硅片项目可行性研究报告-本土硅片市场亟待破局硅片是半导体产业的关键原材料,一般作为衬底加工各类器件结构和引线,从而实现集成电路、分立器件等半导体产品的制造。硅片产品硅片直径的演进广泛的应用市场和大尺寸升级趋势推动硅片市场不断发展。硅片涵盖了50mm300mm(直径)等规格,其中,200mm及以下硅片的生产工艺较为成熟,且相关半导体制造产线的多数设备已完成折旧,制造成本优势明显。根据Semico的数据,2018年,逻辑芯片、模拟芯片、光电器件和分立器件分别占据全球200mm晶圆产能27%、23%、17%和16%的份额,主要应用包括电源管理IC、CIS、显示驱动IC、IGBT、MOSFET等。同时,为了进一步降低生产成本和提升生产效率,硅片朝300mm及以上的方向不断发展,在同等工艺条件下,300mm硅片的可使用面积超过200mm硅片的两倍以上,可使用率是200mm硅片的2.5倍左右,目前,300mm硅片在CPU、GPU、DRAM等先进制程芯片领域广泛应用。200mm硅片与300mm硅片的对比CPU芯片全球特别是中国半导体制造规模的不断扩张,显著提升了硅片市场需求。半导体制造是硅片的主要下游应用市场,90%以上的半导体芯片需要使用硅片进行生产。当前,国内晶圆建厂潮愈演愈烈,半导体制造产线规模加速扩张。根据Chip Insight的数据,2019年,我国大陆地区的晶圆厂中12座已投产、14座处于产能爬坡阶段、仍在建15座、规划建设7座,合计57座,总投资额达1.5万亿元。根据SEMI的数据,在2017~2020年间,全球将有62座新建晶圆厂投入营运,其中我国大陆地区新建晶圆厂26座,占比达42%。2018-2022年全球和中国半导体制造产能变化(单位:万片/月)未来,我国在半导体制造环节有望继续保持高强度投入,有望带动半导体制造产能持续提升。根据IC Insight的预测,2020年,我国大陆地区的半导体制造产能有望超过日本,2022年有望超过韩国,跃升为全球第二,仅次于我国台湾地区,届时大陆地区的半导体制造产能将达410万片/月,在全球半导体制造产能的占比达17.15%,2019-2022年我国大陆地区半导体制造产能的CAGR为14.81%,显著高于同期全球半导体制造产能的增长(CAGR=7.01%)。随着下游半导体制造环节的陆续投产,配套的硅片市场需求有望同步提升。全球硅片行业在2009年受经济危机影响较为低迷,出货量出现下滑;2010年由于智能手机放量增长,硅片行业大幅反弹。2011年至2016年,全球半导体需求整体较为低迷,硅片市场呈现低速发展。2017年以来,受益于下游传统应用领域计算机、移动通信、固态硬盘、工业电子市场持续增长,新兴应用领域如人工智能、区块链、物联网、汽车电子的快速发展,半导体应用市场需求强劲,硅片市场规模整体呈现稳步增长,根据SEMI的数据,2018年全球硅片出货量达127.33亿平方英寸,同比增长7.82%。全球硅片出货量变化根据SEMI的数据,2018年,300mm硅片和200mm硅片市场份额分别为63.83%和26.14%,两种尺寸硅片合计占比接近90.00%。目前,全球硅片市场主要由海外和台湾厂商占据,市场集中度较高,根据SEMI的数据,2018年,日本信越化学、日本SUMCO、中国台湾环球晶圆、德国Siltronic、韩国SK Siltron的市场份额分别为27.58%、24.33%、16.28%、14.22%、10.16%,CR5达92.57%。2018年全球硅片市场格局2018年,沪硅产业-U在全球硅片市场的份额为2.18%,已成为中国大陆最大的硅片制造企业之一,客户覆盖了格罗方德、中芯国际、华虹宏力、华力微电子、华润微电子、恩智浦、意法半导体等全球知名半导体制造企业。公司200mm及以下半导体硅片(含SOI硅片)工艺成熟、技术先进,在射频前端芯片、模拟芯片、先进传感器、汽车电子等高端细分市场具有较强的竞争力;同时,公司在中国大陆率先实现了300mm硅片的规模化销售,打破了我国300mm硅片国产化率几乎为0%的局面,目前,公司300mm硅片产品可应用于40-28nm、65nm、90nm制程,并且正在研发可用于20-14nm制程的300mm硅片,推进了我国半导体关键材料生产技术"自主可控"的进程。中环股份是全球综合产品门类最全的半导体硅片供应商之一,公司目前已具备75mm-300mm全尺寸半导体硅片产品的量产供应能力,涵盖抛光片、外延片、退火片等多种生产加工工艺。晶体技术领域,200mm区熔单晶的技术能力和品质水平不断提升,公司自主研发生产的区熔硅片市场份额已实现国际领先;300mm直拉单晶取得重要技术研发进展,应用于19纳米的COP Free晶体技术已完成内部评价,并进入客户评价阶段,同时结合28纳米COP Free硅片产品的客户认证,公司已具备进入逻辑、存储等高端半导体硅片材料领域的技术实力,与此同时,公司已完成300mm应用于CIS、Power Device产品的超低阻单晶的研发,目前是全球少数、中国唯一一家可批量供应上述产品的硅片制造商,产品对标全球领先的硅片供应商。立昂微子公司浙江金瑞泓长期致力于技术含量高、附加值高的半导体硅片的研发与生产,具有硅单晶锭、硅研磨片、硅抛光片、硅外延片的完整工艺和生产能力。目前,公司150mm半导体硅抛光片和硅外延片已实现批量生产并销售,成为国内较早进行150mm硅片量产的企业。同时,公司具备全系列200mm硅单晶锭、硅抛光片和硅外延片大批量生产制造的能力,实现了我国200mm硅片正片供应的突破,并开发了300mm单晶生长核心技术,以及硅片倒角、磨片、抛光、外延等一系列关键技术,在国内大尺寸半导体硅片的生产工艺研发领域具备领先地位。此外,立昂微子公司金瑞泓微电子正在建设年产180万片集成电路用300mm硅片项目,有望在未来实现300mm半导体硅片的大规模量产。除了硅片制造,配套的长晶设备,以及研磨、抛光、切割等加工工艺环节在我国硅片产业链中的市场地位也有望持续提升。晶盛机电是国内领先的半导体材料装备企业,围绕硅、碳化硅等半导体材料开发出一系列关键设备,目前,公司实现了集成电路200-300mm半导体长晶炉的量产突破,并以此为基础,成功开发了150-300mm晶体滚圆机、截断机、双面研磨机及6-300mm的全自动硅片抛光机、200mm硅单晶外延设备,完成硅单晶长晶、切片、抛光、外延四大核心环节设备布局。公司最新开发出第三代半导体碳化硅单晶炉、外延设备,其中碳化硅单晶炉已经交付客户使用,外延设备完成技术验证,产业化前景较好。近年来,公司增加了半导体抛光液、阀门、磁流体部件、16-32英寸坩埚等新产品的研发和市场开拓力度,产业链配套优势逐步显现。神工股份专注于集成电路刻蚀用单晶硅材料的研发、生产和销售,经过多年的技术积累,公司突破并优化了多项关键技术,构建了较高的技术壁垒,公司产能利用率、良品率等指标因公司技术突破和优化不断提升,单位成本不断下降。公司所拥有的无磁场大直径单晶硅制造技术、固液共存界面控制技术、热场尺寸优化工艺等技术已处于国际先进水平。目前,公司已掌握了包含200mm半导体硅片在内的半导体硅抛光片生产加工的核心技术,包括低缺陷单晶生长技术、高良率切割技术、高效化学腐蚀及清洗技术、超平整度研磨抛光技术、硅片检测评价技术等,大多数的技术指标和良率已经达到或基本接近国际一流大厂的水准;200mm芯片用硅片的机械加工研发项目在截断、滚圆、切片、倒角、磨片等工艺的产品初步合格率可达到99%以上;20英寸以上超大直径单晶硅产品研发项目已取得重大的突破,技术达世界先进水平。扬杰科技收购的成都青洋是集半导体单晶硅片等电子材料研发、生产、加工及销售于一体的国家高新技术企业,已建成年产1200万片200mm以下直拉(MCZ)、区熔(FZ)、中子嬗变掺杂处理(FZNTD)等单晶硅切片、磨片和化学腐蚀片的生产线,产品质量及性能位于行业领先水平。目前,成都青洋拥有丰富的优质客户资源,与株洲中车时代电气股份有限公司、通用等海内外知名企业建立了长期稳定的配套合作关系。东尼电子专注于超微细合金线材及其他金属基复合材料的应用研发、生产与销售,公司金刚石切割线主要应用于蓝宝石及硅片切割。公司具有行业内突出的规模制造优势,具备超微细合金线材和其他金属基复合材料等新材料的综合开发能力,并不断提升自动化生产水平,可以满足下游大客户大批量的持续供货需求。硅片产业链光力科技子公司Loadpoint Limited(简称:LP公司)是全球最早从事划片机产品设计和制造的公司,在全球率先发明了加工半导体器件的划片机,主营业务为研发、生产、销售用于半导体等微电子器件封装测试环节的精密加工设备,主要产品包括150mm、200mm、300mm划片机等,在切割、铣、削、钻孔环节加工设备可达到微米、亚微米、纳米加工精度,是半导体器件(如集成电路芯片、声纳和各类传感器等)制造的关键设备之一,可用于半导体制造、航空航天等领域。在加工超薄和超厚半导体器件方面,LP公司产品具备突出的领先优势。硅片项目可行性研究报告编制大纲第一章总论1.1硅片项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1硅片项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:关联报告:硅片项目申请报告硅片项目建议书硅片项目商业计划书硅片项目资金申请报告硅片项目节能评估报告硅片行业市场研究报告硅片项目PPP可行性研究报告硅片项目PPP物有所值评价报告硅片项目PPP财政承受能力论证报告硅片项目资金筹措和融资平衡方案
