了最初的商业成功。在这之后克诺尔继续在制动 系统领域积极研发,并逐渐发展成为欧洲轨道车辆领域内最大的制动器制造商。至 1955 年,已有 28 万台公司生产 的快速列车制动器在 17 个国家被广泛使用。 设立子公司+并购,打造国际领先的轨交零部件企业 1945 年,二战之后公司位于柏林的总工厂被充公并被拆卸,仅剩员工保留下来的少数设计图纸。1946 年,公司在 Volmarstein 重新设立工厂,并于 1953 年将总部迁至慕尼黑。1949 年,在马歇尔计划的援助下,德意志国家铁路公 司新造 18000 辆货车,并均配备了克诺尔公司的制动器,一举帮助克诺尔公司渡过难关,重新焕发生机。1960 年至 1980 年,公司的 KE 控制阀成为新的国际铁路联盟标准,并凭借用于轨道车辆的 AAR DB-60 阀进入美国市场。经过多元化和国际化的兼并收购,克诺尔集团的业务现已遍及世界各大洲—30 个国家的 100 多个地区。 过去 20 年收入利润稳步提升目前,克诺尔形成了轨道车辆系统业务部及商用车系统业务部两大业务:轨道车辆系统业务部和商用车系统业务部。轨道车辆系统业务部,是为用于城市交通的传统车辆,例如,地铁和电车,还包括货运列车、机车和客运列车及高 速列车配备了最先进的产品。除了制动系统之外,其还包括了智能登车系统、空调设备、电力供应系统、控制组件、 玻璃刮水器、月台屏蔽门、摩擦材料以及驾驶员辅助系统。此外,克诺尔还提供驾驶模拟装置和电子学习系统,旨 在为列车工作人员提供最好的培训。全球市场轨交制动系统克诺尔中市占率约为 50%。制动系统、门系统市占率第 一,HVAC(暖通系统)市占率第二。商用车系统业务部向客户提供卡车、客车、挂车和农用设备的制动系统,市占率稳居第一。在底盘系统业务领域, 克诺尔集团不仅仅在电子控制和辅助驾驶系统方面,同时还在供气系统方面处于领先地位。除制动系统外,其它产 品线包括传动线系统以及柴油发动机的扭转振动减振器。克诺尔收入保持稳定增长,远超行业。2012-2018 年年均复合增长率为 8%,远超行业的 2%的水平。由于受到金融 危机的冲击,2009 年克诺尔营业收入小幅下滑,2018 年实现总营收 66.16 亿欧元,其中轨道车辆系统实现营收 34.62 亿欧元,商用车辆系统实现营收 31.60 亿欧元。盈利能力较强,净利率总体保持上涨趋势。近年来克诺尔毛利率水平保持在 26%-28%之间,得益于公司在不断并购 后成功整合带来的规模效应,其盈利能力在过去二十年中也得到大幅提升,净利率由 2000 年前后的 3%上下提升至 如今的 10%上下。 2018 年上市成为德国近年来最大 IPO,市值超千亿 2018 年 10 月 12 日,克诺尔在德国法兰克福证券交易所上市,成为近年来德国最大的 IPO 项目,上市后短时间内市 值突破千亿人民币。(2)西屋制动:世界轨交装备行业奠基者,相继并购法维莱、GE 运输两巨头美国西屋制动公司(Wabtec)是北美最大的铁路产品和服务的供应商之一,具有 140 余年历史,目前在全球 50 多个 国家拥有 27000 余名员工。公司以空气制动机起家,现在为货运铁路、客运铁路和工业客户提供各类解决方案,是 铁路机车车辆的龙头供应商,在铁路摩擦制品、空调和受电弓方面全球领先。历史悠久,并购助推产品种类谱系化 西屋制动的历史可追溯至 1869 年,距今已近 150 年。1869 年乔治·威斯汀豪斯发明了世界上首个空气制动装置, 并创立西屋公司。成立以来,公司始终致力于在轨道交通装备领域的研发和创新,到如今公司已拥有 3000 多项有效 专利及规模达 1500 多人的工程师团队。2016 年,西屋制动以约 18 亿美元价格收购法国铁路设备生产商法维莱。法维莱约在 90 年前成立,收入约为 12 亿 美元。合并后的西屋法维莱成为世界最大铁路设备制造商之一,2018 年年度营收在 44 亿美元左右。2019 年,西屋法维莱与通用电气旗下的运输业务(GE Transportation)合并,交易价值 110 亿美元。合并后的公司 预计 2019 年收入将超过 80 亿美元。此次合并将西屋制动的铁路货运、铁路客运和电子产品与 GE 运输在机车、采 矿、船舶、固定式电力和钻井等行业一流的设备、服务和数字化解决方案结合起来,使得西屋制动成为一家财富 500 强公司,以及全球运输和物流领域的领导者。通过持续的兼并收购,西屋制动公司产品谱系全面,产品线包括机车、货车和客车车辆的零部件。其产品几乎可以 在所有的美国机车、货车、地铁车辆和公共汽车以及全球范围内的这些交通工具上找到。西屋制动在欧洲、美洲及 亚太地区 30 多个国家设有工厂及运营机构,产品销往逾 100 个国家,公司营业收入中 66%来自海外。 收入利润持续增长 2018 年,西屋制动总营收为 43.64 亿美元,1993-2018 年 CAGR 为 11.5%。业务结构中,西屋制动的特色产品和电子 产品占比较高,占总营收三分之一左右,近年来运输产品在营收中比重大幅提升。西屋制动毛利率一直保持较高水平 30%左右。整体来看,净利率一直保持在 8%左右。2015 年由于收购法维莱,导 致 2016 年管理费用同比增长 15.2%,利润率有所下降。(3)海外轨交零部件巨头的发展对中国市场的启示 从国际视角来看,轨交大国孕育大的零部件企业,且轨交零部件巨头有着相似的发展路径:起源于轨交大国,以制 动系统起家,并通过持续的并购实现公司轨交产品的全谱系化以及国际化,最终成为行业巨头。中国同为轨交大国, 有望诞生类似克诺尔、西屋这样的零部件巨头企业。四、产业链相关上市公司梳理和推荐标的(一)投资建议及产业链重点上市公司梳理 逆周期调节发力,重视低估值的轨交装备板块。2020 年是铁路客运装备、铁路货运装备、城轨装备、维修需求共同 向上的一年,维持轨交装备板块"推荐"的投资评级,重点推荐中国中车(整车龙头,低估值)、华铁股份(内生外 延打造动车组零部件平台型企业)、神州高铁(轨交运维装备龙头转型服务)、交控科技(城轨信号系统龙头,订 单饱满支撑业绩高增长)。(二)核心推荐标的 1、中国中车:轨交装备行业龙头,估值见底有望反弹2、华铁股份:动车领域弹性标的,轨交资源整合者3、神州高铁:全产业链系统装备提供商向运维转型4、交控科技:城轨领域弹性标的,CBTC 细分领域龙头,自主化先行者……(报告来源:华创证券)如需报告原文档请登录【未来智库】。

海马

中国半导体设备行业深度研究报告

概要:◆设备简介:技术高、进步快、种类多、价值大。半导体行业技术高、 进步快,一代产品需要一代工艺,而一代工艺需要一代设备。IC 制造设 备主要分为光刻机、刻蚀机、薄膜设备、扩散离子注入设备、湿法设备、 买入(首次) 过程检测等六大类,其中光刻机约占总体设备销售额的 18%,刻蚀机约占20%,薄膜设备约占 20%。 ◆市场规模:2020 全球预计超700亿美元,中国大陆约占 20%。SEMI 预计 2020 年半导体设备市场将增长 20.7%,达到719亿美元,创历史新 高。2017 年中国大陆市场需求规模约占全球的 15%左右,2020 年预计 占比将达到20%,约 170 亿美元。 ◆竞争格局:从总体到局部,市场集中度高。半导体设备市场集中度高,主要有美日荷厂商垄断。总体上看,半导体设备市场CR10超 60%,前 五名分别为应用材料、拉姆研究、东京电子、阿斯麦和科磊半导体;局部 上看,每一大类设备市场均呈现寡头竞争格局,前两名厂商占据一半以上 的市场份额。 ◆国产化情况:国产自给率低,技术加速追赶。根据中国电子专用设备 工业协会数据,预计 2018年国产泛半导体设备销售额约 109 亿元,但真 正的 IC 设备国内市场自给率仅有5%左右,国产替代空间巨大。在 02 专 项的统筹规划下,国内半导体厂商分工合作研发不同设备,涵盖了主要设 备种类。国内厂商仍处于技术追赶期,但随着摩尔定律趋近极限,技术进 步放缓,国内厂商与全球龙头技术差距正在逐渐缩短,我们认为未来 3-5 年将是半导体设备国产替代黄金战略机遇期。报告内容:1、概览篇:全球垄断,02专项顶层设计求突破1.1、设备简介:技术高、进步快、种类多、价值大 半导体行业技术高、进步快,一代产品需要一代工艺,而一代工艺需要一代 设备。半导体产业技术进步主要有两大方向:一是制程越小→晶体管越小→ 相同面积上的元件数越多→性能越高→产品越好;二是硅片直径越大→硅片 面积越大→单个晶圆上芯片数量越多→效率越高→成本越低。 半导体工艺流程主要包括单晶硅片制造、IC 设计、IC 制造和 IC 封测。单晶 硅片制造需要单晶炉等设备,IC 制造需要光刻机、刻蚀机、薄膜设备、扩散 离子注入设备、湿法设备、过程检测等六大类设备。半导体设备中,晶圆代 工厂设备采购额约占 80%,检测设备约占 8%,封装设备约占7%,硅片厂 设备等其他约占 5%。一般情况下,不同的晶圆尺寸和制程的 IC 制造产线所需的设备数量不同。 以每 1 万片/月产能计算,12 寸产线所需的设备数量要比 8 寸产线多,12 寸 先进制程产线所需的设备数量要比 12 寸成熟制程产线设备多。 半导体设备属于高端制造装备,其价值量较高。比如高端 EUV 光刻机单价 甚至超过 1 亿美金。总体上看,IC 制造设备市场中刻蚀机、光刻机、薄膜设 备的价值量占比较高。 1.2、市场规模:2020 全球预计超 700 亿美元,中国大陆占比超 20% 2020年全球半导体设备市场规模预计超 700 亿美元。根据 2018 年 12 月 12 日 SEMI 在 SEMICON Japan 2018 展览会上发布年终预测报告显示,2018 年新的半导体制造设备的全球销售额预计将增加 9.7%达到 621 亿美元,超 过 2017年创下的 566 亿美元的历史新高。预计 2019 年设备市场将收缩4.0%至 596 亿美元,但 2020 年将增长20.7%,达到 719 亿美元,创历史新高。2020 年中国大陆市场规模占比超 20%,约170亿美元。根据 SEMI 数据, 2017 年中国大陆半导体设备销售额82.3亿美元,同比增长 27%,约占全球 的 15%,预计 2020 年占比将超过 20%,约 170 亿美元。 1.3、竞争格局:从总体到局部,市场集中度高 半导体设备市场集中度高,CR10 超 60%。全球半导体设备生产企业主要集 中于欧美、日本、韩国和我国台湾地区等,以美国应用材料、荷兰阿斯麦、 美国泛林集团、日本东京电子、美国科天等为代表的国际知名企业起步较早, 经过多年发展,凭借资金、技术、客户资源、品牌等方面的优势,占据了全 球集成电路装备市场的主要份额。 1.4、国产化情况:国产设备自给率低,技术加速追赶 国产设备自给率低,进口替代空间大。供给端看,根据中国电子专用设备工 业协会对国内 42 家主要半导体设备制造商的统计,2017 年国产半导体设备 销售额为 89 亿元,自给率约为 14.3%。中国电子专用设备工业协会统计的 数据包括 LED、显示、光伏等设备,我们认为实际上国内集成电路 IC 设备 国内市场自给率仅有 5%左右,在全球市场仅占1-2%。 02 专项顶层设计,技术加速追赶。2002 年之前,我国集成电路设备基本全 进口,中国只有 3 家集成电路设备厂商,由北方微电子、北京中科信和上海 微电子分别承接国家“863”计划中的刻蚀机、离子注入机和光刻机项目。2006年,《国家中长期科学和技术发展规划纲要(2006-2020 年)》设立 国家科技重大专项——极大规模集成电路制造装备及成套工艺科技项目(简 称 02 专项)研发国产化设备,并于 2008 年开始实施。2008 年之前我国12英寸国产设备为空白,只有 2 种 8 英寸设备。 在 02 专项的统筹规划下,国内半导体厂商分工合作研发不同设备,涵盖了 主要设备种类。目前已有 20 种芯片制造关键装备、17 种先进封装设备,通 过大生产线验证进入海内外销售。 国内 IC 制造设备工艺覆盖率仍比较低,国产厂商技术加速追赶。国产全部 IC 设备在逻辑 IC 产线上 65/55nm 工艺覆盖率才31%,40nm 工艺覆盖率仅17%,28nm 工艺覆盖率仅16%;在存储芯片产线上的工艺覆盖率大概约为15-25%。随着摩尔定律放缓,国产厂商技术加速追赶。以北方华创刻蚀机 为例,2007 年研发出 8 寸 100nm 设备,比国际大厂晚 8 年;2011 年研发 出 12 寸 65nm 设备,比国际大厂晚6年;2013 年研发出 12 寸 28nm 设备, 比国际大厂晚 3~4 年;2016 年研发 12 寸 14nm 设备,比国际大厂晚2~3年。 2、设备篇:大国重器,均呈现寡头竞争格局2.1、硅片制造设备2.1.1、硅片制造难度大,设备种类多硅片是半导体、光伏电池生产的主要原材料,90%以上的集成电路都是制作 在高纯、优质的硅片上的。(1)半导体硅片的制造难度大于光伏硅片。半 导体硅片纯度要求达到 99.99999999999%,即 11 个 9 以上,而普通太阳能 级多晶硅材料纯度通常在 5-8 个 9 左右。(2)硅片直径越大制造难度越大。 硅片制备工艺流程包括:单晶生长→截断→外径滚磨(定位槽或参考面处理) →切片→倒角→表面磨削→(刻蚀)→边缘抛光→双面抛光→单面抛光→最终 清洗→(外延/退火)→包装等。硅片直径的增大可降低单个芯片的制造成本,目前 300mm 硅片已成为业内主流,2017 年全球12寸出货面积约占硅片总体的 66.1%。 硅片制造过程中涉及到单晶炉、滚磨机、切片机、倒角机、研磨设备、CMP 抛光设备、清洗设备、检测设备等多种生产设备。其中单晶炉、抛光机、测 试设备是主要设备,分别约占硅片厂设备投资的25%、25%、20%。日本在 硅片制备设备产业中占有相对优势,其产品覆盖了硅片制造的全套设备。 单晶生长分为直拉(CZ)法和区熔(FZ)法。目前 90%以上硅片采用直拉 法(CZ)生产,区熔法(FZ)制备的硅片主要用于功率半导体、光敏二极 管、红外探测器等领域。 2.1.2、硅片国产化推动硅片制造设备国产化过去:受市场需求不足的影响,产业化推进较为缓慢。我国的硅片制备设备 经过了 30多年的发展,已可提供直径 200mm 以下的硅片制备设备,但受 市场需求量较少和国外二手设备的冲击,国产设备发展的门类并不齐全。在 300mm 硅片制备设备的发展上,国内研发了单晶炉、多线切割机等几种关 键设备,也通过了 300mm 硅片生产试验线的验证。但与国外设备相比,受 市场需求不足的影响,产业化推进较为缓慢,同时也影响了设备技术的进步。现在:政策需求双轮驱动,大硅片国产化指日可待。根据IC Insights 2017 数据,2017 年全球硅片需求 1160 万片(等效 8 寸),国内需求 110 万片。 预计2020年国内对 12 寸大硅片需求从 42 万片增加到 105 万片;2020 年 对 8 寸硅片需求从 70 万片增加到 96.5 万片。受政策鼓励与市场需求的双重 驱动,多家企业正在中国积极布局半导体大硅片项目。国内规划中的 12 寸 大硅片合计:145 万片,覆盖国内需求。国内规划中的 8 寸大硅片合计:168 万片,总投资规模超过 500 亿元,覆盖国内需求。硅片设备产业化推进加快,国产厂商迎来发展良机。单晶炉方面,晶盛机电 承担的 02 专项“300mm 硅单晶直拉生长设备的开发”、“8 英寸区熔硅单 晶炉国产设备研制”两大项目均已通过专家组验收,8 寸直拉单晶炉和区熔 单晶炉均已实现产业化,客户包括有研半导体、环欧半导体、金瑞泓等;12 寸直拉单晶炉产业化推进中,未来有望为国内大硅片项目供货。南京晶能 12 寸直拉单晶炉已进入新昇半导体大硅片产线。 2.2、晶圆制造设备——光刻机2.2.1、光刻机发展历史在集成电路制造工艺中,光刻是决定集成电路集成度的核心工序,该工序的 作用是将电路图形信息从掩模版上保真传输、转印到半导体材料衬底上。光 刻工艺的基本原理是,利用涂敷在衬底表面的光刻胶的光化学反应作用,记 录掩模版上的电路图形,从而实现将集成电路图形从设计转印到衬底的目的。 光刻机分为无掩模光刻机和有掩模光刻机两大类。无掩模光刻机又称直写光 刻机,按照所采用的辐射源的不同可分为电子束直写光刻机、离子束直写光 刻机、激光直写光刻机,分别用于不同的特定应用领域。例如,电子束直写 光刻机主要用于高分辨率掩模版、集成电路原型验证芯片的制造,以及特种 器件的小批量制造;激光直写光刻机主要用于特定的小批量芯片的制造。 有掩模光刻机又分为接触/接近式光刻机和投影式光刻机。接触式光刻出现于20世纪 60 年代,是小规模集成电路(SSI)时代的主要光刻手段,主要用 于生产制程在 5μm 以上的集成电路。接近式光刻机于20世纪 70 年代在小 规模集成电路与中规模集成电路(MSI)时代早期被广泛应用,主要用于生 产制程在 3μm 以上的集成电路。目前接触接近式光刻机的国外生产商主要 有德国的苏斯公司、奥地利 EVG 公司,国内生产商主要有中电科 45 所、中 科院光电技术研究所等。 投影光刻机自 20 世纪 70 年代中后期开始替代接触接近式光刻机,是先进 集成电路大批量制造中的唯一光刻形式。早期的投影光刻机的掩模版与衬底 图形尺寸比例为 1:1,通过扫描方式完成整个衬底的曝光过程。随着集成电 路特征尺寸的不断缩小和衬底尺寸的增大,缩小倍率的步进重复光刻机问世, 替代了图形比例为 1:1的扫描光刻方式。当集成电路图形特征尺寸小于 0.25μm 时,由于集成电路集成度的进一步提高,芯片面积更大,要求一次 曝光的面积增大,促使更为先进的步进扫描光刻机问世。通过配置不同的曝 光光源,步进扫描技术可支撑不同的工艺技术节点,从 KrF248mm、ArF193mm、ArF193mm 浸没式,直至EUV光刻。在 0.18μm 工艺节点后, 高端光刻机厂商基本采用步进扫描技术,并一直沿用至今。 投影光刻机的基本分辨率 R=K1*λ/NA,其中 K1 为工艺因子,根据衍射成像 原理,其理论极限值是 0.25;NA 为光刻机成像物镜的数值孔径;λ 为所使 用的光源的波长。提高投影光刻机分辨率的理论和工程途径是增大数值孔径NA,缩减波长 λ,减小 K1。 采用 ArF 干法曝光方式最大支持65nm成像分辨率,45nm 以下及更高成像 分辨率无法满足,故而需要引入浸没式光刻方法。浸没式光刻方法通过将镜 头像方下表面与圆片上表面之间充满液体(通常是折射率为 1.44 的超纯水), 从而提升了成像系统的有效数值孔径(NA=1.35)。采用 ArF 浸没式光刻技术, 考虑光刻物理极限的限制和设备的实际工作能力,其最小分辨率可实现 38nm。为了实现更小的工艺线宽(CD)要求,目前通过采用多重图形技术 (Multi-pattern Technology)可以支撑至 7nm 节点工艺。 为了提高光刻分辨率,在采用准分子光源后进一步缩短曝光波长,引入波长 10~14mm 的极紫外光 EUV 作为曝光光源。EUV 光刻机研发难度及费用极 大,英特尔、三星和台积电都曾对光刻机龙头 ASML 投资,以支持 EUV 光 刻设备研发,并希望取得EUV设备的优先权。ASML 从事 EUV 光刻机的研 制已是第 12个年头了,甚于“十年磨一剑”。2017 年,姗姗来迟的 EUV 光刻机终于进入了量产阶段。 2.2.2、光刻机竞争格局步进扫描投影光刻机的主要生产厂商包括 ASML(荷兰)、尼康(日本)、佳能(日 本)和 SMEE (中国)。