SiC(碳化硅)项目可行性研究报告-为何被称为是新一代功率半导体SiC(碳化硅)作为第三代半导体,以耐高压、高温和高频,在高性能功率半导体上显出优势。据SiC厂商罗姆基于IHS的调查显示,2025年整个市场规模将达到约23亿美元。在应用中,在光伏和服务器市场最大,正处于发展中的市场是xEV(电动与混动汽车)。随着SiC产品特性越做越好,在需要更高电压的铁路和风电上将会得到更多的应用。不过,制约SiC发展的关键是价格,主要原因有两个:衬底和晶圆尺寸。例如晶圆尺寸越大,成本也会相应地下降,罗姆等公司已经有6英寸的晶圆片。在技术方面,众厂商竞争的有两个焦点:技术和原材料。不久前,罗姆半导体(北京)有限公司设计中心所长水原德建先生介绍了SiC的优势及工艺技术。1、什么是SiCSiC(碳化Si)是以1:1的比例,用Si(Si)和碳(C)生成的化合物。SiC硬度很高。市面上最硬的是钻石,硬度为15,SiC的硬度是13,已接近钻石的硬度。SiC的物理特性。与Si和GaN(氮化镓)相比,如图。Si是市场上现在用得最多的材料。目前半导体功率元器件中的材料主要是这3种材料。SiC在物理特性上的好处。第一是击穿场强度会更强,因此耐压更高,所以它可以做成耐高压的产品。第二是熔点和Si相比会更高一些。这样可以耐更高的温度,大约可以耐到Si温度3倍以上。第三个好处是电子饱和速度会更快一些,所以SiC的频率可以做得更高。另外还有两个优势:一是热传导性很高,这样冷却更容易去做;再有,禁带宽度更宽,这样可以使工作温度更好做。因此总结起来SiC的五角形优势,从产品本身看,SiC耐高压、高温和高频;另外在设计上,因为SiC耐的温度会更高一些,因此更容易做冷却和散热设计。2、SiC性能优势明显,是更佳衬底材料随着半导体工艺及材料的发展,以SiC为代表的半导体材料在禁带宽度、击穿电场强度、饱和电子漂移速率、热导率以及抗辐射等关键参数方面具有显著优势进一步满足了现代工业对高功率、高电压、高频率的需求,其主要性能优势如下:1)低能量损耗。SiC具有3倍于硅的禁带宽度,使得SiC器件泄漏电流比硅器件大幅减少,从而降低功率损耗,同时SiC器件在关断过程中不存在电流拖尾现象,开关损耗低,大幅提高实际应用的开关频率。2)耐高压。SiC击穿电场强度是硅的10余倍使得SiC器件耐高压特性显著高于同等硅器件。3)耐高温。SiC相较硅拥有更高的热导率,使得器件散热更容易,极限工作温度更高。耐高温特性可以带来功率密度的显著提升,同时降低对散热系统的要求,使终端可以更加轻量和小型化。SiC与传统材料性能对比SiC功率半导体的性能优势主要体现低关断损耗与导通损耗。通过两组实验对比可以发现,硅基IGBT、FRD模组在开关关断时会产生尾(tail)电流,因而产生不必要的开关损耗,使用SiC MOSFET、SBD的模组的关断损耗(Eoff)降低了88%。同时,因硅基IGBT的尾电流随温度升高而增加,在高温时损耗相较于SiC MOSFET将进一步加大;而硅基IGBT、FRD组成的模组在开关导通时,恢复电流(红色虚线圈起部分)是开关导通时的一大损耗,而在SiC MOSFET、SBD组成的模组中则几乎无相应波形,SiC MOSFET、SBD的模组与硅基IGBT、FRD的模组的导通损耗Eon相比降低了34%。同时,由于SiC有较高的禁带宽度,SiC功率器件可承受较高的电压和功率,其器件体积可变得更小,约为硅基器件的1/10;此外同样由于其高禁带宽度,SiC器件可进行重掺杂,SiC器件的电阻将变得更低,约为硅基器件的1/200。同规格SiC器件与硅器件对比情况SiC晶片在生长时根据掺杂不同可分为导电型及半绝缘型,导电型晶片用于生长SiC外延,主要用于制造功率器件,下游应用于新能源汽车及光伏;半绝缘型晶片用于生长氮化镓外延,主要用于制造微波射频芯片,应用于5G、通讯等。SiC生长制备环节及应用分类3、成本是主要瓶颈,下降趋势明显目前各类SiC器件成本仍比Si基器件高2.4~8倍,但受下游扩产及电动车需求逐步增加,年降幅达36~46%,逐步接近商业化应用。根据CASA统计,SiC二极管中耐压600V-650V的SiC SBD,2019年底的平均价格是1.82元/A,较2018年底下降了35.92%,与Si器件的差距缩小到2.4倍左右;1200V的SiC SBD的均价降至4.09元/A,较2018年下降了45.76%,但与Si器件的差距仍然保持在5倍左右,耐压600V-650V的SiC晶体管在2019年底的平均价格是2.44元/A,较2018年底价格下降了46.4%,与Si器件的差距由12倍缩小到8倍左右。耐压1200V的SiC晶体管的价格降价明显,降至3.9元/A,较2018年底下降了45%,与Si器件的差距仍然保持在6倍左右。SiC与Si二极管价格对比(元/A)SiC与Si晶闸管价格对比(元/A)我们预计2022~2023年为达到SiC达到合理性价比的关键节点,主要原因在于:1)根据Cree官网,Cree龙头厂商预计2022年扩产完成,产能扩大至30倍,大规模量产带来的规模效应将导致SiC器件成本大幅下降;2)据CASA第三代半导体白皮书,目前国内6寸线良率较低,约20%~30%左右,随着国内加速研发及扩产,未来6寸线良率将逐步上升,提高每片晶圆利用率,从而降低成本,且6寸线的应用较4寸线将节省30%左右的成本;3)全SiC的逆变器预计从2022/23年在主流豪华电动车品牌中开始量产,终端需求逐步释放将提升厂商产能利用率,摊薄SiC器件生产成本。4、新能源车及光伏普及,驱动需求高速增长SiC MOSFET 未来有望成为主流应用的半导体功率器件。目前,主流的功率器件可分为二极管、晶体管及 IGBT 等,二极管特性为耐高压但开关速度较慢,以 MOSFET 为例的晶体管则具有开关速度快,高压情况下损耗较大的特点,IGBT 则是兼具耐压较高、开关速度高两种特性,因此也在下游汽车、光伏等领域大范围得到应用,但未来随着下游应用的发展,对器件的耐高压、耐高温及低损耗有了进一步的要求,而由于 SiC MOSFET 由于具备高导热特性,更符合高温作业应用与高能效利用的要求,因此随着 SiC 成本的下降,SiC MOSFET将会逐步取代 IGBT,广泛应用于新能源汽车、光伏、轨道交通、智能电网等领域。根据 Yole 统计,2019 年全球 SiC 功率半导体市场规模为 5.4 亿美元,受益于新能源汽车及光伏领域需求量的高速增长,预计到 2025年 SiC 功率半导体市场规模预计将达 25.6 亿美元,2019~2025 年 CAGR 达 30%,其中,在 xEV 与充电桩在 2019~2023 年的 CAGR 分别达到了 38%与 90%,光伏领域则达到 17%,考虑到今年以来光伏接近平价进入普及拐点、新能源车销量明显提升,我们认为未来几年 SiC 市场规模预测将显著上修。2019-2025 年 SiC 功率半导体市场规模情况2019-2025 年 SiC 下游各应用复合增长率降损效果显著,汽车成为 SiC 市场增长主要驱动力新能源汽车在使用过程中涉及电能转换的部分有:1)电网的交流电、发电机发出的交流电转换为向电池充入的直流电,即直流充电桩、车载充电机及混动汽车发电机的 AC/DC 整流转换部分;2)电池的直流电转换为电机所需要的交流电,即汽车主逆变器、电机、空调、照明等交流电设备的 DC/AC 逆变转换部分;3)电池的直流电转为小功率电子设备供电,即汽车的高压直流电转换为低压直流电的 DC/DC 直流变压转换部分。而这其中较为关键的、影响整车性能表现的电能转换部分即充电桩、主逆变器和电机三部分,其功率器件用量较大。光伏逆变器市场大幅增长,SiC 渗透率提升据天科合达招股书,在光伏发电应用中,基于硅基器件的传统逆变器成本约占系统的 10%左右,却是系统能量损耗的主要来源之一。SiC MOSFET 或 SiC MOSFET+SiC SBD 结合的功率模块的光伏逆变器能将转换效率将由96%提升至99%以上,能量损耗则可降低50%以上,设备循环寿命提升 50 倍,此外能缩小系统体积、增加功率密度、延长器件使用寿命等也符合未来光伏逆变器未来的发展趋势。目前安森美已推出适用于太阳能逆变器应用的全 SiC 功率模块,集成了一个 1200V、40mΩSiC MOSFET 和具有双升压级的 1200V,40A SiC 升压二极管,SiC 价值量占整体逆变器成本的 10%,根据 CASA 预测,2025 年光伏逆变器中 SiC 器件价值占比将增长至 50%,因此我们认为光伏逆变器中 SiC 的应用将成为 SiC 器件市场需求增长的另一驱动因素。光伏逆变器中 SiC 功率器件占比预测全球光伏装机量预测此外,光伏逆变器需求量与下游光伏装机量相关性较高,受益于光伏发电经济效益优势日益显著,全球光伏产业已由政策补贴驱动转入"平价上网"过渡阶段,2019 年我国第一批光伏发电"平价上网"项目申报数量达到 168 个,累计规模达 14.78GW,2020 年全国 19 省申报平价项目 33GW,CPIA 预计到 2025 年时,乐观情景下全球光伏新增装机量有望增加至287GW,2019-2025 年间复合增长率为 16.40%。受益于光伏装机量上升,逆变器市场需求将大幅增长,根据 CPIA 统计全球均价约 0.4 元/w 计算,2023 年每年光伏逆变器新增市场将增长至 800 亿元左右,约 110 亿美元,按照 SiC 器件在功率器件中 30%左右的渗透率,根据索比光伏网数据,功率器件价值量占总成本比重 10%的水平,对应市场空间为 3 亿美元。SiC(碳化硅)项目可行性研究报告编制大纲第一章总论1.1SiC(碳化硅)项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1SiC(碳化硅)项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表关联报告:SiC(碳化硅)项目申请报告SiC(碳化硅)项目建议书SiC(碳化硅)项目商业计划书SiC(碳化硅)项目资金申请报告SiC(碳化硅)项目节能评估报告SiC(碳化硅)行业市场研究报告SiC(碳化硅)项目PPP可行性研究报告SiC(碳化硅)项目PPP物有所值评价报告SiC(碳化硅)项目PPP财政承受能力论证报告SiC(碳化硅)项目资金筹措和融资平衡方案第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:
半导体材料项目可行性研究报告-"十四五"走在增强内循环的路上1.半导体材料:技术壁垒高,高端依赖进口半导体材料是指电导率介于金属与绝缘体之间的材料,半导体材料的电导率在欧/厘米之间,一般情况下电导率随温度的升高而增大。半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要材料。半导体材料市场可以分为晶圆材料和封装材料市场。其中,晶圆材料主要有硅片、光掩膜、光刻胶、光刻胶辅助设备、溅射靶、抛光液、其他材料。封装材料主要有层压基板、引线框架、焊线、模压化合物、底部填充料、液体密封剂、粘晶材料、锡球、晶圆级封装介质、热接口材料。半导体材料市场规模占比以我国国内最大晶圆制造企业中芯国际为例:中芯国际生产经营的主要原材料包括硅片、化学品、光阻、气体、靶材、研磨材料等。中芯国际主要原材料采购情况注:硅片、靶材数量及单价按照约当 8 英寸统计。半导体材料自给率低在半导体材料领域,由于高端产品技术壁垒高,国内企业长期研发投入和积累不足,我国半导体材料在国际分工中多处于中低端领域,高端产品市场主要被欧美日韩台等少数国际大公司垄断,比如:硅片全球市场前六大公司的市场份额达 90%以上,光刻胶全球市场前五大公司的市场份额达 80%以上,高纯试剂全球市场前六大公司的市场份额达80%以上,CMP 材料全球市场前七大公司市场份额达 90%。国内大部分产品自给率较低,基本不足30%,并且大部分是技术壁垒较低的封装材料,在晶圆制造材料方面国产化比例更低,主要依赖于进口。另外,国内半导体材料企业集中于6英寸以下生产线,目前有少数厂商开始打入国内8英寸、12英寸生产线。不同种类半导体材料的国产化程度大硅片:硅片也称硅晶圆,是最主要的半导体材料,主要包括抛光片、退火片、外延片、节隔离片和绝缘体上硅片,其中抛光片是用量最大的产品,其他的硅片产品也都是在抛光片的基础上二次加工产生的。抛光片:直接从单晶硅柱上切割出厚度约 1mm 的原硅片,然后对其进行抛光镜面加工。