ASML 于 2001 年推出了TWINSCAN系列步进扫描光 刻机,采用双工件台系统架构,可以有效提高设备产出率,已成为应用最为 广泛的高端光刻机。ASML在光刻机领域一骑绝尘,一家独占全球 70%以上 的市场份额。国内厂商上海微电子 (SMEE)研制的 90nm 高端步进扫描投影 光刻机已完成整机集成测试,并在客户生产线上进行了工艺试验。 2.3、晶圆制造设备——刻蚀机2.3.1、刻蚀原理及分类刻蚀是使用化学或者物理方法有选择地从硅片表面去除不需要材料的过程。 通常的晶圆加工流程中,刻蚀工艺位于光刻工艺之后,有图形的光刻胶层在 刻蚀中不会受到腐蚀源的显著侵蚀,从而完成图形转移的工艺步骤。 刻蚀分为湿法刻蚀和干法刻蚀两种。早期普遍采用的是湿法刻蚀,但由于其 在线宽控制及刻蚀方向性等多方面的局限,3μm 之后的工艺大多采用干法刻 蚀,湿法刻蚀仅用于某些特殊材料层的去除和残留物的清洗。 干法刻蚀也称等离子刻蚀。干法刻蚀是指使用气态的化学刻蚀剂(Etchant) 与圆片上的材料发生反应,以刻蚀掉需去除的部分材料并形成可挥发性的反 应生成物,然后将其抽离反应腔的过程。刻蚀剂通常直接或间接地产生于刻 蚀气体的等离子体,所以干法刻蚀也称等离子体刻蚀。 等离子体刻蚀机可以根据等离子体产生和控制技术的不同而大致分为两大 类,即电容耦合等离子体(capacitively coupled plasma,CCP)刻蚀机和 电感耦合等离子体(Inctively coupled plasma,ICP)刻蚀机。在集成电 路生产线上,等离子体刻蚀设备通常按照被刻蚀材料的种类分为硅刻蚀设备、 金属刻蚀设备和电介质刻蚀设备三大类。 CCP 刻蚀机主要用于电介质材料的刻蚀工艺,如逻辑芯片工艺前段的栅侧墙 和硬掩模刻蚀,中段的接触孔刻蚀,后段的镶嵌式和铝垫刻蚀等,以及在 3D 闪存芯片工艺(以氮化硅/氧化硅结构为例)中的深槽、深孔和连线接触孔的刻 蚀等。 ICP 刻蚀机主要用于硅刻蚀和金属刻蚀,包括对硅浅沟槽(STI)、锗(Ge)、多 晶硅栅结构、金属栅结构、应变硅(Strained-Si)、金属导线、金属焊垫(Pad)、 镶嵌式刻蚀金属硬掩模和多重成像(Multiple Patteming)技术中的多道工序的 刻蚀等。另外,随着三维集成电路(3D IC)、CMOS 图像传感器(CIS)和微机 电系统(MEMS)的兴起,以及硅通孔(TSV)、大尺寸斜孔槽和不同形貌的深 硅刻蚀应用的快速增加,多个厂商推出了专为这些应用而开发的刻蚀设备。 随着工艺要求的专门化、精细化,刻蚀设备的多样化,以及新型材料的应用, 上述分类方法已变得越来越模糊。除了集成电路制造领域,等离子体刻蚀还 被广泛用于 LED、MEMS 及光通信等领域。2.3.2、刻蚀机行业发展趋势及竞争格局随着芯片集成度的不断提高,生产工艺越来越复杂,刻蚀在整个生产流程中 的比重也呈上升趋势。因此,刻蚀机支出在生产线设备总支出中的比重也在 增加。而刻蚀机按刻蚀材料细分后的增长速度,则根据工艺技术的发展阶段 不同呈现此消彼长的状况。例如,当 0.13μm 工艺的铜互连技术出现时,金 属刻蚀设备的占比大幅下降,而介质刻蚀设备的占比大幅上升;30nm 之后 的工艺中出现的多重图像技术及越来越多的软刻蚀应用,则使得硅刻蚀设备 的占比快速增加。 国际巨头泛林集团、东京电子、应用材料均实现了硅刻蚀、介质刻蚀、金属 刻蚀的全覆盖,占据了全球干法刻蚀机市场的80%以上份额。国内厂商中微 半导体在介质刻蚀领域较强,其产品已在包括台积电、海力士、中芯国际等芯片生产商的 20 多条生产线上实现了量产;5nm 等离子体蚀刻机已成功通 过台积电验证,将用于全球首条 5nm 工艺生产线;同时已切入 TSV 硅通孔 刻蚀和金属硬掩膜刻蚀领域。北方华创在硅刻蚀和金属刻蚀领域较强,其 55/65nm 硅刻蚀机已成为中芯国际 Baseline 机台,28nm硅刻蚀机进入产业 化阶段,14nm 硅刻蚀机正在产线验证中,金属硬掩膜刻蚀机攻破 28-14nm 制程。 2.4、晶圆制造设备——薄膜生长设备2.4.1、薄膜生长设备分类 采用物理或化学方法是物质(原材料)附着于衬底材料表面的过程即为薄膜 生长。薄膜生长广泛用于集成电路、先进封装、发光二极管、MEMS、功率 器件、平板显示等领域。 根据工作原理的不同,集成电路薄膜沉积可分为物理气相沉积(PVD)、化学气相沉积(CVD)和外延三大类。2.4.2、薄膜生长设备竞争格局PVD领域,AMAT 一家独大,约占全球市场份额的 80%以上;CVD 领域, AMAT、LAM、TEL 三家约占全球市场份额的70%以上。国内设备厂商中北 方华创薄膜设备产品种类最多,目前其 28nm 硬掩膜 PVD 已实现销售,铜 互连 PVD、14nm 硬掩膜 PVD、Al PVD、LPCVD、ALD 设备已进入产线验 证。中微半导体的 MOCVD在国内已实现国产替代。沈阳拓荆的 65nm PECVD 已实现销售。 2.5、晶圆制造设备——扩散及离子注入设备在集成电路制造过程中,掺杂主要有扩散和离子注入两种工艺,扩散属于高温工艺,而离子注入工艺属于低温工艺。扩散工艺是向硅材料中引人杂质的一种传统方法,控制圆片衬底中主要载流 子的类型、浓度和分布区域,进而控制衬底的导电性和导电类型。扩散工艺 设备简单,扩散速率快,掺杂浓度高,但扩散温度高,扩散浓度分布控制困 难,难以实现选择性扩散。离子注入工艺是指使具有一定能量的带电粒子(离子)高速轰击硅衬底并将其 注入硅衬底的过程。离子注入能够在较低的温度下,可选择的杂质种类多, 掺杂剂量控制准确,可以向浅表层引人杂质,但设备昂贵,大剂量掺杂耗时 较长,存在隧道效应和注人损伤。 2.5.1、扩散炉分类及竞争格局扩散炉广泛用于分立器件、电力电子、光电器件和光导纤维等行业的扩散、 氧化、退火、合金等工艺中,因此按照功能不同,有时也称扩散炉为退火炉、 氧化炉。扩散炉主要分为卧式扩散炉和立式扩散炉。 卧式扩散炉是一种在圆片直径小于 200mm 的集成电路扩散工艺中大量使用 的热处理设备,其特点是加热炉体、反应管及承载圆片的石英舟(Quartz Boat) 均呈水平放置,因而具有片间均匀性好的工艺特点。 2.5.2、离子注入机分类及竞争格局离子注入机是集成电路装备中较为复杂的设备之,根据注入离子的能量和剂 量的不同,离子注入机大体分为低能大束流离子注入机、中束流离子注入机 和高能离子注入机 3种类型。其中,低能大束流离子注入机是目前占有率最 高的注入机,适用于大剂量及浅结注入,如源漏极扩展区注入、源漏极注入、 栅极掺杂以及预非晶化注入等多种工艺。中束流离子注入机可应用于半导体 制造中的沟道、阱和源漏极等多种工艺。高能离子注入机在逻辑、存储、成 像器件、功率器件等领域应用广泛。2.6、晶圆制造设备——湿法设备湿法工艺是指在集成电路制造过程中需要使用化学药液的工艺,主要有湿法清洗、化学机械抛光和电镀三大类。2.6.1、湿法清洗机湿法清洗是指针对不同的工艺需求,采用特定的化学药液和去离子水,对圆 片表面进行无损伤清洗,以去除集成电路制造过程中的颗粒、自然氧化层、 有机物、金属污染、牺牲层、抛光残留物等物质。 清洗机主要分为槽式清洗机和单圆片清洗机。槽式清洗技术是由美国无线电 公司(RCA)于 1970 年提出的,它是通过多个化学槽体、去离子水槽体和干 燥槽体的配合使用,完成圆片清洗工艺。 随着 28nm 及更先进工艺的湿法清洗对圆片表面小颗粒的数量及刻蚀均匀性 的要求越来越高,同时必须达到图形无损干燥。而槽式圆片清洗机的槽体内 部化学药液的差异性、干燥方式,以及与圆片接触点过多,导致无法满足这 些工艺需求,现已逐渐被单圆片清洗机取代,目前槽式圆片清洗机在整个清 洗流程中约占 20%的步骤。 槽式圆片清洗机主要厂商有日本的迪恩士(SCREEN)、东京电子(Tokyo Electron)和 JET,三家约占全球 75%以上的市场份额。韩国的SEMES和 KCTECH 主要供给韩国市场。 单圆片清洗设机主要厂商有日本的迪恩士、东京电子和美国泛林集团提供, 三家约占全球 70%以上的市场份额。在国内的单圆片湿法设备厂商中,盛美 半导体独家开发的空间交变相位移(SAPS)兆声波清洗设备和时序气穴振荡 控制(TEBO)兆声波清洗设备已经成功进入韩国及中国的集成电路生产线并 用于大规模生产。北方华创的清洗机也成功进入中芯国际生产线。2.6.2、化学机械抛光设备化学机械抛光(CMP)是指圆片表面材料与研磨液发生化学反应时,在研磨 头下压力的作用下进行抛光,使圆片表面平坦化的过程。圆片表面材料包括 多晶硅、二氧化硅、金属钨、金属铜等,与之相对应的是不同种类的研磨液。 化学机械抛光能够将整个圆片高低起伏的表面研磨成一致的厚度,是一种圆 片全局性的平坦化工艺。CMP工艺在芯片制造中的应用包括浅沟槽隔离平坦化(STI CMP)、多晶硅平 坦化(Poly CMP)、层间介质平坦化(ILD CMP)、金属间介质平坦化(IMDCMP)、 铜互连平坦化(Cu CMP)。 CMP设备主要分为两部分,即抛光部分和清洗部分。抛光部分由 4 部分组 成,即 3 个抛光转盘和一个圆片装卸载模块。清洗部分负责圆片的清洗和甩 干,实现圆片的“干进干出”。 CMP设备主要生产商有美国 AMAT 和日本 Ebara,其中 AMAT 约占 CMP 设备市场 60%的份额,Ebara 约占 20%的份额。国内 CMP 设备的主要研发 单位有天津华海清科和中电科 45所,其中华海清科的抛光机已在中芯国际 生产线上试用。 2.6.3、电镀设备电镀是指在集成电路制造过程中,用于加工芯片之间互连金属线所采用的电 化学金属沉积。随着集成电路制造工艺的不断发展,目前电镀已经不限于铜 线的沉积,还涉及锡、锡银合金、镍等金属的沉+积,但金属铜的沉积仍是 其中最主要的部分。 2.7、晶圆制造设备——工艺检测设备 工艺检测设备是应用于工艺过程中的测量类设备和缺陷(含颗粒)检查类设备 的统称。集成电路芯片制造工艺流程中在线使用的工艺检测设备种类繁多, 应用于前段芯片制造工艺的主要检测设备分为:圆片表面的颗粒和残留异物 检查;薄膜材料的厚度和物理常数的测量;圆片在制造过程中关键尺寸(CD) 和形貌结构的参数测量;套刻对准的偏差测量。 随着芯片结构的不断细微化和工艺的不断复杂化,工艺检测设备在先进的前 段生产线中起着越来越重要的作用。目前工艺检测设备投资占整个前端工艺 设备总投资的 10%~15%。 工艺检测设备的供应商主要有科磊半导体、应用材料、日立高新等,国内厂 商主要有上海睿励科学仪器和深圳中科飞测科技。2.8、封装测试设备根据 SEMI 数据,2017 年全球封装测试设备市场高速增长 27.89%,销售额达 到 83.1 亿美元。2017 年中国大陆半导体封装测试设备与封装模具市场增长了 18.6%,达到 206.1 亿元,约为30.53亿美元(按统计局 2017 年度平均汇率计 笲:1 美元=6.75 元),其中封装设备市场 14 亿美元,测试设备与封装模具市 场为 16.53亿美元。2017 年国内半导体设备市场规模为 82.3 亿美元,封装测 试设备占比超过 1/3,达到 37.1%。 2.9、启示:各类产品均呈现寡头竞争格局 通过上文对全球设备龙头的梳理,我们发现:每大类设备市场中,最终都形 成了寡头竞争的格局,前三名厂商占据了绝大部分的市场份额,呈现强者恒 强大者恒大的特点。 3、龙头篇:他山之石,研发+并购铸就龙头(简略,详见原文档)3.1、ASML:光刻机龙头,一骑绝尘 3.1.1、核心产品:光刻机 ASML是全球光刻机绝对龙头。1984 年,ASML 由飞利浦与先进半导体材料 国际(ASMI)合资成立,总部位于荷兰;1995 年在阿姆斯特丹和纳斯达克 交易所上市;2012 年开展客户联合投资创新项目,三星、英特尔和台积电 共同向 ASML 注资加速开发 EUV;2017年公司 EUV 光刻机量产出货。 3.2、AMAT:五项第一,近乎全能3.2.1、核心产品:PVD+CVD+刻蚀+离子注入+湿法+检测 AMAT(应用材料)是全球薄膜生长设备龙头。AMAT 创建于 1967 年,1972 年 10 月 1 日在美国纳斯达克上市,1992 年成为全球最大的半导体设备制造 商,并蝉联这一头衔至今。AMAT 通过数次并购活动,不断扩充产品线,基 本涵盖了半导体前道制造的主要设备,包括原子层沉积 ALD、物理气相沉积 PVD、化学气相沉积CVD、刻蚀 ETCH、离子注入、快速热处理RTP、化 学机械抛光 CMP、电镀、测量和圆片检测设备等。3.3、Lam Research:刻蚀机龙头,CVD 第三3.3.1、核心产品:刻蚀+CVD Lam Research(泛林集团、科林研发、拉姆研究)是全球刻蚀设备龙头, 成立于 1980 年,总部位于美国加利福尼亚州,1984 年 5 月在纳斯达克上市。1997年 3 月,2.25 亿美元收购了CMP设备制造商 OnTrak Systems Inc。 2006 年,收购了Bullen Semiconctor。2008 年,收购了 SEZ AG。2012 年,以 33 亿美元收购了Novellus Systems。 3.4、TEL:四项第二,涂布/显影第一 3.4.1、核心产品:刻蚀机+CVD+涂布/显影+扩散炉+清洗 TEL(东京电子)于 1963 年在日本东京成立;1968 年,与 Thermco Procts Corp 合作开始生产半导体设备;1980 年,在东京证券交易所上市;1983 年,与美国公司拉姆研究合作,引进当时一流的美国技术,在日本本土开始 生产刻蚀机。目前公司主要产品包括半导体设备和平板显示设备,半导体设 备又包括刻蚀机、CVD、涂布/显影机和清洗机等。2017 年 TEL 的涂布/显 影机销售额约占全球 87%的市场份额,全球第一;刻蚀机约占全球 26%的 市场份额,全球第二;CVD 约占全球 20%的市场份额,全球第二;氧化扩散炉约占全球 20%的市场份额,全球第二;清洗机约占全球 20%的市场份 额,全球第二。 3.5、KLA-Tencor:过程检测设备龙头 3.5.1、核心产品:过程检测设备 KLA-Tencor(科磊半导体、科天半导体)是全球过程检测设备龙头,1976 年成立于美国加州硅谷。1997 年收购 Tencor,原 KLA 专注于缺陷检测解决 方案,而 Tencor 则致力于量测解决方案。合并后的 KLA-Tencor 凭借其良 好的现金流大肆进行收购,扩充 KLA-Tencor 的产品组合,不断强化公司的 竞争优势。目前,公司在检测与量测领域拥有 70%以上的市场占有率,全球 第一。 3.6、SCREEN:湿法设备龙头3.6.1、核心产品:清洗机 SCREEN(迪恩士、斯库林、网屏)是全球清洗机龙头,成立于 1943 年, 总部位于日本。公司产品主要包括半导体设备、显示设备、PCB 设备等。半 导体设备产品主要有清洗机、蚀刻、显影/涂布等,其中清洗机约占全球50%以上的市场份额,全球第一。2017 年,单晶圆清洗机销售额占全球 39%市 场份额,全球第一;分批式清洗机约占全球 49%的市场份额,全球第一;spin scrubber 清洗机约占全球 69%的市场份额,全球第一。 3.7、ASMPT:封装设备龙头3.7.1、核心产品:封装设备+SMT 设备 ASMPT(ASM 太平洋科技、先域)是全球最大的封装和 SMT 设备供应商, 总部位于新加坡,于 1975年在香港从代理模塑料及封装模具起家,并于 1989 年在香港上市。公司主要产品包括封装设备、SMT 设备和封装材料,其中封 装设备约占全球 25%的市场份额,全球第一;SMT 设备约占全球 22%的市 场份额,全球第一;封装材料约占全球 8.8%的市场份额,全球第三。3.8、Teradyne:测试设备龙头 3.8.1、核心产品:自动测试机(ATE) Teradyne(泰瑞达)是全球测试机龙头,创立于 1960 年,总部位于美国马 萨诸塞州。1970,在纽交所上市;2001 年,收购 GenRad 电路板测试业务。2008,收购 Eagle Test,闪存测试市场;收购 Nextest Systems,加强公 司模拟测试业务;2011,收购 LitePoint;2015,收购 Danish company Universal Robots。2019 年 1 月,宣布收购大功率半导体测试设备供应商Lemsys。公司主要产品包括自动测试机和工业机器人。自动测试机约占全 球 45%的市场份额,全球第一。 3.9、启示:研发+并购,成就龙头之道通过上文对全球设备龙头的梳理,我们发现:每个龙头在成长过程中都进行 了多次的并购,通过并购扩充产品线、加强协同作用,提高市场占有率。此 外,半导体设备是一个高科技行业,研发能力以及研发投入在公司成长过程 中起到决定性的作用。 4、国产篇:自主可控,国产设备厂商梳理4.1、北方华创:国内硅刻蚀机、PVD龙头,产品丰富加速成长 4.1.1、北京电控集团旗下两家公司强强合并北方华创是由七星电子和北方微电子战略重组而成,重组前七星电子和北方 微电子同隶属于北京电控,而北京电控由北京市电子工业办公室转制而来, 是北京市国资委授权的以电子信息产业为主业的国有特大型高科技产业集 团。目前,北京电控旗下拥有京东方、北方华创和电子城 3 家上市公司。 七星电子和北方微电子同属半导体前道制造工艺流程的设备制造厂商,两家 公司在生产研发、供应链管理、软件平台建设、客户维护等诸多方面具有共 通性。通过整合业务,公司有效的提高了资源的使用效率,提升了整体服务 能力,提高了公司市场竞争力。2017 年,公司形成了半导体装备、真空装 备、新能源锂电装备、精密元器件四大业务群。 4.2、至纯科技:国内高纯工艺龙头,半导体清洗设备值 得期待 至纯科技是国内高纯工艺龙头,于 2000 年在上海成立。2005 年以前,公司 主要以工程分包为主,客户较为分散。2005 年至 2008 年,公司在高纯度 工艺系统方面有了一定优势,主要客户是一些医药和光伏公司。2008 年至 2011 年,公司加大研发的投入,将公司的核心技术与工艺提升至优秀水平。2011年至今,公司形成了多元化的客户结构,并大力发展半导体业务。2017 年 8 月,公司收购珐成制药59.13%的股权,增强了公司医药设备制造能力。 2018 年 3 月,公司收购了上海波汇100%的股权,拓展了光传感系统和光 电元气件的相关相关业务,有利于公司的发展,提高了公司产品竞争力。 4.3、精测电子:国内面板测试设备龙头,向 IC 检测设备 延伸 精测电子是检测设备领域的龙头企业,成立于 2006 年 4 月,总部位于武汉。 公司于 2016年在深交所 IPO 上市。公司主营业务集中于检测设备这一细分 领域,是显示屏领域的稀缺标的。公司主营产品包括模组检测系统、面板检 测系统、OLED检测系统、AOI 光学检测系统、Touch Panel 检测系统和平 板显示自动化设备。 4.4、长川科技:国内测试设备龙头,内生外延成长可期4.5、晶盛机电:国内单晶炉龙头,受益硅片国产化 公司是国内领先的专业从事晶体生长、加工装备研发制造和蓝宝石材料生产 的高新技术企业。主营产品为全自动单晶生长炉、多晶硅铸锭炉、区熔硅单 晶炉、单晶硅滚圆机、单晶硅截断机、全自动硅片抛光机、双面研磨机、单 晶硅棒切磨复合加工一体机、多晶硅块研磨一体机、叠片机、蓝宝石晶锭、 蓝宝石晶片、LED 灯具自动化生产线等。