退火片:把抛光片置于充满氩气或氧气的高温环境退火得到,可大幅减少抛光片表面的氧气含量,保持晶体完整性。外延片:在抛光片表面采用应用气相生长技术在抛光片表面外延生出单晶结构层,能够在低电阻衬底上形成一个高电阻层。节隔离片:在抛光片的基础上,通过光刻法、离子注入、热扩散技术等技术嵌入中间层,然后再通过气相生长技术在硅片外面形成平滑的外延层。绝缘体上硅片:三明治结构,最下层是抛光片,中间层是掩埋氧化层,顶层是活性层也是抛光片。绝缘体上硅片可以使半导体器件设计者将器件和周围部分完全隔离。半导体硅片分类硅晶圆片的市场销售额占整个半导体材料市场总销售额的 32%~40%。硅片直径主要有 3 英寸、4 英寸、6 英寸、8 英寸、12 英寸(300mm),目前已发展到 18 英寸(450mm)等规格。直径越大,在一个硅片上经一次工艺循环可制作的集成电路芯片数就越多,每个芯片的成本也就越低。在同样的工艺条件下,300mm 半导体硅片的可使用面积超过200mm 硅片的两倍以上,可使用率(衡量单位晶圆可生产的芯片数量的指标)是 200mm硅片的 2.5 倍左右。因此,更大直径硅片是硅片制备技术的发展方向。但硅片尺寸越大,对微电子工艺设备、材料和技术的要求也就越高。硅片尺寸分类200mm硅片与300mm硅片可使用面积目前,国内硅片生产厂商技术较为薄弱,市场份额较小,多数企业以生产 8 英寸及以下硅片为主。沪硅产业是目前国内最大的硅片供应商,也是国内率先实现 12 英寸半导体硅片规模化销售的企业,其 2018 年全球市占比为 2.18%。其他企业有中环股份、里昂股份、有研新材等。目前,硅片主流产品是 12 英寸,根据 SUMCO 的预测,300mm 总需求将会从 2018年的 600 万片/月增加到 2021 年的 720 万片/月,复合增速约为 6%。从 2013-2018 年,全球硅片出货量(应用于半导体生产)稳步增长,2018 年全球硅片出货量为 12733 百万平方英尺,同比增长 7.82%。2019 年,全球硅片出货量为 11810 百万平方英尺,同比下降 7.25%,市场需求有所下降。2007-2019年全球硅片出货量(应用于半导体生产)(单位:百万平方英尺)超净高纯试剂:又称湿化学品,是指主体成分纯度大于 99.99%,杂质离子和微粒数符合严格要求的化学试剂。主要以上游硫酸、盐酸、氢氟酸、氨水、氢氧化钠、氢氧化钾、丙酮、乙醇、异丙醇等为原料,经过预处理、过滤、提纯等工艺生产的得到纯度高产品。在半导体领域主要用于芯片的清洗和腐蚀,同时在硅晶圆的清洗中也起到重要作用。其纯度和洁净度对集成电路成品率、电性能及可靠性有十分重要的影响。SEMI(国际半导体设备和材料协会)专门制定、规范超净高纯试剂的国际统一标准-SEMI 标准。按照 SEMI 等级的分类,G1 等级属于低档产品,G2 等级属于中低档产品,G3 等级属于中高档产品,G4 和 G5 等级则属于高档产品。随着集成电路制作要求的提高,对工艺中所需的湿电子化学品纯度的要求也不断提高。对于半导体材料领域,12寸制程中湿电子化学品技术等级需求一般在 G3 级以上。应用于半导体的超净高纯试剂,全球主要企业有德国巴斯夫,美国亚什兰化学、Arch化学,日本关东化学、三菱化学、京都化工、住友化学、和光纯药工业,台湾鑫林科技,韩国东友精细化工等,上述公司占全球市场份额的 85%以上。目前,国内生产超净高纯试剂的企业中产品达到国际标准且具有一定生产量的企业有 30 多家,国内超净高纯试剂产品技术等级主要集中在 G2 级以下,国内江化微、晶瑞股份等企业部分产品已达到 G3、G4 级别,晶瑞股份超纯双氧水已达 G5 级别,部分产品已经实现进口替代。我国内资企业产超净高纯试剂在 6 英寸及 6 英寸以下晶圆市场上的国产化率已提高到 80%,而 8 英寸及 8 英寸以上晶圆加工的市场上,其国产化率由2012 年约 8%左右缓慢增长到 2014 年的 10%左右。电子气体:电子气体在电子产品制程工艺中广泛应用于薄膜、蚀刻、掺杂等工艺,被称为半导体、平面显示等材料的"粮食"和"源"。电子特种气体又可划分为掺杂气、外延气、离子注入用气、LED 用气、蚀刻用气、化学汽相沉淀用气、载运和稀释气体等几大类,种类繁多,在半导体工业中应用的有 110 余种电子气体,常用的有 20-30 种电子特种气体行业集中度高,主要企业有美国空气化工、美国普莱克斯、德国林德集团、法国液化空气和日本大阳日酸株式会社,五大气体公司占有全球 90%以上的市场份额,上述企业也占据了我国电子特种气体的主要市场份额。国产电子气体已开始占据一定的市场份额,经过多年发展,国内已有部分企业在部分产品方面攻克技术难关。四川科美特生产的四氟化碳进入台积电 12 寸台南 28nm 晶圆加工生产线,目前公司已经被上市公司雅克科技收购;金宏气体自主研发 7N 电子级超纯氨打破国外垄断,主要上市公司有雅克科技、华特气体、南大光电、巨化股份。靶材:半导体行业生产领域,靶材是溅射工艺中必不可少的重要原材料。溅射工艺是制备电子薄膜材料的主要技术之一,它利用离子源产生的离子轰击固体表面,使固体表面的原子离开固体并沉积在基底表面,被轰击的固体称为溅射靶材。靶极按照成分不同可分为金属靶极(纯金属铝、钛、铜、钽等)、合金靶极(镍铬合金、镍钴合金等)和陶瓷化合物靶极(氧化物、硅化物、碳化物、硫化物等)。半导体晶圆制造中 200nm(8 寸)及以下晶圆制造通常以铝制程为主,使用的靶材以铝、钛元素为主。300nm(12 寸)晶圆制造,多使用先进的铜互连技术,主要使用铜、钽靶材。半导体芯片对溅射靶材的金属材料纯度、内部微观结构等方面都设定了极其苛刻的标准,长期以来一直被美、日的跨国公司所垄断,我国的超高纯金属材料及溅射靶材严重依赖进口。目前,江丰电子产品进入台积电、中芯国际和日本三菱等国际一流晶圆加工企业供应链,在 7 纳米技术节点实现批量供货,成功打破了美、日跨国公司的垄断格局,填补了我国电子材料行业的空白。光刻胶:指通过紫外光、准分子激光、电子束、离子束、X 射线等光源的照射或辐射,其溶解度发生变化的耐蚀刻薄膜材料。其溶解度发生变化的耐蚀刻薄膜材料。根据在显影过程中曝光区域的去除或保留,分为正像光刻胶和负像光刻胶。随着分辨率越来越高,光刻胶曝光波长不断缩短,由紫外宽谱向 G 线(436nm)→I 线(365nm)→KrF(248nm)→ArF(193nm)→F2(157nm)→极紫外光 EUV 的方向转移。光刻胶由低端到高端整体可分为 PCB 光刻胶、面板光刻胶和半导体光刻胶三个大类。全球光刻胶供应商主要集中在日本、美国、德国手中,其中日本市场份额较大,据统计日本全球市场份额达到 90%。我国光刻胶生产基本上被外资把控,并且集中在低端市场。据中国产业信息数据,2015 年我国光刻胶产量为 9.75 万吨,其中中低端产品 PCB 光刻胶产值占比为 94.4%,而LCD 和半导体用光刻胶产值占比分别仅为2.7%和1.6%,半导体光刻胶严重依赖进口。另外,2015 年我国光刻胶前五大公司分别台湾长兴化学、日立化成、日本旭化成、美国杜邦及台湾长春化工,均是外资或合资企业,上述五大企业市场份额达到 89.7%,内资企业市场份额不足 10%。光刻胶主要上市公司有晶瑞股份、飞凯材料。2、政策支持力度不断加强,半导体产业加速向国内转移半导体材料主要应用于集成电路,我国集成电路应用领域主要为计算机、网络通信、消费电子、汽车电子、工业控制等,前三者合计占比达 83%。2015 年,随着《国家集成电路产业发展推进纲要》等一系列政策落地实施,国家集成电路产业投资基金开始运作,中国集成电路产业保持了高速增长。根据中国半导体行业协会统计,2015 年我国集成电路产业销售额达到 3609.8 亿,同比增长 19.7%;2016 年我国集成电路产业销售额达到4335.5 亿元,同比增长 20.1%;2017 年我国集成电路产业销售额达到 5411.3 亿元,同比增长 24.8%;2018 年我国集成电路产业销售额达到 6532 亿元,同比增长 20.7%;2019年我国集成电路产业销售额达到 7562.3 亿元,同比增长 15.8%;2020 年 1-6 月我国集成电路产业销售额为 3539 亿元,同比增长 16.1%。2010-2020年6月我国集成电路产业销售额维持20%的增速2014 年 6 月,国家发布《国家集成电路产业发展推进纲要》;2014 年 9 月,为了贯彻《国家集成电路产业发展推进纲要》,正式国家集成电路产业投资基金。2019 年 10月 22 日,国家集成电路产业投资基金二期正式注册成立,注册资本 2041.5 亿元人民币。大基金二期得到包括财政部、国开金融、中国烟草、三大运营商及集成电路产业投资公司等多方资金的支持。股东出资方面,国家财政部出资 225 亿元,占比 11.02%,中国烟草认缴 150 亿元,三大运营商合计 125 亿元。相对一期规模 1387 亿元明显增长,预计未来半导体产业链将逐步收到二期投资支持,半导体材料也将明显受益。2015 年-2030 年《国家集成电路产业发展推进纲要》发展目标2020 年 8 月 4 日,国务院印发了《新时期促进集成电路产业和软件产业高质量发展的若干政策》。对于集成电路生产企业,新增"制程小于 28nm 集成电路企业,经营期在15 年以上,第一年至第十年免征企业所得税; 对于集成电路设计、整备材料、封装、测试和软件企业,第一至二年免征企业所得税,第三年至第五年按照 25%的法定税率减半征收企业所得税。 对于重点集成电路设计企业和软件企业,由"两免三减半,接续年度 10%税率"改为"五年免税,接续年度 10%税率"。集成电路企业所得税减免政策另外,由于各地方政府对半导体产业支持力度加大,英特尔、联电、力晶、三星、海力士、中芯国际等大厂纷纷加码晶圆厂建设。半导体制造每一个环节都离不开半导体材料,对半导体材料的需求将随着增加,上游半导体材料将确定性受益。半导体材料项目可行性研究报告编制大纲第一章总论1.1半导体材料项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1半导体材料项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表关联报告:半导体材料项目申请报告半导体材料项目建议书半导体材料项目商业计划书半导体材料项目资金申请报告半导体材料项目节能评估报告半导体材料行业市场研究报告半导体材料项目PPP可行性研究报告半导体材料项目PPP物有所值评价报告半导体材料项目PPP财政承受能力论证报告半导体材料项目资金筹措和融资平衡方案第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:
减水剂项目可行性研究报告-中小企业退出、龙头现金流向好1、行业竞争格局优化进行时2016 年起,中小企业开始退出,存续外加剂企业数量处于下降态势从 Wind 企业数据库搜索,包含外加剂或减水剂关键词的企业共有 2259 家,其中目前处于存续状态的有 1045 家,其余 1214 家企业处于吊销或者注销等状态。这 1214 家非存续状态的外加剂企业中,天眼查中能查到吊销或者注销时间的企业有 797 家。企业被吊销营业执照实质上是被剥夺企业的经营资格,而其主体资格依然存在。企业依法注销营业执照后,丧失法人资格。存量外加剂企业状态结构从 2016 年起,存续外加剂企业数量处于下降态势。2015 年及之前,历年新设外加剂企业数量大于吊销注销外加剂企业数,存续外加剂企业数量不断上升。2016 年起,新设外加剂企业数量低于吊销注销外加剂企业数,存续外加剂企业数量开始下降。2020 年年初至今,新设外加剂企业 29 家,吊销注销外加剂企业 35 家。历年新设、吊销注销外加剂企业数以上海为例,上海外加剂销量从 2015 年的 51.2 万吨下降到 37.4 万吨;与此同时,本地外加剂企业数量从 69 家下降到 52 家。截止 2020 年 7 月 1 日,上海市混凝土外加剂已发有效备案证 94 家,与去年同期有效备案证数量相同,比上季度减少了 12 家,持有效备案证中上海企业 41 家,外地企业 53 家。2020 年上半年,上海地区各类混凝土外加剂产品总销量为 13.43 万吨,同比下降了 21.14%。历年新设、吊销注销外加剂企业数聚羧酸减水剂行业 CR3 2016 年达到阶段性低点 9.0%,此后持续上升,2019 年达到 14.2%。6~10 名市场份额从 2016 年的 5.8%下降到 2019 年的 4.6%;10 名之后的市场份额从 2016年的 82.6%下降到 2019 年的 78.1%。聚羧酸减水剂行业集中度2、行业竞争格局优化原因探讨2016 年起,行业存量特征初现,整体规模稳中有增、聚羧酸占比达到较高水平截至 2017 年,混凝土外加剂及聚羧酸系减水剂产量分别达 1399 万吨和 723 万吨,2016~2017 年增长 1%和 16%,外加剂整体规模稳中有增。自 2007 年起,混凝土外加剂产量及聚羧酸系减水剂产量均保持增长,其中聚羧酸系减水剂产量增速高于外加剂行业产量增速。混凝土外加剂产量及增速情况聚羧酸系减水剂产量及增速情况聚羧酸系高性能减水剂已成主流产品,2015 年、2017 年在所有减水剂中占比分别达到73%、78%。2017 年我国萘系减水剂产量为 161.89 万吨,由于环保、节能和原料价格等原因,萘系减水剂自 2013 年以来产量持续下降。2017 年,萘系减水剂产量比 2015 年(180.62 万 t)下降 10.5%,比 2013 年(357.59 万 t)下降 54.7%。2000 年,我国开始聚羧酸系减水剂的探索性生产和应用。2007 年高速铁路建设带动聚羧酸系高性能减水剂迅猛发展。自 2011 年开始,全国各地搅拌站陆续接受聚羧酸系减水剂,并在中低强度等级泵送混凝土中大量应用,使得聚羧酸系减水剂产量有了大幅度增加。近年来,在节能、环保、安全生产等压力下,聚羧酸系减水剂在有些地区快速替代萘系减水剂成为主流供应减水剂。不同种类减水剂的占比变化情况减水剂公司合成的减水剂母液主要作为中间产品供内部复配使用,对外销售主要是复配后的外加剂,满足不同客户需求。根据苏博特募集说明书披露,公司对外销售的混凝土外加剂产品主要为复配后的混凝土外加剂。公司合成后的混凝土外加剂母体作为中间产品供内部复配使用。复配生产中,公司根据客户需求制定最佳复配方案,进一步添加其他改性混凝土外加剂,复配成浓度不同、性能各异的不同类型的混凝土外加剂终端产品。减水剂产品为复配后的减水剂,高性能减水剂(聚羧酸系产品)的含固量通常为 8%-20%,高效减水剂(萘系、脂肪族系产品)的含固量通常为 20%-30%左右。机制砂石逐步替代天然砂石,2019 年消费占比达 91%。2019 年我国机制砂石消费量为194 亿吨,消费占比由 2008 年的 36%增长至 91%,成为砂石骨料的主要消费来源。机制砂石消费量及占比情况伴随机制砂占比的提升,砂石质量相对恶化,需要专业技术服务团队进行复配。根据《聚羧酸减水剂在劣质砂石混凝土中的失效分析》,砂石料中的泥成分主要为石英、长石类、云母类以及黏土类矿物的颗粒成分。以普通聚醚型聚羧酸减水剂(PCE-1)为例,含固量43%,pH=7.1。长石,绢云母,高岭石,蒙脱石对 PCE-1 的吸附量均大于基准水泥。聚羧酸减水剂在含泥砂石料混凝中受到影响主要因为其中的矿物成分对 PCE 的吸附,导致单位水泥量的 PCE 占有率降低。极性水分子也会被吸入硅酸盐层间,导致流动水减少,流变性能变差。混凝土外加剂的应用具有较强的区域性特征,苏博特、垒知集团等外加剂企业均通过全国布局进行业务的拓展。我国地域辽阔,原材料如水泥、砂石的品质、性能差异大。混凝土原材料受运输半径限制区域特征性强,混凝土外加剂功能的发挥与原材料适应性密切相关,为更好地适应各种原材料,混凝土外加剂行业也必须因地制宜进行调配。减水剂项目可行性研究报告编制大纲第一章总论1.1减水剂项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1减水剂项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表关联报告:减水剂项目申请报告减水剂项目建议书减水剂项目商业计划书减水剂项目资金申请报告减水剂项目节能评估报告减水剂行业市场研究报告减水剂项目PPP可行性研究报告减水剂项目PPP物有所值评价报告减水剂项目PPP财政承受能力论证报告减水剂项目资金筹措和融资平衡方案第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:
“十四五”行业发展整体呈现上升趋势-化工新材料行业项目可行性研究报告1、化工新材料行业“十四五”规划指南1.1发展成绩和突出问题(一)化工新材料行业范畴:化工新材料包括高性能树脂、高性能合成橡胶、高性能纤维、功能性膜材料、专用化学品、无机新材料六个大类。化工新材料行业范畴(二)化工新材料“十三五”期间取得成绩目前化工新材料行业是我国化学工业体系中市场需求增长最快的领域,同时也是我国化学工业体系中自给率最低、最急需发展领域。经过“十三五”的发展,化工性材料行业整体的自给率已达到了61%。化工新材料行业表现消费量(万吨)及自给率(三)化工新材料行业“十三五”期间突出的问题虽然化工新材料行业的发展速度和规模较“十二五”有了长足的进步,但是某些产品仍然存在空白,一些产品虽然产能形成了一定规模,但是高端产品仍然存在差距和短板。主要反映为以下六个问题。1)部分新材料尚未国产化,部分新材料出现结构过剩的问题,能够自给但性能指标、稳定性等存在差距。①如聚碳酸酯、聚甲醛,产品的同质化严重,导致国内市场的低端同质化;竞争激烈,而高端产品仍依赖进口。②国内碳纤维有效产能2.2万吨,但产量仅为1.1万吨。通用级CF普遍存在质量不稳定、性能离散系数大等问题,而高端CF品种缺乏。2)部分产品单一,系列化程度不高,应用技术研究落后,市场响应能力和技术服务相对欠缺。受到体制、机制、市场环境的制约,加之自身理念和观念有待转变,我国相关企业在下游应用研究和技术服务方面投入较少,产品牌号少,产品尚未形成系列化、差别化,导致下游用户不能认可和接受,导致装置利用率较低。3)部分新材料亟需上游关键配套原料突破。部分化工新材料受限于上游原料,需要消除关键配套原料供应瓶颈。如共聚聚酯PETG的关键原料CHDM,尼龙66的上游关键原料己二腈,高端偏光片关键膜树脂PVA树脂、TAC树脂等依赖度较高。只有实现关键原料的突破,下游新材料的制备才成为可能。4)部分新材料产品用户粘性高,下游用户接受缓慢。化工新材料中部分产品如电子化对产品批次质量的稳定性要求高,材料更替可能会造成下游产品性能和良率的波动,因此产品评价技术难度大、认证周期长、费用高;同时,由于细分子行业众多,导致单个产品通常成本占比较低。5)企业规模小,创新能力不强,竞争能力弱,研发和设备投入不足。化工新材料产业发展迅速,产品更新换代周期较短,虽然部分新材料相关专业国内科研院所已处于国内甚至国际先进水平,但与下游企业结合不紧密、国家相关激励机制和政策支持不完善,导致科技成果转化慢、产业化程度低,行业上下游之间未能形成创新驱动发展联动。6)战略性、创新性人才短缺,制约企业和行业发展。高层次领军人才、创新人才是新材料产业实现突破式发展的核心要素,目前国内对化工新材料相关的专业人才培养、激励政策和制度有待进一步完善,对高端人才吸引不足,人才活力未能充分发挥。1.2关注重点和行业热点1)提高关键行业所需材料的保障能力。2019年6月底,日本宣布暂停对韩国供应3种半导体核心原材料含氟聚酰亚胺、光刻胶、高纯度氟化氢,韩国三种材料对日本供应的依赖分别达到93.7%、91.9%、43.9%。断供后三星2019年三季度净利润暴跌52%,间接导致韩国出口连续数月下降。从日本断供时间可以看到,部分原材料产品对整体产业链和供应链安全起到至关重要的作用。面对这种风险,需要我们国家在化工新材料行业突破重点领域急需的新材料,布局一批前沿新材料,加快重点新材料初期市场培育,提升行业所需材料的保障能力。①高端聚烯烃领域需要关注的问题a)部分产品仍处于空白,如EVOH、茂金属聚丙烯、POE弹性体;b)名义产能较大但实际产量不足,主要原因是工艺技术水平和产品质量和国外新材料企业仍有较大差距,如UHMWPE、聚丁烯-1;c)高端专用料牌号生产和开发力度依然欠缺,如茂金属聚乙烯。高端聚烯烃行业产需情况②工程塑料领域需要关注的问题:a)生产能力不足,部分产品还不具备生产能力;b)产品档次低,不能满足高端差异化需求,如聚甲醛;技术水平落后国外,如聚芳酯、液晶聚合物等;c)缺乏终端应用开发能力。工程塑料行业产需情况2)政策推动可降解塑料行业发展。近一两年来,国家对塑料垃圾的问题重点关注,国家和多个省份也颁布了禁限塑政策,这些政策将有效推动我国未来可降解材料行业的发展。③对于生物可降解材料行业,目前我国产业化较成熟的主要有聚乳酸(PLA),聚丁二酸丁二醇酯(PBS)及其共聚酯,此外呋喃聚酯等一些新型品种也被不断开发出来。那么需要关注的问题主要有:a)目前,国内生物降解塑料市场尚未打开,产品以出口为主,70%以产品或制品形式出口海外;b)与传统石油基塑料相比,生物降解塑料尚存在成本高、性能较差、依赖政策支持等不足;c)国内应用整体上呈现“叫好不叫座”的状态,市场有待培育。可降解塑料行业产需情况1.3化工新材料产业发展趋势化工新材料是我国发展战略性新兴产业的重要基础,也是传统石化和化工产业转型升级和发展的重要方向。目前我国化工新材料产品产值0.8万亿元,市场规模约1.3万亿元,近5年年均增速超过10%,预计2025年,化工新材料市场规模将达到2.2万亿元。化工新材料重点领域需求现状及预测(单位:亿元)1.4化工新材料重点发展领域(一)高性能树脂——高端聚烯烃1)进一步提升供应能力。①改进催化剂体系(茂金属聚烯烃);②改变共聚单体(高碳α烯烃共聚聚乙烯,三元无规共聚聚丙烯);③通过工艺设备、操作参数形成的特殊结构和性能产品(双峰、多峰牌号,高融指、低嗅味牌号等)。2)提升牌号开发和市场响应能力。(二)高性能树脂——工程塑料1)提升大宗工程塑料的生产水平。①高提高聚甲醛、聚碳酸酯等已有装置的运行水平;②促进一批国内尚属空白的特种工程塑料实现产业化,如PEEN、PEN、PCT、特种尼龙、生物基尼龙。2)消除关键配套原料供应瓶颈。①加快1,4-环己烷二甲酯等单体技术开发并实现规模化生产,促进特种共聚酯发展;②推进己二腈技术国产化,促进聚酰胺(尼龙66)工程塑料发展;③扩大戊二胺、1,3-丙二醇等生物基材料的关键配套原料,并降低成本。3)加强塑料改性、塑料合金技术开发。①提高工程塑料对细分市场的适用性和产品性价比;②加强改性塑料和塑料合金的开发。(三)高性能树脂——聚氨酯1)绿色化。①发展水性或无溶剂型产品,逐步替代溶剂型聚氨酯产品;②加快发展气相光气化异氰酸酯技术,研究开发非光气化异氰酸酯生产技术;③聚醚多元醇的原料环氧丙烷,淘汰环境污染严重的氯醇法。2)差别化。①大力发展脂肪族二异氰酸酯等特种异氰酸酯的生产,实现异氰酸酯产品升级;②进一步发展精细化、功能化聚氨酯产品。(四)高性能树脂——氟硅树脂1)对于已实现工业化生产的产品,应大力提升国内产能规模和装置开工率,提高生产工艺水平、产品质量稳定性和关键参数。主要包括:可熔性聚四氟乙烯、超高分子量聚四氟乙烯、膜级聚偏氟乙烯、乙烯-四氟乙烯共聚物,甲基苯基硅树脂、苯基硅油等。2)5G基建、航空航天、高端装备等领域需求快速增长、国内生产属空白的产品,应集中力量开展系统攻关,形成一批创新成果与典型应用。主要包括:超高分子量聚四氟乙烯、高速挤出级聚全氟乙丙烯树脂等。(五)高性能树脂——生物可降解材料1)扩大聚乳酸、聚丁二酸丁二醇酯(PBS)及其共聚酯、聚己内酯等品种的生产规模;2)提升二氧化碳可降解塑料等产品性能和改性开发;3)加快聚羟基(PHAs)、呋喃聚酯等新型生物基降解塑料等产业化进程;4)加快生物法丁二酸、生物法1,4-丁二醇、呋喃二甲酸等原料的技术开发和生产。(六)高性能合成橡胶——高性能合成橡胶和弹性体1)部分胶种,增加产品牌号,增加供应量,提高产品市场占有率,满足轮胎和制品用户不断升级的要求:溶聚丁苯橡胶(SSBR)、稀土顺丁橡胶(NdBR)、氢化丁腈橡胶(HNBR)、溴化丁基橡胶(BIIR)、异戊橡胶(IR)及单体、EPDM、甲基苯基硅橡胶、SEPS、特种热塑性聚氨酯弹性体等。2)强化一批产品填补缺口:如氢化丁腈橡胶、氟硅橡胶、特种氟橡胶、聚烯烃类热塑性弹性体(TPO)、热塑性聚酯弹性体(TPEE)、丙烯酸酯橡胶、尼龙/丁基复合橡胶(PA/IIR)等。3)氟硅橡胶方面,重点发展技术难度大,产品质量存在较大差距的品种。①提升氟橡胶产品品级;②提高氟硅橡胶、特种硅橡胶、甲基苯基硅橡胶的市场占有率;③实现在航空航天等领域的成熟应用,带动在核电、高铁、汽车及电子行业的推广应用。4)TPO、TPU等热塑性弹性体产品重点提升生产工艺,提高产品质量和生产稳定性,为汽车轻量化等领域做好配套。(七)高性能化学纤维1)碳纤维。①加强碳纤维生产企业与复合材料制造、下游应用领域的联系,建立生产到应用一体化的技术攻关平台,探索国内碳纤维-复合材料一体化发展的模式;②加强沥青基碳纤维和高强高模碳纤维的产业化研究,实现其规模化稳定生产。2)芳纶。①间位芳纶发展重点是在现有有效产能基础上进行产品性能提升和应用研发;对位芳纶还需要进一步扩大产能,提升产品自给率;芳纶Ⅲ材料需要加大研发力度,实现高质量稳定生产;②鼓励现有优势企业进一步提升产能、改进技术、进一步优化产品性能、发展系列化的产品,加强生产企业与复合材料制造企业的联系。3)超高分子量聚乙烯纤维。鼓励树脂生产企业与纤维生产企业联合生产和应用研发,促进全产业链竞争力提升。4)防护用纤维。进一步拓展种类,如通过引入不同的聚合单体,提升其产品性能。(八)功能性膜材料1)功能性膜领域需要重点突破的,技术空白、技术实习薄弱和进口依赖度高的品种:①反渗透膜、纳滤膜等高性能水处理膜;②渗透汽化膜、气体分离膜等特种分离膜;③高性能、低成本电解用离子交换膜;④高性能、长寿命、低成本燃料电池质子膜;⑤光学膜中的偏振片用薄膜(PVA膜、TAC膜等)、背光模组用膜(扩散膜、增亮膜、反射膜等)、聚酰亚胺柔性膜;⑥新型光伏材料用膜;⑦轨道交通用耐电晕聚酰亚胺薄膜、高性能PVB中间膜等膜品种。2)目前国内膜材料关键成型设备自主化率低,需要加大膜材料成型设备的研发和生产。①实现高端膜材料成型设备国产化;②推动应用研发体系的建立,如光学膜领域应注重薄膜材料研发与现实材料需求之间的关联,拓展光学膜应用范围,并形成“按需研发”的光学膜研发体系,逐步提升我国光学膜研究的引领能力。(九)电子化学品1)重点发展为集成电路、平板显示器、新能源电池、印制电路板四个领域配套的电子化学品。2)加快品种更替和质量升级,满足电子产品更新换代的需求。①重点优化升级超高纯化学试剂、电子特种气体、先进封装材料、锂电池负极材料、CMP抛光材料等国内已有一定生产基础的产品;②填补光刻胶及关键原材料、液晶混晶、高性能OLED显示材料、5G用关键材料等一批供应缺口较大的产品;③布局一批前沿产品,如动力电池回收用高效萃取剂、富锂锰基正极材料、无镉量子点发光显示材料等。(十)无机新材料1)重点面向战略性新兴产业发展需要,重点发展无机纳米材料、无机晶须材料、光催化材料、石墨烯材料、半导体晶圆材料、无机纤维材料领域。①根据市场需要加强无机化工产品应用性能的研究,开发产品的新产品。如开发高纯、超细、表面改性等产品,提升产品性能;②实施创新驱动,研究开发相应的高新工艺技术包括超细化技术、纤维化技术、薄膜化技术、表面改性技术、单晶、多孔生产技术、特殊几何形状制备技术、高纯技术、复合物技术;③突破关键核心技术,如水热法生产高纯电子级无机化工产品等。促进无机功能材料技术发展。2)关注“新基建”带来的市场机会,发展5G技术所需相关材料等。3)推动与相关产业合作,促进上下游产业链的紧密结合。(十一)3D打印材料。1)开发低成本打印材料、开发多样性打印材料:未来进行改性技术研究的材料主要聚焦工程塑料、生物降解塑料、热固性塑料、光敏树脂和预聚体树脂、高分子凝胶、碳纤维及复合材料等几大类。2)对材料进行流动性改性、增强改性、快速凝固改性、功能化改性等技术开发。(十二)医用化学材料。医用化学材料产业发展迅猛,产品更新换代周期短,需要加大研发投入,建立产学研用深度融合的技术创新体系,推动国内工业化生产尚处于空白(或仅能小批量生产)的产品加快实现工业化突破。化工新材料行业项目可行性研究报告编制大纲第一章总论1.1项目总论1.2可研报告编制原则及依据1.3项目基本情况1.4建设工期1.5建设条件1.6项目总投资及资金来源1.7结论和建议第二章项目背景、必要性2.1项目政策背景2.2项目行业背景2.3项目建设的必要性2.4项目建设可行性分析2.5必要性及可行性分析结论第三章市场分析及预测3.1行业发展现状及趋势分析3.2我国化工新材料行业发展现状分析3.3项目SW0T分析3.4市场分析结论第四章项目建设地址及建设条件4.1场址现状4.2场址条件4.3建设条件4.4项目选址4.5结论第五章指导思想、基本原则和目标任务5.1指导思想和基本原则5.2建设目标和任务第六章建设方案6.1设计原则指导思想6.2基本原则6.3项目建设内容6.4核心工程设计方案第七章劳动安全及卫生7.1安全管理7.2安全制度7.3其它安全措施第八章项目组织管理8.1组织体系8.2管理模式8.3人员的来源和培训8.4质量控制第九章招标方案9.1编制依据9.2招标方案9.3招标应遵循的原则第十章投资估算及资金筹措10.1投资估算编制依据10.2工程建设其他费用10.3预备费10.4总投资估算第十一章财务分析11.1评价概述11.2编制原则11.3项目年营业收入估算11.4运营期年成本估算11.5税费11.6利润与利润分配11.7盈亏平衡分析11.8财务评价结论第十二章效益分析12.1经济效益12.2社会效益12.3生态效益第十三章项目风险分析13.1主要风险因素13.2项目风险的分析评估13.3风险防范对策第十四章结论与建议14.1结论14.2建议一、财务附表附表一:销售收入、销售税金及附加估算表附表二:流动资金估算表附表三:投资计划与资金筹措表附表四:固定资产折旧估算表附表五:总成本费用估算表附表六:利润及利润分配表附表七:财务现金流量表服务流程:1.客户问询,双方初步沟通了解项目和服务概况;2.双方协商签订合同协议,约定主要撰写内容、保密注意事项、企业相关材料的提供方法、服务金额等;3.由项目方支付预付款(50%),本公司成立项目团队正式工作;4.项目团队交初稿,项目方可提出补充修改意见;5.项目方付清余款,项目团队向项目方交付报告电子版;另:提供甲级、乙级工程资信资质关联报告:化工新材料行业项目申请报告化工新材料行业项目建议书化工新材料行业项目商业计划书化工新材料行业项目资金申请报告化工新材料行业项目节能评估报告化工新材料行业行业市场研究报告化工新材料行业项目PPP可行性研究报告化工新材料行业项目PPP物有所值评价报告化工新材料行业项目PPP财政承受能力论证报告化工新材料行业项目资金筹措和融资平衡方案
2019 年,中国硬件 WAF 市场规模达 1.16 亿美元,同比增长 18%。根据 IDC 发布的《中国硬件 Web 应用防火墙(WAF)市场份额,2019:需求升级,技术为王》报告,2019 年,中国硬件 WAF 市场规模达 1.16 亿美元,同比增长 18%,市场呈现稳步发展的态势。各家厂商市场份额分别为:绿盟 14.2%、安恒 11.3%、启明星辰 10.2%、远江盛邦 5.5%、新华三 5.1%。IDC 定义下的 Web 应用安全市场包括 URL 过滤、Web 反恶意软件、Web 应用防火墙和 Web 内容过滤产品。Web 应用防火墙作为应用层安全防护的基础产品,通过监视进出服务器的 Web 流量从 而识别并阻断应用层的攻击行为。万物互联时代下,Web 环境复杂程度的提升、应用的不断增多,暴露面的不断扩大使得 WAF 成为政企网络安全建设的基础性产品, 用户对于 WAF 产品的技术能力和协同联动性提出了更高的要求。2019 年中国硬件 Web 应用防火墙市场厂商市场份额资料来源:IDC,新时代证券研究所预计 2020 年全球 5G 用户达 1.9 亿。2020 年 6 月版《爱立信移动市场报告》指出,中国 5G 的迅速普及抵消了北美和欧洲因新冠肺炎控制 措施而受到的影响,爱立信提高 5G 用户数预估,预计到 2020 年年底,全球 5G 用 户数将突破 1.9 亿(此前预计 1 亿),到 2025 年年底,将达 28 亿(此前预计 26 亿)。 FWA 能够发挥更大作用,到 2025 年年底,FWA 连接量预计将达到近 1.6 亿,占全球移动网络数据流量的 25%。截至 2019 年年底,全球 FWA 数据流量约占全球数据总流量的 15%。而到 2025 年,数据流量预计将增长近 8 倍,达到 53 艾字节,占全球移动网络数据总流量的 25%。