公司产品主要应用于太阳能光伏、 集成电路、LED、工业 4.0 等领域。 4.4.1、2018 前三季度营收高增长,研发投入增加导致净利率下降 公司成立于 2008 年 4 月,2012 年承担了 2 项国家科技重大专项的研究开发工 作。公司于 2017年 4 月 17 日在深交所创业板挂牌上市,成为国内集成电路封 测设备行业首家上市公司。公司主要为集成电路封装测试企业、晶圆制造企业、 芯片设计企业等提供测试设备,目前公司主要产品包括测试机和分选机。 公司 2018Q1-Q3 实现营收 1.72亿元,同比增长 73.86%;归母净利润3223万元,同比增长 27.32%。公司发布 2018 年业绩快报,公司实现营业收入21,612.15万元,同比增长 20.20%;营业利润3,425.43万元,同比下降 36.40%;归属于上市公司股东的净利润3,653.93万元,同比下降 27.29%。 4.6、中微半导体:国内介质刻蚀机龙头,有望登陆科创 板 中微半导体成立于 2004 年 5 月 31 日,股东包括大基金、上海科创投、华登 国际、美国高通、中金等。公司产品主要包括介质刻蚀设备、硅通孔刻蚀设 备和MOCVD设备,均已成功进入海内外重要客户供应体系。目前,MOCVD 设备在国内市场占有率达 70%,成为全球MOCVD设备领域的两强之一。 4.7、上海微电子:国内光刻机龙头,有望登陆科创板 上海微电子(SMEE)是国内光刻机龙头,于 2002 年在上海成立;2008 年 11 月,十五光刻机重大科技专项通过了国家科技部组织的验收;2009 年 12 月 首台先进封装光刻机产品SSB500/10A交付用户。2018 年 5 月 11 日,SMEE 第 100 台国产高端光刻机交付产线。公司产品广泛应用于集成电路前道、先 进封装、FPD 面板、MEMS、LED、Power Devices 等制造领域。 4.8、盛美半导体:国内湿法设备龙头 盛美半导体(ACM)是国内湿法设备龙头,于1998年在美国成立,2006 年设立盛美上海,开发 SAPS 兆声波清洗技术;2017 年在美国纳斯达克成 功上市。公司主要产品为清洗机,截止到2017年,盛美总共销售了 30 多 台清洗设备,客户包括海力士、长江存储、中芯国际、上海华力、JECT 等。

两面争

航空发动机产业深度研究报告:强国的象征、飞机的心脏

(报告出品方/作者:浙商证券,邱世梁、王华君)1. 航空发动机:强国的象征、飞机的心脏1.1. 航空发动机:将化学能转化为机械能,为航空工业提供动力航空发动机以化石燃料作为能源,将化学能转化为机械能、为飞行器提供动力,是飞 机、火箭等各类飞行器的心脏和动力之源,更是整个航空工业的动力之源。因其高度的技 术难度和复杂性,被称为“工业皇冠上的明珠”和“工业之花”。航空发动机产业是国家经济的重要分支、国家安全的重要保障,其综合水平的高低是 一个国家综合国力的重要体现。目前世界范围内具备军用航空发动机研制能力并形成产 业规模的国家仅有美、俄、英、法、中五大联合国常任理事国,具备商用大涵道比涡轮风 扇发动机研制能力并形成产业规模的则仅剩美、英两国三大巨头企业及其合资公司。根据推力产生原理、氧化剂来源、有无压气机等的差异,航空发动机可以分为活塞式 发动机、火箭发动机、冲压式发动机、涡轮发动机等多个类别。冲压式发动机和脉冲式发 动机目前应用范围还较为有限、暂不具备形成大规模市场空间的能力。当前,涡轮风扇发 动机以其高效率、低油耗、大推力等优势成为应用最广的航空发动机,广泛装备于各类 型军民用飞行器,其产值占燃气涡轮发动机的 90%以上。1.2. 世界航空发动机发展史:西方引领下从活塞到喷气、从军用到民用从 1842 年第一份关于航空发动机的专利出现到现在,世界航空发动机产业走出了一 条从活塞式到涡轮喷气式再到涡轮风扇发动机的发展道路,这个过程中,以美、英为代表 的西方国家凭借其起步早的先发优势持续积累在技术和产业上的优势壁垒、不断引领着 航空发动机领域的发展方向。进入 21 世纪,高温合金和先进涂层等技术为涡轮风扇发动机性能的进一步提高提供 了可能。当前军、民用领域航空发动机技术和产业均已发展至第四代。军用领域,美国的 F135 发动机(装备 F-35 战斗机)、F119 发动机(装备 F-22 战斗 机)牢牢占据着头部位置,F135 发动机最大推重比 11.7,最大推力近 19 吨,是目前推力 最大的军用小涵道比涡轮风扇发动机。其余处在第一梯队的军用航空发动机还包括俄罗 斯的 AL-41、AL-31FN,英国的 EJ-200 等,这些产品在满足美、英、俄、法等国自身国 防军队建设需要的同时,还单独或伴随飞机整机大量出口至其他国家。民用领域,用于窄体客机的 Leap-X、PW1000G、用于宽体客机的 GE9X、Trent XWB 等发动机技术先进、代表了当前商用航空发动机领域的最高水平。1.3. 军用航空发动机格局:三代机“五常”标配、四代机中美俄竞技军用航空发动机最重要的技术指标是推重比,对于大推力航空发动机,按照推重比大 小一般可分为四代,第一代推重比在 3-4 之间、第二代 5-6、第三代 7-9、第四代 10-12。 当前在役战斗机发动机以第二代、第三代为主,具备三代主流航空发动机研制和生产能 力的国家主要是美、俄、英、法、中五大常任理事国,乌克兰接收前苏联军事工业遗产也 具备一定的发动机研制生产能力,其航空发动机产品主要用于出口。根据《World Air Forces 2021》统计数据计算,产自五大常任理事国的军用航空发动 机数量占当前世界所有在装军用航发总数的 90%以上。这其中,又尤其以美、俄占比最 大,其军用航空发动机产品除满足本国军队装备建设需要外,还随着飞机一起大量出口至 其盟友、部分新兴国家等。第四代军用航空发动机目前的参与者仅美、俄、中三国,进入实际服役状态的型号仅 美国的 F119、F135 及俄罗斯的 AL-41F。其中美国的技术和研究进展遥遥领先,其 F119 发动机在 1997 年起即开始装备 F-22 猛禽战斗机,俄罗斯的 AL-41F 发动机约在 2017 年 前后首飞,中国的四代发动机还尚未见研制成功。目前,第四代航空发动机装备数量总体还较少,但其作为接下来各大国空军力量进一 步提升的必然选择,将随着 F-35、F-22、歼 20、苏-57 等第四代战机的批量列装而逐渐成 为未来军用航空发动机市场的重心。1.4. 商用航空发动机格局:三巨头垄断、中俄谋求入场机会相较于军用航空发动机,商用航空发动机高经济型、高可靠性的要求使得它的研制 技术难度更高。经济性要求航空发动机不断提高其运行效率、降低耗油率,为航空公司带 来经济效益。可靠性要求民航客机发动机在各种可能出现的极端工作状态下依然能保证 发动机稳定安全运转、避免出现安全事故。此外,商用航空发动机还要能实现技术成功前 提下的商业成功。以上因素作用之下,商用航空发动机产业寡头垄断的格局更加明显。目前世界范围内 独立掌握商用航空发动机研制核心技术、并有能力实现其产品商业化成功的企业仅美国 通用电气(GE)、美国普惠(PW)、英国罗罗(RR)三家公司,世界范围内商用航空发 动机市场基本被这三家公司及其与其他公司组建的合资公司所垄断。俄罗斯历史上曾推出过 D-30、PS-90 等商用航空发动机产品,但由于苏联解体、俄罗斯经济发展缓慢等原因,其生产量、使用量均极为有限。近 年来,俄罗斯联合航空发动机制造集团下属的彼尔姆航空发动机公司为其国产单通道客机MC-21 推出了 PD-14 航空发动机,用于其国产宽体客机的 PD-35 发动机也正处在研制 当中。PD-14、PD-35 两款发动机寄托着俄罗斯重新打入世界商用航空发动机市场的愿望。同样谋求进入该市场的中国以其单通道客机发动机长江-1000A、宽体客机发动机长 江-2000、支线客机发动机长江-500 成为这个市场一名最新的参与者。1.5. 中国航空发动机发展史:起步偏晚、道路曲折、先进型号依赖进口从 1954 年新中国第一台航空发动机试制成功到现在,中国航空发动机产业已经走过 了近 70 年的发展道路。其间实现了多个具有重要里程碑意义的“第一次”,也经历了多个 型号发动机随飞机一起下马的曲折。总的来讲,发展早期主要采取国外型号测绘仿制的 模式,之后在涡喷-13 等部分型号上初步尝试自主改进设计,直到最终在涡喷-14 等型号 上实现自主研制。进入 21 世纪初期,空军装备建设提速对航空发动机提出了更高的要求,但由于前期 航空发动机产业特别是涡轮风扇发动机发展的相对缓慢,这一时期对新型先进军用航空 发动机的需求只能通过进口来满足。如歼10、歼 11、歼 20 等第三代、第四代战机对大推 力小涵道比涡扇发动机的需求;从俄罗斯进口的苏-27、苏-30 侧卫系列战斗机的换发需 求;国产轰-6 的后续改型、战略运输机运 20 等对大涵道比涡扇发动机的需求等。2005 年,国产第一型三代大推力军用涡扇发动机涡扇-10 通过了定型审查,并再随后 的使用中不断提高其可靠性和稳定性,直到最终趋于成熟,这一步在中国航空发动机产业 的发展历史中意义巨大。目前涡扇-10 及其改进型号可用于装备歼-10、歼-100、歼-15、歼-16 乃至歼-20 等中 国当代主力三、四代战斗机。我国对外军用航空发动机的进口额、依赖度也在 2015~2017 年之间逐步企稳下落。