中国工业互联网推进时间轨迹工业领域安全事件频发,工业领域安全意识提升。工业互联网的发展导致工业体系逐渐由封闭走向开放,网络安全威胁开始向工业环境渗透。2017 年,全球有 150 多个国家的信息系统遭受“永恒之蓝”蠕虫病毒入侵,给车企、能源和通信行业 造成巨大损失;2018 年,由于遭受勒索软件攻击,导致台积电在台湾北、中、南 三处重要生产基地生产线停摆;2019 年,“LockerGoga”攻击挪威海德鲁铝业公司, 导致多工厂关闭。工业互联网安全事件频发,使得工业领域企业的网络安全意识逐 步提升,开展安全评估、防范安全风险、培育工业领域安全人才等任务和需要日益迫切,带动安全服务市场需求稳步增长。工业互联网相关安全事件梳理工业互联网安全是工业生产运行过程中的信息安全、功能安全与物理安全的统 称。工业互联网安全防护对象涵盖设备、控制、网络、应用和数据五大安全重点: 1、设备安全:包括智能设备安全和智能产品安全,例如工厂内单点智能器件、成 套智能终端等智能设备,以及操作系统、应用软件安全、硬件安全等。2、控制安全:包括控制协议安全、控制软件安全以及控制功能安全。3、网络安全:包括外 部网络安全、承载工业智能生产和应用的工厂内部网络安全和标识解析系统安全等。 4、应用安全:包括工业互联网平台安全与工业应用程序安全。5、数据安全:包括 涉及采集、传输、存储、处理等各个环节的数据以及用户信息的安全。中国工业互联网安全框架工业互联网防护对象2017-2019 年,我国工业互联网安全产业存量规模 CAGR 达 42.3%。根据中国信通院数据,2018 年、2019 年我国工业互联网产业经济总体规模分别为 1.42 万 亿、2.13 万亿(增加值口径,2018 年不变价),同比实际增长分别为 55.7%、47.3%。预计 2020 年,工业互联网产业经济总体规模约为 3.1 万亿元,同比实际增长约为 47.9%。根据工信部数据,2019 年,我国工业互联网安全产业存量规模为 27.2 亿元, 2017-2019 年复合增长率高达 42.3%,但在工业互联网核心产业中占比仍较低,近年来基本维持在 0.5%的水平。2017-2020 年我国工业互联网产业经济总体情况2017-2019 年我国工业互联网安全产业规模新基建背景下工业互联网安全的重要性日益突出。2020 是全面建成小康社会 和“十三五”规划收官之年,中国经济在经济结构转型和贸易战压力的背景下,又遭受新型冠状病毒疫情的冲击,新基建作为重要的逆周期调节手段,在多次会议中 被频繁提及。“新基建”包括 5G 基建、特高压、城际高速铁路和城市轨道交通、 新能源汽车充电桩、大数据中心、人工智能、工业互联网等七大领域。在新基建风口下,工业互联网驶入快车道,工业互联网将要实现全要素、全产业链、全价值链的全面连接,将导致系统受攻击面显著增大,协同攻击危害增大,工业互联网安全管理变得尤为重要。5G 有望催生工业互联网安全需求。中国 5G 产业在政策和市场驱动下高速发展,根据工信部数据,截至 2019 年底我国共建成 5G 基站超 13 万个;预测,2020 年我国将建设超过 60 万-80 万个 5G 基站。5G 技术具备低延时、大宽带、广连接的优势,将会衍生出工业互联网等重要应用场景,5G 发展有望催化工业互联网产业发展。5G 环境下,工业互联网业务场景增加、网络结构更为复杂、安全风险增多、管理难度加大,网络安全需求也将大幅增长。2019-2025 年我国新建 5G 基站数量5G 工业自动控制应用场景国内厂商工业互联网安全相关产品线日益完备。在安全防护方面,天融信、绿 盟、启明星辰、中国网安等公司产品链较为完备;在运营检测方面,360 与天融信 公司的产品链完备;启明星辰、杭州迪普等公司支持上百种工业协议,能更好的满 足业务生产的高可靠低实延要求;深信服公司产品在工业互联网安全方面的应用尚 未形成体系,但其多款产品市场排名前列,其广域网优化在中国市场占有率第一、 下一代防火墙获得国际权威安全检测机构 ICSA 的防火墙认证,是一家有良好的成 长空间的行业龙头公司;国内厂商中 360、天融信、启明星辰、深信服以及中国网 安等公司均配以安全服务产品。综合看来,天融信与 360 公司在本行业中优势及市 占率较大,深信服公司成长空间大。硬件 WAF项目可行性研究报告编制大纲第一章 总论1.1项目总论 1.2可研报告编制原则及依据 1.3项目基本情况 1.4 建设工期 1.5建设条件 1.6 项目总投资及资金来源 1.7结论和建议 第二章 项目背景、必要性2.1 项目政策背景 2.2 项目行业背景 2.3项目建设的必要性 2.4项目建设可行性分析 2.5必要性及可行性分析结论 第三章 市场分析及预测3.1我国互联网发展现状及趋势分析 3.2我国硬件 WAF发展现状分析 3.3项目SW0T分析 3.4市场分析结论 第四章 项目建设地址及建设条件4.1 场址现状 4.2 场址条件 4.3 建设条件 4.4项目选址 4.5结论 第五章 指导思想、基本原则和目标任务5.1指导思想和基本原则 5.2建设目标和任务 第六章 工程建设方案6.1设计原则指导思想 6.2基本原则 6.3项目建设内容 6.4核心工程设计方案 第七章 总图运输和公用与辅助工程7.1总图运输 7.2土建工程设计方案 7.3公用与辅助工程设计方案 第八章 节能8.1节能设计的指导思想 8.2节能设计的基本原则 8.3 编制依据 8.4能源构成及能耗计算 8.5 节能措施综述 8.6 结论及建议 第九章 环境影响9.1环境保护的目的与依据 9.2建设地址及环境现状 9.3项目建设和运营对环境的影响及治理措施 9.4环境影响分析 第十章 劳动安全及卫生10.1安全管理 10.2安全制度 10.3其它安全措施 第十一章 消防评价11.1设计依据 11.2防范措施 11.3消防管理 11.4消防设施及措施 11.5消防措施的预期效果 第十二章 项目组织管理12.1组织体系 12.2管理模式 12.3人员的来源和培训 12.4 质量控制 第十三章 工程进度管理13.1建设阶段 13.2建设期管理 13.3加快建设的措施与建议 第十四章 招标方案14.1编制依据 14.2招标方案 14.3招标应遵循的原则 第十五章 投资估算及资金筹措15.1投资估算编制依据 15.2工程建设其他费用 15.3预备费 15.4总投资估算 第十六章 财务分析16.1 评价概述 16.2 编制原则 16.3项目年营业收入估算 16.4运营期年成本估算 16.5税费 16.6利润与利润分配 16.7 盈亏平衡分析 16.8财务评价结论 第十七章 效益分析17.1经济效益 17.2社会效益 17.3生态效益 第十八章 项目风险分析18.1主要风险因素 18.2项目风险的分析评估 18.3风险防范对策 第十九章 结论与建议19.1结论 19.2建议 一、财务附表附表一:销售收入、销售税金及附加估算表 附表二:流动资金估算表 附表三:投资计划与资金筹措表 附表四: 固定资产折旧估算表 附表五:总成本费用估算表 附表六:利润及利润分配表 附表七:财务现金流量表 关联报告:硬件 WAF项目申请报告硬件 WAF项目建议书硬件 WAF项目商业计划书硬件 WAF项目资金申请报告硬件 WAF项目节能评估报告硬件 WAF行业市场研究报告硬件 WAF项目PPP可行性研究报告硬件 WAF项目PPP物有所值评价报告硬件 WAF项目PPP财政承受能力论证报告硬件 WAF项目资金筹措和融资平衡方案
LCP材料项目可行性研究报告-"十四五"5G时代最有潜力的材料1、LCP 行业概况1.1 LCP材料简介LCP材料具有耐高温,高强度机械性能,优越电性能和加工性能。LCP,液晶高分子(Liquid Crystal Polymer),是一种新型高性能特种工程塑料,最早在20世纪80年代初期由美国DuPont公司开发。其机械性能、尺寸稳定性、光学性能、电性能、耐化学药品性、阻燃性、加工性良好,耐热性好,热膨胀系数较低。在一定条件下LCP材料能以液晶相存在,它既有液体的流动性又呈现晶体的各向异性,冷却固化后的形态可以稳定保持。1.2 LCP产品的分类标准LCP的分类方法各有不同:(1)根据合成单体的不同可划分Ⅰ型、Ⅱ型和Ⅲ型(2)根据形成液晶相的条件,可分为溶致性液晶(LLCP)和热致性液晶(TLCP)。虽然TLCP的工业化时间晚于LLCP,但由于其优异的成型加工性能,因此发展势头十分迅猛,新品种不断出现,远远超过了LLCP。(3)LCP产品按照液晶基元在聚合物分子中的位置可分为主链型液晶聚合物、侧链型液晶聚合物和复合型液晶聚合。(4)按应用分类可以分为薄膜级,注塑级和纤维级。LCP的分类1.3 LCP下游应用领域LCP传统应用领域较为广泛。其中,LCP作为工程塑料可用于手机、电脑等电子设备中的连接器,汽车的大灯壳体,高温烤盘和蛋糕模具;作为纤维可以用于宇宙飞船的安全气囊、轮胎的增强材料、防割手套以及光纤;制成合金可以用于耐腐蚀的化工泵、汽车刹车片以及高端音响拾音器等。LCP 应用领域图2、世界 LCP 行业的发展与现状液晶高分子最早的发现可以追溯到1888年,奥地利植物学家F.Reinitzer发现,把胆锱醇苯酸脂晶体加热到145°C会熔融成浑浊的液体,继续加热到178.5°C,浑浊的液体会突然变成清亮的液体,而且这种浑浊到清亮的过程是可逆的。经系统的研究分析指出,有些物质的机械性能和各向同性液体相似;但他们的光学性质却和晶体相似,是各异性的。因此,这些介于液体与晶体之间的相被称为液晶相。1937年,Bawden和Pirie在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性,这是人类第一次发现生物高分子的液晶特性。1950年,Elliott和Ambrose第一次合成高分子液晶,LCP的研究至此展开。美国:美国塞拉尼斯公司(现泰科纳公司)和杜邦公司是全球最早研发LCP材料并投入生产的企业,在LCP原材料生产和产品制造技术方面积聚了非常雄厚的实力。塞拉尼斯于1985年便开始生产以HBA/HNA为主链的LCP树脂,经过多年的发展,其LCP系列产品已涵盖I型、Ⅱ型和Ⅲ型,目前泰科纳公司将LCP业务发展成为全球重要的LCP树脂生产大厂,并于2010年收购了杜邦LCP生产线Zenite系列,成为LCP树脂龙头企业,产能可达22000吨/年。日本:在LCP技术发展初期,日本便把LCP材料列为其工业技术中的重点攻克对象。目前,日本已发展出包括村田制作所、宝理塑料、住友化学等多家可量产LCP材料的企业。其中,村田紧跟着美国步伐,在LCP材料领域进行了深度积累,具备从LCP材料制造到产品生产的完整产业实力,成为苹果的独家供应商。从需求端来看,2002年LCP全球需求量仅为1.6万吨,2012全球需求量发展到4万吨,从此进入快速增长期,并在2019年达到了7.4万吨水准,同比2018年增长了8%,其中2012-2019年之间复合增长率接近10%。