1)起步晚:中国第一台活塞式发动机落后世界近 50 年,第一台涡轮喷气发动机落 后世界约 16 年,第一台涡轮风扇发动机落后世界4年(但第一款投入量产的涡轮风扇发 动机落后世界 44 年),且早期涡轮喷气和涡轮风扇发动机的研制生产均为国外型号的引进仿制、缺乏自主研制和独立的技术攻关; 2)发展历程曲折:中国航空发动机产业发展过程中长期存在(1)依赖于国外型号的引进仿制;(2)发动机型号依附于飞机,多个型号发动机特别是后期主流技术方向的涡 轮风扇发动机因飞机下马而终止研制两个问题,导致中国航空发动机产业在较长时间内 发展相对缓慢。1.6. 中国航空发动机现状:奋起直追、方兴未艾、重点型号全面开花2016 年 8 月,中国航空发动机集团在北京成立。新成立的航空发动机集团由国资委、 北京国有资本经营管理中心、中国航空工业集团有限公司、中国商用飞机有限责任公司共 同出资组建,整合了我国国防军工领域航空发动机研制生产相关的科研院所、主机厂、配 套厂等企事业单位,集团总资产约 1100 亿元。航发集团的成立有助于改变过去发动机型号依附于飞机型号的格局,赋予发动机研 制以更大的自主权和自由度,使得我国航空发动机研制可以更加充分的走出一条从基础 研究、到型号预研、再到型号项目工程研制的完全自主正向设计道路。以中国航发集团为代表的我国航空发动机产业基本具备了军用大中小型涡喷、涡扇、 涡轴等各类型航空发动机的研制生产能力。但与西方先进国家相比尚有一定差距。 军用领域,国产三代涡扇-10 太行发动机晚于美国 F110 约 30 年,用于四代战机的美 国 F-119 发动机首装于 1997 年,我国相对应的发动机截至目前尚未研制成功,落后至少 20 年以上。民用领域,我国尚无用于商业航线的大涵道比涡轮风扇发动机成熟型号,若假设中国 航发商发正在研制的长江-1000A 发动机于 2025 年~2030 年之间研制成功,则至少落后于 国际先进水平 CFM 国际公司的 Leap 发动机约 15~20 年。面对差距,中国航发集团秉承“动力强军、科技报国”的使命,在保障现有武器装备 保障供应的同时,进行了多个先进型号的攻关研制。覆盖了用于战斗机、教练机、运输机、 轰炸机等各类型军用飞机、及用于 C919 和 CR929 大型客机的各类型军民用发动机。在两机专项国家充足资源的保障下,我国航空发动机产业新型号的研发呈现出了多 点开花的局面,基本形成“军民并举、完整覆盖”的态势。未来的 5~10 年内,随着军、 民用重点型号研制攻关的相继完成转入量产,将可以满足届时我国军、民用领域几乎各 类型航空发动机的需要,我国航空发动机整个产业也将迎来一个高速增长的黄金时期。1.7. 航空发动机产业特点1.7.1. 高技术、高投入下的高行业壁垒航空发动机的运行特点可以概括为“三高一长”,即高压、高转速、高温、长期循环 往复工作。严苛的工作条件和高可靠性要求决定了航空发动机的研制需要综合工程热力 学、气体动力学、燃烧学、传热学、固体力学、强度振动、现代控制理论、材料学、冶金、 加工制造、试验测试等几乎所有现代技术门类来实现,是一个十足的高技术行业。高技术决定了航空发动机研制的高投入。航空发动机的研制主要分为基础研究(含 基础研究、应用研究)、型号预研(先期技术开发、先期部件开发等)和型号工程研制(含 系统研制和验证、作战或推进系统开发等)不同阶段。美国长期以来非常重视基础研究和型号预研,在其上所投入的经费占航空发动机研 发总计费的约 1/3,基础预研总经费中政府投入又占据了 2/3 以上。从 20 世纪 80 年代末 期以来先后实施了 IHPTET、VAATE、ATTAM 等多个预研项目,其中 IHPTET 计划投入 最大、持续时间最长,获取的成果在后续 GE90、CFM56-7、F110、F119、F135 等许多军 民用发动机型号的研制上得到了应用。IHPTET 计划的开展在一定程度上奠定了今天美国 在航空发动机技术上的领先地位。到型号工程研制阶段,一台典型的航空发动研制经费约 10~30 亿美元,F-135 发动机 的研制经费更是达到了令人咂舌的 50 亿美元。高技术、高投入的特点决定了航空发动机产业的参与者只能是那些经济发达、资金 实力雄厚、科技水平和工业门类完备的现代化国家。从 0 到 1 这一步的跨越,所需的基 础研究、工程技术积累及资金投入,对于一个完全的行业新参与者来说很难实现。这为 行业已有的参与者、特别是在技术产业上具备领先地位的国家、寡头企业建立了深深的 护城河。1.7.2. 衍生化发展模式下的长回报周期高技术、高投入的特点也决定了航空发动机研制的高风险。罗罗在进行其第一款三 转子发动机 RB211 的研制时,因技术的复杂性,项目花费达原有计划 2 倍研制结果却不 尽如人意。严重超支导致资金链破裂、罗罗也到了破产的境地。英国政府为保护本土航空 发动机工业,将罗罗收归国有。此后又经过多年政府支持下的发展,三转子发动机才最终 研制成功、并继而助力罗罗成为当代大型航空发动机产业中的寡头之一。基于高风险的特点,各航空发动机巨头纷纷倾向于基于自身技术特点走出一条航空 发动机产品的系列化、衍生化发展道路。采用衍生化的发展路线,一是可以继承原始机型 的优点;二是降低新技术台阶的跨度,从而节省经费、缩短周期、降低风险。美国 GE 基 于 F101 核心机衍生发展出一系列、满足不同场景使用要求的发动机产品。其中的 CFM56 更是成为了民用航空发动机界的传奇,迄今为止持续运营近 40 年,助力 CFM 国际公司 成为了国际窄体客机发动机市场的绝对老大。航空发动机高技术、寡头垄断下的衍生化发展模式,确保了一旦以一款成熟的系列 产品进入市场,接下来就有望享受 30-50 年的持续稳定盈利,其间面临的竞争威胁小,制 造商可以安心收获技术和产业带来的收益。1.7.3. 大分工、大合作下的广阔经济效益航空发动机本身具备高科技、高附加值的属性,可以为社会发展带来巨大的经济效 益。据统计,按照产品单位重量创造的价值计算,航空发动机是船舶的 1400 倍、是汽车 的 150 倍。近年来,全球航空发动机产业的年产量基本稳定在 14000 台以上、年产值约 为 700 亿美元附近,其中 2019 年因波音 737Max 停飞事件影响而略有下降。预估未来 十五年航空发动机全球总产值约为 1.3 万亿美元、年均约 866 亿美元,市场空间广阔。航空发动机产业链长、覆盖面广,可以带动和辐射上游机械加工、材料制备、电子元 器件等一大批行业。现如今,世界航空发动机产业链已经形成了典型的四级结构形式:第一层级即 GE、普惠、罗罗等整机制造商,负责整机研制及总装交付;第二层包括德国 MTU、意大利 AVIO 等,主要负责子系统、大部件/单元体的制造, 第二层级的企业中很多与第一层的整机制造商建立合资公司从而形成了更为密切的风险 利益共担关系。第三层和第四层分别是零组件、和原材料的供应商。中国的航发动力、航亚科技等公 司也以外贸转包的形式参与到了全球航空发动机产业链中去。在这样的体系框架下,航空 发动机的广阔市场空间将层层向上传递,从而拉动原材料、加工制造等一大批产业的发 展。1.8. 航空发动机产业定位:富国强军、国家意志美英法等西方航空强国始终坚持将航空发动机列为国家战略性产业,其航空发动机 的发展无不体现出国家意志。美国《2020 联合设想》报告提出的构成美国未来战略基础 的九大优势技术中,航空发动机位列第二,排在雷达技术之后、核技术之前。航空喷气式 发动机鼻祖的英国,在罗罗公司濒临破产的关键时刻伸出援手,并保留一英镑的“黄金 股”,防止股权落入外国投资者手中。此前长期以来,中国没有给与航空发动机产业足够的重视。这一局面已经随着中国 航空发动机集团的成立、两机专项的正式实施得到了根本性的改变。随后启动的航空发动机和燃气轮机国家科技重大专项直接投入在 1000 亿元量级,加 上带动的地方、企业和社会其他投入,预估总金额将不少于 3000 亿元。将有效解决长期 以来我国航空发动机产业投入不足的问题。在近期发布的《中华人民共和国国民经济和社会发展第十四个五年规划和 2035 年远 景目标纲要》中,又着重对航空发动机和燃气轮机予以了单独列示,并明确提出“推进民 用大涵道比涡扇发动机 CJ1000 产品研制,突破宽体客机发动机关键技术,实现先进民用 涡轴发动机产业化”。我们预估,航空发动机产业在十四五期间将持续受到国家、中央层 面上的高度重视,相关型号研究和产业化进展都将大大提速、体现国家意志!2. 中国航空发动机产业链:军民融合、功能完备2.1. 产业链全景:从设计研发到维修保障经过近几十年的发展,中国国防军工行业已经形成了一条军民融合、功能完备的航 空发动机产业链。产业链主要环节包括:设计研发、加工制造(原材料)、加工制造(零 组件)、整机集成交付、运营维修等。设计研发环节主要由相关研究院所及高校组成。加工制造(原材料)环节传统上以钢 铁金属材料类企业、研究院所为主,近年来部分民营企业也有参与。加工制造(零组件) 环节传统上以航发集团系统内单位为主,但近些年来系统外企业参与这一配套环节的积 极性高涨、现如今各类型企业众多。整机集成交付环节基本由航发集团垄断。运行维修分 军用民用,军用主要由航发集团、军队相关单位提供维修保障;民用主要由各大航司及其 与航发 OEM 等组建的合资公司提供维修保障。2.2. 设计研发:集中大批研究院所等优质资源航空发动机设计研发这一环节中集中了大量优质资源。可分为基础研究及关键技术 研究、子系统研发、整机集成设计等几大类。基础研究及关键技术研究目前主要由相关高校航空航天专业、中科院相关院所承担。 子系统研发主要包括材料工艺方案和控制系统两大类,分布在航发集团、航空工业集团、 中科院系统以及一些地方政府下属的科研机构中。整机集成设计的几大主机所则均为航 发集团所属。2.3. 原材料:镍、钛、钢、铝四足鼎立,复合材料大势所趋早期的航空发动机采用铝合金、镁合金、高强度钢和不锈钢等制造,后期为减轻发动 机重量、提高耐温性能、提高发动机效率和推重比,而逐步引入了钛合金、高温合金以及 复合材料。当前,航空发动机中传统铝合金和高强度钢、钛合金、镍基高温合金四足鼎 立,复合材料则凭借其优良的综合性能成为未来航空发动机性能进一步提升的不二选择。2.3.1. “太空金属”钛合金:宝钛股份收入最高、西部超导毛利高于行业平均钛合金指用钛与其他金属制成的合金金属,以其轻质、高强度、抗腐蚀性能好的优势, 特别适合应用于航空航天领域,因而被称为“太空金属”。航空用钛合金属于钛工业链条 中的高端产品,在航空发动机冷端部件中得到大量使用。我国钛合金产业集中度高、陕西省钛材生产领跑全国,主要上市企业有宝钛股份、西 部超导、西部材料。其中西部超导钛合金产品应用市场集中,主要为航空航天等军工产业, 销售毛利率较高。2.3.2. “先进航空发动机的基石”高温合金: 钢研高纳产量最高、业务集中度最高高温合金是指以铁、镍、钴为基,能在 600℃以上的高温及一定应力作用下长期工作 的一类金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能、良好的疲劳性能、 断裂韧性等综合性能,按照制造过程的不同可以分为变形高温合金、铸造高温合金和新型 高温合金。2.3.3. “非金属发动机”复合材料:中航高科、光威复材两大龙头复合材料是指由两种或两种以上不同性质的材料,通过物理或化学方法,在宏观上组 成具有新性能的材料。各种材料在性能上互相取长补短、产生协同效应,使复合材料的综 合性能优于原先组成材料从而满足不同使用场景下的需要。根据两种材料(一般区分为基 体材料和增强材料)的不同可以将复合材料分为不同的类别。美国针对航空发动机实施的 IHPTET 和 VAATE 计划均将复合材料在航空发动机上 的应用列为重点内容予以验证和突破,包括风扇宽弦复合材料叶片、纤维增强树脂基复合 材料机匣、350℃ 热塑性复合材料中介机匣、SiC 长纤钛基复合材料叶环、叶鼓和低压涡 轮轴等。目前,随着复合材料在航空涡轮发动机上应用范围越来越广且比例越来越大,甚 至有说法航空涡轮发动机将向着"非金属发动机"或"全复合材料发动机"的方向发展。2.4. 零部件与子系统:锻造、铸造各司其职、控制系统自成一体航空发动机由部件和子系统组成,部件包括风扇增压级、压气机、燃烧室、高低压涡 轮等;子系统包括控制系统、空气系统、机械系统、短舱系统等。除控制系统自成一体外, 其余各部件系统的零组件按照加工成型的方式均可以分为锻件、铸件、钣金件等几种,其 中又以锻件、铸件占据主要地位。近些年来,3D 打印增材制造、复合材料特殊工艺等也 逐渐开始使用,但目前占比尚较小。锻造通过对金属施加压力使其产生塑性变形从而达到所需要的形状,这个过程可以 消除金属在冶炼过程中产生的铸态疏松等缺陷,且锻件的机械性能一般优于同样材料的 铸件,因此在无特殊需求的情况下多采用锻造的方式进行加工。铸造通过直接浇铸液态金 属到事先准备好的模具中、待金属冷却后去除模具的方式得到所需形状,其优点在于可以 生产形状复杂的零件,尤其是复杂内腔的毛坯。当前,涡轮前温度已经上升至 1800℃附近,但涡轮叶片所用材料即便是耐温最高的 单晶高温合金,其耐温也仅有 1200℃左右,之间 600℃的温差只能通过叶片表面热障涂 层以及叶片内部复杂的空心冷却结构来弥补。这使得涡轮叶片的内腔冷却结构越来越复 杂,只能通过铸造的方式来加工。因为涡轮叶片所使用单晶高温合金等材料的昂贵、以及精密铸造工艺的复杂性,使得 涡轮叶片单价极高,一片叶片成本可达 40 万元。一台发动机中涡轮叶片论数目较压气机 叶片显著偏少,但论总价值,铸造涡轮叶片却较远高于锻造产生的压气机叶片。2.4.1. 叶片、轮盘:上市公司中锻造叶片企业成熟度更高、铸造叶片企业加紧技术攻关航空发动机压缩系统(风扇增压级、压气机)转静子叶片、涡轮转静子叶片、及用于 支撑安装转子叶片的压缩系统轮盘及涡轮轮盘是航空发动机中最重要的一组零件,在发 动机功的传递、能量的转化中起核心作用。在发动机价值的拆分上,以上零件合计价值占 比超过 40%。以上零件除涡轮叶片采用铸造方式成型外,其余均采用锻造的方式,两类加 工工艺中,精锻、和精铸分别代表了未来各自技术发展的主流方向。目前国内从事航空发动机叶片、轮盘加工制造的企业或单位有中航重机、航发动力、 航亚科技、三角防务、中国航发航材院、万泽股份、炼石航空、应流股份、江苏永瀚、无 锡透平等。根据各公司在以上发动机零组件加工领域所从事业务的具体类型,可以将其分为三 类,一类专注于压气机叶片、压气机及涡轮轮盘轴等航空锻件的加工如中航重机、航亚科 技、无锡润和等;第二类专注于涡轮叶片精铸加工如应流股份、万泽股份、炼石航空、江苏永瀚等,目 前该细分赛道因单晶涡轮叶片精铸技术的高技术壁垒,各上市公司前期均进行了大量的 技术研发投入,虽然目前相关业务在各自营业收入中的占比暂时还较低,但随着相关研发 投资项目的实施,精铸业务即将或已初步进入收获期、未来业绩有望放量;第三类则是航发动力、中国航发航材院等传统老牌行业内单位,兼具以上铸造、锻造 两类业务能力。2.4.2. 机匣等其他结构件:航发科技其中龙头航空发动机所使用其他结构件主要包括机匣、轴承、齿轮箱、燃烧室零组件、密封封 严装置等,加工方式多采用锻造、少数采用钣金成型。2.4.3. 控制系统:航空领域内中航机电是龙头、航发细分赛道航发控制做龙头航空发动机控制系统是发动机的神经和大脑,起着把飞机操纵人员指令传输给发动 机、并根据操纵指令精确调节相关运动机构以使得发动机实现操作意图的功能,对于航空 发动机正常稳定工作发挥着至关重要的作用。航空发动机控制技术的发展已经走过了好几代,总的趋势是从机械液压式向着数字 电子式发展,当前先进军、民用航空发动机所使用的标准控制系统为全权限数字式发动机 控制系统(FADEC),在 FADEC 控制中,发动机电子控制器 EEC 或电子控制系统 ECU 是它的核心,所有控制计算由计算机进行,然后通过电液伺服机构将控制指令转化为液压 机械装置及各个活门、作动器的动作,从而实现对发动机硬件状态的调节。我国从事航空发动机控制系统研制生产的企业主要有航发控制、晨曦航空、海特高 新、航新科技、中航机电等,其中航发控制背靠我国航空发动机控制领域唯一的军工科研 院所中国航发控制系统研究所,实力雄厚、产品型号齐全,是航发控制领域的龙头企业。2.5. 整机集成交付:航发动力唯一龙头我国航空发动机整机集成交付领域共有八大主机厂,全部为中国航发集团下属,其中 5 家注入上市公司或作为上市公司母公司。航发动力囊括了其中 4 家,基本覆盖了当前航 发集团主要在研或已服役的先进发动机型号。太行发动机已经进入稳定服役状态,将随着 三四代战斗机的上量享受确定的业绩增长。三代中等推力航空发动机生产线建设项目也 于今年通过竣工验收,将有望随枭龙、FC-31 战机一并上量。2.6. 运营维修:“全面聚焦备战打仗”背景下的行业增长新动力运营:军用、商用航空发动机的运营方分别为军队和航空公司。 维修:军用发动机一部分由解放军 57XX 厂提供维修服务,另一部分由发动机整机制 造商航发动力分别在贵州、山西、吉林的维修厂提供售后维修保障服务。发动机维修保障 环节的利润率较初始产品交付更高,后续随着“全面聚焦备战打仗”背景下实战化训练的增多,军用发动机维修保障领域市场空间将有望快速上升,为相关企业带来业绩增长的 新动力。民用领域,多个航空公司与国外 OEM 或国外航空公司、专业发动机维修公司等建立 合资公司,用于为自身及行业提供发动机及飞机维修保障服务。此外,上市公司中航新科 技、海特高新也涉足有航空发动机维修市场。未来随着军民用航空发动机的放量增长,航 空发动机维修市场也将迎来市场空间的扩充。3. 中国航空发动机产业市场空间测算及重点领域价值拆分3.1. 军用航空发动机整机市场:2021~2035 年均近 1000 亿元人民币当前,我国与美国在军用飞机数量和质量上均有着较大差异。战斗机领域,我军战斗 机数量为美军的 58%,三代以上先进战斗机数量约为美国的 26%。运输机轰炸机等大型 军用飞机领域,我军数量是美军的 20%,且缺乏大型战略轰炸机;直升机教练机领域,我 军飞机总数约为美军的 17%,且缺乏重型直升机。以《新时代中国的国防》白皮书“力争到 2035 年基本实现国防和军队现代化”为牵 引,我们假设到 2035 年,我军各类型军用飞机装备数目与美军当今装备数量及已确认订 单数量之和保持一致,据此预估各类型飞机装备数目及所需的航空发动机数目、市场价 值。测算过程中的重要假设如下:目前存量飞机截止 2035 年平均换发 2 次:以当前三四代机所装备的三代主流发 动机为例,其寿命约为 2000 小时,考虑到“全面聚焦备战打仗”背景下训练量 有所增加,预估一架飞机一年飞行时间约为 300~400 小时,从而平均约 5-7 年 需换发 1 次,目前存量飞机到 2035 年需至少换发 2 次;至 2035 年增量飞机平均换发 0.5 次:以 7 年换发 1 次计算,2028 年及之前列装 的飞机到 2035 年需换发 1 次,2029-2035 年列装的飞机到 2035 年无需换发,假 设新增飞机按匀速增加,则平均换发次数为 1/2*1+1/2*0=0.5 次;各类型飞机所需发动机单价参考国外同类型、同级别发动机进出口合同订单价 格或公司官网军方采购信息;发动机采购费和维护保养费按照 1:1 预估;考虑换发发动机来自于备发,因此不再单独考虑备发数。据此测算,从 2021 ~2035 中国军用航空发动机整机市场总规模为 14,898 亿元人民 币、年均 993 亿元人民币。其中新增军机初始采购需求和存量及新增军机换发需求大体 各占一半。