2012-2020 年全球 LCP 材料需求规模统计情况单位/万吨LCP材料早期应用较为单一,基本都是工业应用,后随着科技发展逐渐扩宽,应用领域涵盖如单子电器(高密度连接器、线圈架、线轴、基片载体、电容器外壳);汽车工业(汽车燃烧系统元件、燃烧泵、隔热部件、精密元件、电子元件等);航空航天(雷达天线屏蔽罩、耐高温耐辐射壳体等)等多个领域,其中电子电器仍然是LCP材料的最主要应用领域,其应用占有量高达73%,传统的工业及消费领域占比以逐渐缩减至7%左右,汽车及医疗领域占比分别为4%和3%。2019 年全球 LCP 的主要应用于电子电器领域/%从供给端来看,2020年全球LCP树脂产能约为7.6万吨/年,其主要供应来自于日本和美国,中国在相关方面依然在加速发展突破过程。LCP具有产业分布密集性的特点,其全部产能都集中在中,日,美三国,分别产能1.6万吨,3.4万吨和2.6万吨,占比为21%,45%和34%。日本和美国的企业在20世纪80年代就已进行LCP产业的研发,我国长年依赖日美进口,不过近年来沃特股份、聚嘉新材料、金发科技、普利特等企业陆续投产,中国LCP产业快速增长。从具体生产企业看,目前塞拉尼斯、宝理塑料以及住友三家企业产能超过1万吨,前三家企业产能占比高达63%,行业集中度较高。LCP全球占有份额/%3、国内 LCP 行业的发展与现状3.1国内LCP行业发展LCP长期依赖进口,目前国内LCP厂家多处于突破及验证阶段。由于进入LCP产业时间比较晚,我国相关LCP产品长期依赖进口。后随着LCP材料需求的增长叠加国内替代效应,国内有少数几家公司开始关注该领域并陆续进行技术储备,普利特2007年收购了上海科谷化工,公司在上海金山建设LCP树脂聚合装置,建立TLCP材料从树脂聚合到复合改性的完整技术与生产体系,并开始批量供应客户。金发科技从2009年开始自主开发LCP材料, 2014年产能达到1000吨,2020年扩产后产能将达到6000吨/年。沃特股份于2014年收购三星精密的全部LCP业务,目前产能为3000吨/年。尽管金发和沃特目前都对外宣布拥有产能,但大多是有产能无产量的情况,国内LCP材料发展仍处于突破及检验阶段。LCP中国发展历史近年来由商务部牵头海关、税务、中国塑料加工工业协会等部门,加大支持工程化、产业化及其应用,国产LCP行业进入有序发展阶段。中国虽逐步布局LCP产业,但与日本,美国在产业实力相差依旧巨大。5G时代LCP有望取代PI成为在5G时代天线的核心材料。LCP的介电常数Dk在2.9-3.1之间,可以在几乎全射频范围内保持恒定,且其传输损耗可达到PI的十分之一,能够有效降低信号损失、提高通信质量。另外,LCP的可弯折性较PI更好,厚度可降至传统天线的65%,可以提高手机内部以及基站天线的空间利用效率。因此LCP有望替代PI成为5G时代天线PFC软板中的重要基材,LCP市场将迎来快速增长。3.2 LCP在天线薄膜上的应用及市场空间测算在2016年以前全球智能手机出货量由于硬件的更新及3G,4G时代的普及,呈现快速上涨的趋势,全球智能手机出货量由2009年的1.73亿部在7年时间内快速增长到14.7亿部并达到近年来顶峰水准,增长率高达850%。2016年后由于4G普及率已达到较高水准,且各大手机厂商新款机型缺乏亮点,手机用户的更换欲望不高,智能手机出货量趋于平缓,2019年出货量为14.86亿,未来随着5G技术的逐渐成熟,全球智能手机的销售结构将被再次改变,手机出货量有望重新进入高速增长期。据IDC数据预测,2023年全球手机出货量有望达到16亿部。全球智能手机出货量/亿5G时代高频信号传输方式大幅提升了接收端的天线材料要求。5G的信息传播速率为1Gb/s,其传播速度为4G速度的10倍以上,为了保证更高效的信息传输效率,这就需要更好的频谱带宽。无线通信的信息传播主要是用电磁波,传统的3G,4G都是采用6GHz的中低段电磁波,低频段电磁波较高频段的传播距离更远,然而6GHz以下的频谱资源是非常稀缺的,难以有效的满足5G时代高速传播的需求。毫米波高频段既能提升中低频谱的利用效率,亦能进行高频领域的布局,从而成为5G技术的主要选择。不同于3G与4G技术仅是在低频领域间技术的升级,5G使用的天线长度降至毫米级是一种技术上的巨大变革,需要重新选择天线产品载体。而且在5G时代的初期,过度阶段的产品不仅需要满足5G传输的需求,亦要可接收3G,4G信号,于此同时,更轻更薄易于携带是智能手机发展不可改变的方向,因此给天线所预留的空间及其有限。在5G时代的初期,一方面要满足对天线材料的特殊要求,一方面又要控制天线占有的空间,与传统的PI及MPI材料相比,LCP拥有更强的信号传输优势,我们认为未来在基站端和手机端都将大幅增加LCP材料的使用。2019年LCP市场容量约为20.43亿。LCP膜2018年在手机的应用比率为9%,2019年逐步增长至10%,LCP材料有望在手机端的渗透率不断提升,在远期或达到80%的应用水准。随着5G手机技术的技术沉淀及产品逐步推广,在产品出口率及LCP材料渗透率的双重利好加持下,LCP天线需求在近年将进入爆发阶段,并带动前端LCP薄膜树脂的使用需求。若未来5G手机渗透率与4G手机持平,达80%市场普及率,LCP膜在5G手机段渗透率亦达到80%水准,LCP材料的需求量或将达3000吨,并形成近百亿的市场空间。2018-2022年LCP市场容量测算3.3LCP在其他端的应用LCP膜在无人驾驶技术与可穿戴设备上得以体现应用无人驾驶技术:经过多年的发展,仍未实现大面积普及与高端应用,其主要原因之一便是现有的通信技术无法稳定高效的提供信号传输支持。5G新时代的来临,高速,高频,低时滞的信号传输将大大提升无人驾驶技术的稳定性,LCP天线的毫米波雷达具有探测距离远,分辨率高,方向性较好,体积不大等优点,其受到天气环境影响较小,可有效辨别行人,且对驾驶感测精度有不错的提升,因而低介电损耗的LCP天线将成为无人驾驶汽车的绝佳选择。与汽车制造的高额成本相比,LCP天线的单体价格差异几乎可以忽略不计,因此在未来无人驾驶智能汽车的推广中,LCP天线有望亦将实现高速渗透,提高LCP市场需求。可穿戴设备:可穿戴设备在近年来呈现持续增长势头。可穿戴智能手表作为通讯终端,需要高频信号的同步接收,且因其需要体积小重量轻的特殊性,对空间有较高要求,LCP天线具有成本较低,体积小,传输效率高且性价比高的优势,随着5G配套网络及应用场景的推广应用,LCP天线将随着可穿戴设备的增长实现同步高速增长。SMT:与传统插装技术相比,SMT具有高接脚密度,易于自动化且适于高频应用的特性。因此,SMT需求更高的耐热性,其焊接点处的材料需在250度高温下维持五秒以上。LCP的耐热性可达到300度,具有优秀的阻燃性且不存在吸湿后不稳定等问题,是及其适合用于新型CMT连接器上的材料。汽车零部件;LCP广泛用于制造汽车发动机内各种零部件以及特殊的耐热、隔热部件和精密机械、仪器零件。本田混合动力车的功率模块外壳通过采用LCP实现顶级的小型化和高输出。Mazda开发LCP共混复合材料,用于制造汽车车身的面板。LCP材料项目可行性研究报告编制大纲第一章总论1.1LCP材料项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1LCP材料项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:关联报告:LCP材料项目申请报告LCP材料项目建议书LCP材料项目商业计划书LCP材料项目资金申请报告LCP材料项目节能评估报告LCP材料行业市场研究报告LCP材料项目PPP可行性研究报告LCP材料项目PPP物有所值评价报告LCP材料项目PPP财政承受能力论证报告LCP材料项目资金筹措和融资平衡方案
功率半导体项目可行性研究报告-功率器件超400亿美元市场1.1. 功率半导体是电路控制核心,市场规模超 400 亿美元功率半导体是电子装臵电能转换与电路控制的核心,主要功能有变频、变压、整流、功率转换和管理等, 75%以上的电能应用需由功率半导体器件进行功率变换以后才能供设备使用。功率半导体可根据对电路信号的可控程度分为全控型、半控型和不可控型;按截流子类型分为单极型、多极型、混合型;按材料可分为硅基、第二代及第三代化合物衬底;按集成度分为分立器件、模组和功率 IC。不同种类功率器件分类功率半导体市场规模稳健增长,中国已成为最大需求市场。近年来,功率半导体的应用领域已从工业控制和消费电子拓展至新能源、轨道交通、智能电网、变频家电等诸多市场,市场规模整体呈现稳健增长态势。根据 Omdia 预测,2020 年全球功率半导体市场规模约为 431亿美元,预计 2021 年市场随着新能源汽车普及以及疫情好转复苏强劲,整体市场规模将突破 450 亿美元,至 2024 年全球功率器件市场将突破 500 亿美元。据 IHS Markit 数据,中国目前已成为全球最大的功率半导体消费国。2018 年市场需求规模达到 138 亿美元,增速为 9.5%,占全球需求比例高达 35%,预计未来中国功率半导体将继续保持较高速度增长,2021 年市场规模有望达到 159 亿美元。2019-2020年全球功率半导体市场规模(亿美元)2014-2021年中国功率半导体市场规模(亿美元)1.2. 下游应用领域广阔,新能源汽车驱动市场增长从下游领域看,汽车电子、5G 通信、家电及工业为功率器件主要应用市场。据 Yole 数据,2019 年全球 IGBT、MOSFET 市场合计近 175 亿美元,其中汽车电子相关需求为 15 亿美元,工业市场为 11 亿美元,计算机存储市场达到 12 亿美元,消费电子市场则达到 13 亿美元。至 2025 年,IGBT 与 MOSFET 整体市场规模有望增长至 225 亿美元,其中汽车市场成长至19 亿美元,其中 EV/HEV 增长最快,达 18 亿美元,工业则小幅增长至 13 亿美元、消费电子和计算&存储则均为 11 亿美元,其中汽车电子尤其是新能源车普及带来的需求增量将成为市场增长的主要驱动因素。2019 年全球功率半导体下游市场情况2019~2025 年功率器件市场规模1.2.1. 新能源车及充电桩发展迅速,贡献功率器件最大增量随着电动化程度提升,单台新能源汽车所需功率半导体规模增长迅速。2020 年,单台 MHEV(轻度混合动力汽车)平均需要价值 572 美元的半导体组件,其中功率半导体占 90 美元;FHEV(全混合动力汽车)、PHEV(插电式混合动力汽车)以及 BEV(纯全电池电动汽车)平均单台需要价值 834 美元的半导体组件,其中功率半导体占 330 美元,较轻度混合动力汽车提升 240 美元。根据英飞凌数据,若按照 2025 年全球销售 1880 万台 MHEV 以及共 2100万台 FHEV、PHEV 和 BEV 进行测算,至 2025 年全球新能源汽车功率半导体市场规模约近80 亿美元。2020 年新能源汽车按照电动化程度划分所需的半导体规模我国汽车充电桩将大幅放量,进一步推动功率半导体需求增长。