按飞机种类,歼击机、运输机及加油机占比相对较大。3.2. 商用航空发动机整机市场:2021~2039 年均 1000 亿元人民币根据中国商飞公司预测,到 2039 年,中国民航客机队的规模将从 2019 年的 3863 架 增长到 9641 架,在全球市场中的占比从 16.2%增长至 21.7%,届时中国将成为全球民航 第一大市场和增长速度最快的市场。据此预估各类型飞机所需相应型号航空发动机的数 目及市场价值。测算过程中的重要假设如下:各型号国外发动机单价信息参考各发动机厂家官网订单信息,国产发动机单价 参考同级别国外发动机:长江-1000A 参考 Leap-1X、长江-2000A 参考 GE-NX、 长江-500 参考 CF-34;发动机维护保养费与采购费按照 1:1 预估;不考虑换发需求:目前先进商用大涵道比涡扇发动机首翻期前寿命已达到 20000~40000 小时,首翻期结束后视情维修更换部分零件又可继续服役,除非发 生重大事故导致发动机报废,否则一架飞机全生命周期内一般不转发。据此测算, 2021 年~2039 年中国商用航空发动机整机市场总规模为 20,131 亿元人 民币、年均 1,059 亿元人民币。3.3. 整机市场 2021~2035 拆分:前 10 年军机放量、10 年后民机接力军用领域,2020 年航发动力年报中航空发动机制造及衍生产品营业收入约为 262 亿 元,以此近似作为我国军用航空发动机产业 2020 年整机市场规模。以 2027 年实现百年 建军目标、2035 年基本实现国防和军队现代化为牵引,我们预估十四五期间航空发动机 领域将快速增长,随后随着市场规模的增大增速逐渐放缓。据此对 2021~2035 共计 14,898 亿的军用航空发动机市场进行拆分。商用领域,2020 年,中国内地民航客机队增长了 140 架(受波音 737 Max 停飞、新 冠疫情影响较前几年有较大幅度下降),据此计算得到 2020 年商用航空发动机新增整机 采购市场规模约 202 亿元。此外,根据国内三大航司披露,机队飞机及发动机维修费用总 计约 202 亿元,三大航机队占国内民航机队总数约 42.9%,发动机维修占飞机维修价值比 例约 39%。据此计算得到民航客机发动机维修市场规模约 183 亿元。新增采购与维修费 用加和得到 2020 年中国内地商用航空发动机市场总规模约 385 亿元。我们预估,后续随着新冠疫苗在全球范围内的逐渐使用和普及,新冠疫情将逐渐得到 控制,全球商用航空市场也将逐渐恢复,中国商用航空发动机市场规模也将迎来一个逐渐 修复再趋于平稳的过程。据此对 2021~2039 共计 20,131 亿的商用航空发动机市场进行逐 年拆分。但对于中国航空发动机产业链而言,暂时尚没有属于自己的商用大涵道比涡扇发动 机成熟型号。我们预估,国产长江-1000A 发动机于 2030 年前后投入市场,长江-2000A 紧 随其后,从 2029 到 2035 年之间,我国航空发动机产业链在整个发动机整机市场中占比 从 0 逐渐上升至 30%,据此测算出 2021~2035 年我国航空发动机产业链军、民用两个市 场整机交付市场空间。可以看到,未来 15 年间我国航空发动机产业链整机市场年均复合增长率约 15%,其 中前 10 年主要受益于军机的放量,之后民机开始接力,带来规模持续增长的新引擎。3.4. 重点领域价值拆分3.4.1. 零部件及子系统加工领域价值拆分基于预测的 2021~2035 我国发动机产业链整机市场规模,并参考航空发动机整机制 造龙头航发动力 2020 年毛利率 15%,测算得到零组件及子系统加工制造环节逐年市场规 模,再按照航空发动机不同零部件及子系统的价值占比,测算得到不同零部件和子系统 2021~2035 年间的市场空间。3.4.2. 原材料市场价值拆分基于预测的 2021~2035 发动机零部件及子系统加工制造市场规模,减去控制系统的 平均占比约 13%,得到其余零组件市场规模,其中原材料占比参考航空发动机零组件加 工企业航发科技 2020 年报原材料成本占比数据约为 55%,计算得到原材料市场逐年总规 模。当前先进发动机所使用的原材料中,高温合金占比约 40%、钛合金 30%、铝合金 15%、 高强度钢 10%、复合材料 5%,计算得到各类原材料 2021~2035 年间的市场空间。4. 坚定看好我国航空发动机产业的三大逻辑4.1. 外部因素:百年未有之大变局下航空发动机不可或缺军事领域:不断上升的经济实力、国际地位需要相称的国防力量做支撑近期,中共中央政治局委员、中央外事工作委员会办公室主任杨洁篪,国务委员兼外 长王毅同美国国务卿布林肯等举行了中美高层战略对话。会上,双方围绕各自内外政策、 中美关系等问题进行了沟通。同时杨洁篪也就中国与美国对话的立场做了较为强硬的表 态:“你们从实力的地位出发同中国谈话。”可以看到,近些年来,随着中国经济的发展、GDP 的不断增长,中国在国际舞台上 的外交形象也愈发强势,这体现了中国对实现民族伟大复兴这一目标的付诸实施。一带一 路构想、中伊 25 年合作协议的签订等也都是侧面的佐证。但这个过程必将会招致美国等西方国家的全力压制。经济领域有中美贸易战、美国制 裁中国企业等矛盾争端。军事领域,美国战略重心重回亚洲,构建了美、日、澳、印的包 围圈围堵中国。可以预见的是,中国大国崛起的路必将会伴随着中美之间各领域摩擦的频 繁化、常态化。在这个战略风险增大、不确定性增强的状态下,国防实力的竞争将是所有 领域竞争的基础和支撑。中国要实现自己的战略目标,就必须要补齐现在的短板、构建与 想要达到的经济地位、政治地位相对等的国防实力。航空发动机作为我国国防军工领域、乃至整个中国高科技领域为数不多的短板之一, 必须要在未来三到五年内形成充分的战斗力、产业成熟度迈上一个崭新的台阶。这是国 家意志、民族发展的必然要求。经济领域:世界商用航空 ABC 格局的动力基础必须自主可控中国商飞 C919 大型客机,取中国商飞英文简称 COMAC 的首字母、同时也是中国 CHINA的首字母,更是寄予着中国大飞机产业打入世界市场、与空客(Airbus)波音(Boeing) 平起平坐、共享市场的愿望。截止目前,C919 已经拿下超过 1000 架的订单、价值超 3000 亿元人民币。对于上游各个环节市场规模的带动效应更是巨大。C919 所采用的发动机是 CFM 国际公司的 Leap-1C,2020 年 2 月 15 日,美 国计划阻止中国 C919 客机获得 LEAP 发动机。尽管随后特朗普表明不会断供,但 C919 的“主制造商-供应商”模式在美国认定中国崛起威胁国家安全、全力打压中国高科技发 展的情况下,未来依然可能会面临类似问题。因此,像航空发动机这样的关键性配件,必 须要自主可控,不自主、无以形成真正稳固的世界商用航空 ABC 格局。4.2. 内部因素:新航发、新型号,与时代的需要耦合共振坚持自主发展、多个型号技术突破,满足国家需要正当时当前以及接下来的一段时期,是建国以来航空发动机产业最黄金的时期之一。建国 之初,面对西方列强的核恐吓、国内经济技术条件的不足,战略性核威慑的建立是第一位 的,而选择了两弹一星就再选不了飞机发动机。随后改革开放,以经济建设为中心,国防 工业的发展多次为经济建设让路、航发产业研制经费紧缺。随后直到轰炸大使馆、南海撞 击等事件的发生,从国家层面开始对常规武器、战术武器提高重视,直到现在,大国博弈 对国防建设提出了更高的要求、也给了航空发动机产业更多的机会。但打铁还需自身硬,只有坚持独立自主、突破核心技术,研制出性能先进、满足国家 时代需求的产品,才能真正带来行业的大踏步式发展。所幸,随着中国航发集团的成立, 飞发脱离、发动机研制被赋予了更大的自主权,以四代大推力军发、长江-1000A 等为代 表的多个军民用型号被赋予了充分的支持,并在过去几年内纷纷获得了一些阶段性的成 果。可以说,中国航空发动机产业各类型先进在研发动机全面开花、瓜熟蒂落的日子不会 太远了,当下正是布局航空发动机产业的大好机会。小核心、大协作,军民融合、产业链中上游布满机会军民融合、“小核心、大协作”是我国当前国防科技行业的发展趋势。国防白皮书曾 经在介绍国防科技工业时指出,“中国加速推进军工企业体制机制转变,初步建立小核心、 大协作、寓军于民的国防科技工业新体系”。具体到航空发动机产业,除了整机集成环节作为航空发动机产业链条中的核心、由航 发集团完全掌控外,上游零组件制造、原材料、控制系统、下游发动机维修等近年来系统 外供应商、民营企业如雨后春笋,这些产业链中上游企业具有更高的营业毛利率、也都将 得益于航空发动机产业的迅速发展。在其中的原材料、叶片加工制造等重点领域可能存 在投资机会。4.3. 多方位改革举措未来可期改革领域存在央企混改股权激励、军品定价机制改革、优质资产证券化等多方位的 改革预期。我国国防军工领域的大型央企长期以来存在一定程度的效率低下,实施混改,一是可 以引入战略投资者,构建多元化股权结构为国企带来社会资本的资源和活力。二是通过员 工持股、股权激励,可以聚集人才,提高企业运行的效率和活力。此前,中航工业、航天 科技等多家军工大型央企已实施过多次股权激励,未来航空发动机领域也或许会有类似 举措。此外,实行已久、不利于激发企业活力的“成本加成”军品定价机制也在逐渐发生变 化,国防军工央企未来的利润率有望提升。军工研究院所等优质资产的证券化改革,随着 “新人新办法、老人老办法”等院所改制相关政策的实施及一些历史遗留问题的逐步解 决,优质资产注入上市公司未来可期。详见报告原文。(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)精选报告来源:【未来智库官网】。