根据中国储能网,2019 年,充电基础设施增量为 41.1 万台,同比增加 18.1%,新能源增量车桩比约为 2.9:1,全国充电基础设施累计数量为 121.9 万台,同比增加 50.8%,新能源汽车累计销量达 420 万辆,车桩比达到 3.4:1。2020年 3 月,根据国务院新闻发布会,中央预计 2020 年全年投资 100 亿元左右建设充电桩,其中新增公共桩大约 20 万个,新增私人桩约 40 万个,新增公共充电站 4.8 万个。据高工产研电动车研究所(GGII),IGBT 约占充电桩成本的 20%,由此粗略估算,充电桩 IGBT 在2020 年国内市场需求量近 20 亿。根据中国汽车工业协会预测 2025 年汽车销量将达 3000万辆,新能源车至少占比 20%,则新能源车销量达 600 万辆,保有量达近 2000 万辆,假设车桩比按 3:1 测算,车桩需求量超 600 万个,相较目前累计保有量 120 万个,其中功率半导体需求将是存量的 5 倍。1.2.2. 消费电子:手机快充和家电变频加速渗透变频家电渗透率提升,随着节能高效政策的持续推进,家电变频化已然成为一种趋势。家电变频是通过 IGBT、MOSFET、晶闸管等功率半导体改变家电的供电频率,从而调节负载,起到降低功耗,减小损耗的作用,整体节能达到 20%-30%的效果,同时也起到降低噪声的作用。根据 IHS 统计,2017 年全球家电销量约为 7.11 亿台,其中可变频家电销量为 2.44 亿台,占比为 34%。预计到 2022 年可变频家电销量将达到 5.85 亿台,占比达到 65%。另据英飞凌测算,单台变频家电的功率半导体价值从传统定频家电的 0.8 美元成长为 11.3 美元,相差13 倍,据测算全球家电功率半导体规模有望从 2017 年的 31.4 亿美元上升至 2022 年的 68.6亿美元。手机快充刺激功率半导体需求,随着电子产品的复杂性不断提升,充电器的功率也随之增大。快充的主要原理是提高充电电压或充电电流以达到高功率充电的目的,这一过程中需要MOSFET 起到同步整流的作用,从而保证高电压充电的安全。GaN 基 MOSFET 是目前快充功率半导体的发展趋势,它可以使充电器减少发热,缩小充电器体积。功率半导体项目可行性研究报告编制大纲第一章总论1.1功率半导体项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1功率半导体项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表关联报告:功率半导体项目申请报告功率半导体项目建议书功率半导体项目商业计划书功率半导体项目资金申请报告功率半导体项目节能评估报告功率半导体行业市场研究报告功率半导体项目PPP可行性研究报告功率半导体项目PPP物有所值评价报告功率半导体项目PPP财政承受能力论证报告功率半导体项目资金筹措和融资平衡方案第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:
一、总论1.项目的背景2.项目可行性分析的结论3.主要经济技术指标表(5-10年)二、项目投资的必要性分析1.投资时机的必要性分析2.投资区域和空间的必要性分析(需要论证100亩的必要性)三、产品市场分析1.国内外产品市场供应现状和预测2.国内外产品市场需求现状和预测3.细分目标市场的确定、市场份额和市场策略(需要明确本公司的目前订单量、以及如何使得项目投产后订单量增长)4.国内外产品市场销售价格与走势5.市场竞争力分析(大湾区主要竞争对手的情况,自身的优势和劣势)6.市场风险(订单出现下滑的保障措施)四、厂址选择和建设规模1.确定厂址的条件(项目选址的论证)2.建设规模(分期建设的规模、厂房的面积、层高、层数;办公和科研用房的面积、层高、层数;宿舍的面积、层高、层数;不但要列明数据还需提供得到此数据的依据)3.建设时间进度表五、工厂技术方案1.项目组成2.生产技术方案(包括生产方法、生产工艺、生产装置流程图)3.总平面布置和运输4.土建工程5.其他工程六、环境保护1.项目主要污染源和污染物2.项目拟采用的环境保护标准3.治理环境的方案4.环境监测制度的建议5.环境保护投资估算6.环境影响评价结论七、项目实施进度安排1.项目实施的各阶段2.项目实施进度表八、投资估算与资金筹措1.项目总投资估算(单项工程投资估算表、分年度投资计划表、流动资金估算表)2.资金筹措(需要提供资金筹措的各渠道金额和目标金融机构,并对资金筹措风险进行分析,说明资金筹措不及时的保障措施)3.投资使用计划(分期建筑工程费用、设备及器具购置费用、安装工程费用、工程建设其他费用、建设期利息)九、财务效益、经济和社会效益评价(5-10年)1.生产成本和销售收入估算2.财务评价(从净利润、税收、资产收益率角度评价,并在税收分析时着重分析地方税收的变化,需要考虑出口退税和国库调节对地方税收的影响)3.不确定性分析4.社会效益和社会影响分析(对产业链和当地就业的影响)十、可行性研究结论与建议1.结论与建议2.附件3.附图有利于推动半导体封测产业健康可持续发展半导体(IC)产业是国民经济和社会发展的战略性、基础性和先导性产业,是培育发展战略性新兴产业,推动资讯化和工业化深度融合的核心与基础,是转变经济发展方式、调整产业结构、保障国家资讯安全的重要支撑,其战略地位日益突显。拥有强大的半导体技术和产业,是迈向创新型国家的重要标志。半导体封测产业就属高端制造业范畴,具有技术含量高、资本投入高、附加值高、资讯密集度高,以及产业控制力较高、带动力较强的特点,项目建设势在必行:1、新政策新机遇:新政策实施为积体电路产业发展营造更加良好的环境;2、产业发展需要:未来先进封装是驱动产业摩尔定律的核心驱动力;3、技术发展需要:积体电路技术演进路线越来越清晰,封测是国产替代的突破点;4、市场发展需要:高性能、微型化的芯片需求呈爆炸式增长,市场需求不断增长;5、企业发展需要:项目建设符合企业技术路线和总体发展战略。2.2.2 有利于解决肇庆市集成电路产业诸多诟病随着国民经济与社会的快速发展,跨境电商与国际贸易行业快速发展过程中,也暴露出了很多问题。例如,在传统物流、经营模式下,产品同质化现象严重、品牌扩张、信息滞后存在资金难题等。具体来说,行业发展过程中存在的问题主要有以下四个方面:1、库存滞销越发普遍:跨境电商、国际贸易与高端芯片生产商销售受到冲击,一方面是价格低迷不振及市场环境转冷影响,另一方面是消费升级趋势下,对产品提出更高要求。2、产品同质化严重:国内很多企业缺乏对品牌的营销,产品附加值很低,质量、设计、工艺等方面非常相似,难以满足消费者与企业的需求。3、融资困难,资金压力大:高端芯片制造的资金周转期长,流转速度慢,淡旺季与日常运营周转需要大量资金维持,因此常常陷入资金链短缺的困境。同时,融资渠道匮乏,企业面临的资金压力更大。半导体高端封测制造产业园建设项目将打造1+N物联网智慧供应链系统,搭建跨境交易平台,围绕整个集成电路产业链的各个企业、产品,通过对信息流、物流、资金流的控制,从采购开始,到服务中间产品及最终产品,最后由销售网络把产品送到消费者手中。将供应商、制造商、分销商、零售商、直到最终用户连成一个整体的功能网链结构模式,为企业去库存、缩短现金的周转、实现产业链企业的盈利,为解决集成电路产业链上下游企业跨境电商、国际贸易诸多诟病做出贡献。
一、项目名称用友智能制造服务平台项目。二、申报单位用友网络科技股份有限公司。三、项目地址北京海淀区北清路68号用友产业园。四、项目建设背景一、制造业的强盛与衰败,是一个国家的经济“寒暑表”,对于大国而言更是如此。近年来,党和国家十分重视制造业的发展。习近平总书记论述中国制造业的发展前景时,要求我们“推动中国制造向中国创造转变、中国速度向中国质量转变、中国产品向中国品牌转变”。总书记说的这“三个转变”,高度概括了中国制造业发展道路上的“三道门槛”。因此,中国制造业无论是国有企业还是非公企业,只有做大做强,才能实现中华民族伟大复兴的中国梦。二、中国企业普遍进入以互联网化为核心的3.0发展阶段,智能制造成为制造业的必然方向。大力改造提升传统产业,深入实施《中国制造2025》,加快大数据、云计算、物联网应用,以新技术新业态新模式,推动传统产业生产、管理和营销模式变革。把发展智能制造作为主攻方向,推进国家智能制造示范区、制造业创新中心建设,深入实施工业强基、重大装备专项工程,大力发展先进制造业,通过物联网,智能制造最终要实现的是社会化协同、智慧化管理、智能化生产,从而达到智慧管理的新高度,推动中国制造向中高端迈进。三、面对以信息网络技术创新引领的智能化制造新趋势,大力推进两化深度融合成为打造中国制造业升级版的必然选择。当前,我国制造业与互联网融合发展正呈现出“由外向内”转变的态势。即,互联网正向生产流程的研、产、供、销、服各个环节逐步渗透,呈现出智能化、协同化、定制化、服务化和平台化的转型特点。制造业成为融合发展的主要需求者和实践者,同时也是互联网的重要服务对象。其中,汽车、机械、食品加工、医药、电子、化工等行业的转型创新较为突出。面对制造业信息化、网络化、智能化发展的迫切需求及其所带来的市场空间,国内各领域企业不断拓展业务范围,进军智能制造系统解决方案领域,加快推动了国内智能制造发展。五、项目内容介绍用友智能制造服务平台支撑制造企业从传统制造方式向智能制造方式转变,帮助制造企业实现业务管理系统与生产现场的互联互通,是业务系统往生产现场的延伸,同时将制造企业生产过程的生产数据、质量数据、设备运行数据等各种工业数据进行采集、归档、管理。用友智能制造服务平台是现代信息网络技术与现代制造技术的融合发展,在此基础上构建生态圈,发展合作伙伴(独立软件供应商、系统集成商、个人开发者)为生态圈的业务提供支撑。用友智能制造服务平台由基础平台、智能工厂、智慧管理、产业互联、智能决策五个层面构成,体现了产业链集成、价值链集成与纵向集成的理念。从整体看,制造企业信息化建设呈现由中间向上下两端延伸态势,向上与互联网化融合、向下向智能工厂延伸,自上而下,互联互通。六、项目关键技术用友智能制造服务平台的关键技术包括虚拟化、用户软件自动化部署、弹性计算、大规模资源管理与调度、数据支撑技术、并行计算框架、流程应用支撑、SNS应用支撑、PaaS适配IaaS的基础技术设施、集成服务支持、海量数据挖掘、开发部署系统、安全技术、支持语义建模的报表及BI脚本引擎、运营管理技术、服务管理。七、项目战略定位用友智能制造服务平台将采取开放的平台与架构,聚集大量的开发者,打造国内领先的企业级平台生态圈。用友智能制造服务平台构建产业生态链,全面实行国产化,以求自主可控,能够替换国际厂商,提供产业链协同服务,通过平台聚集大量企业用户及数据,为用友公司和合作伙伴创造更大利润空间!八、项目目标客户经过多年实践,用友公司在流程制造行业、离散制造行业、装备制造行业已经积累了数千家成功案例,涵盖化工、建材、能源、冶金、机械、电子、汽配、家居等数十个细分行业。