欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
2020考研数学一真题(文都完整版)柔节

2020考研数学一真题(文都完整版)

2019年12月22日上午,2020考研数学考试已落下帷幕,刚出考场的考生是否对于2020考研数学一真题答案期盼已久呢?文都考研第一 时间带来了2020考研数学一真题及答案解析。以下是2020考研数学一真题完整版的内容,下面就跟随文都考研小编一起来看一看吧,了解一下自己的考试情况吧?数学一以上,就是文都考研给大家带来的2020考研数学一真题完整版内容,希望各位同学可以及时了解自己的考后情况。更多2020考研真题内容,请及时关注文都考研网。另外,2020考研考试期间,文都考研名师会同步带来2020考研真题解析视频直播,敬请关注。

好人卡

2020考研:数学一真题及答案解析,高清完整版

初试定资格,复试定结果,虽然初试考试已经结束了,但是复试是第二关卡,不要掉以轻心哦,好好准备复试,等一切尘埃落定后,再去欢呼,再去放肆也不迟,现在还是要以大局为重,即便不知道成绩的情况下,积极准备复试也是一种经验的积累,万一过了复试线就用到了,加油吧。下面是2020考研数学一真题及答案解析,一起来看看吧。来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)

2019考研数学一高等数学试题难度解析

就总体难度而言,2019年考研数学一试题与2018年相比,难度相差无几。这与近年来的考研趋势是非常契合的,随着考研人数的增加,试题的难度也在增加,这也体现了考研是选拔性考试的特点,不过从2013年开始试题的难度整体是比较平稳的。另外,2019年的考研数学一高数部分试题体现了考研数学的一贯特点:重基础,综合性强,计算量大。首先,考题重在考查学生对基本概念的理解和运用数学的基本方法来解决基本问题的能力。其实从1990年到2019年以来,重基础这个出题的侧重点从未改变过。与此同时,近几年试题中不断凸显的综合性和灵活性增加了考试的难度,要求考生注重对方法的总结和能力的培养,从而做到活学活用。最后,计算量大的特点要求考生要多做题,只有量的积累才能把计算能力提升上来,在考场上不仅做到会,而且要快,这样才能考取理想的分数。考研是一场持久战,要把握好复习的节奏,尤其是对考研数学的复习,制定好复习计划,进而保证高数复习的效率。因此,中公考研制定了比较科学的梯度学习法,把考研数学全年的复习计划划分为四个阶段,即基础阶段(6月份之前)、强化阶段(7-9月份)、提高阶段(10-11月份)以及冲刺模考阶段(12月份)。以上四个阶段循序渐进,每个阶段都有对应的学习任务和目标,一步一个脚印,稳扎稳打。考生在复习中,最重要也是最容易忽视的就是基础阶段,只有打好基础,具备扎实的基本功,这是最关键的一个环节,这与考查目标—重基础是非常契合的。在此基础上,通过适量的练习做到灵活运用,最后才能够转化为考场上的得分能力。最后,中公考研祝各位考生取得优异的成绩,考取理想的学校!

成而上比

考研数学|真题一题多解系列,精选001

考研数学的复习离不开一题多解和多题一解的练习。通过多题一解的练习,能培养大家学会对某些方法或步骤的概括、归纳和总结。而通过一题多解的练习,可以让同学们思路更加开阔,发散思维得到训练,学会多角度分析和解决问题。从今天开始,老梁考研数学会陆续推出“考研真题一题多解系列”,精选真题并精妙解析。帮助大家学会多角度分析问题,提高大家综合分析和解决问题的能力。今天带来的是2020年数学三的一道真题,这是一道选择题。通过不同解法,体会不同的思维方法。【例001】(2020数三)【分析一】由于所求极限式中有函数差: 因此,提示我们可用拉格朗日中值定理。【分析二】由于是客观题,解法一求解会用去大量时间,因此可采用排除法,即选用不同的特殊的函数排除错误选项。本例当中,条件是个极限式,故函数在点x=a处不一定有定义,也不一定连续。【分析三】排除错误选项还可以使用“加强条件法”。所谓加强条件法就是:适当的加强题目中某一个条件,使之能用更方便的工具解决问题。【分析四】条件中,除了抽象函数f(x)之外,还有参数a,故可对a采取特殊值以区分选项。【总结】解法一是求解主观题的思路,对客观题来说不做推荐。解法二和解法四都是求解客观题常用的方法,只要有抽象函数和参数,都可以对函数或参数取特殊值。如果解法二和解法四不容易寻找特殊值时,也可采用解法三:加强条件法。特殊值法也可以看作是加强条件法的特例。对于本题,同学们还有什么新解法?欢迎在评论区留言!老梁考研数学永远是你的良师益友!

带水云

140+高分学长:考研数学习题集得这样刷,才不辜负黄金暑假!

在我们之前的文章中和大家说过暑期数学的复习规划,其中说到了暑期数学应该有计划的进行刷题以提高自己做题的准确率和书写规范。那么这次我们还是请到了之前给大家做规划的145学长和大家说一下暑期到底刷哪本习题集,到底怎么刷。1、选取哪些习题集?暑假期间我主要做了四本习题集,分别是《李永乐660题》、《张宇1000题》、《张宇闭关修炼100题》、《汤家凤1800题》。给大家依次讲一下这几本练习册的特点和优劣:《李永乐660题》:全部是选择题和填空题,难度较低题量较少,适合刚开始刷题,对数学题还不够熟悉的同学进行练手。《张宇1000题》:里面有选择填空和简答题,题型覆盖比较广泛。难度分为两类,一类是简单题目,一类是拔高题目。综合来说这本习题集难度、题量、题型都比较全,很适合大家全程使用。《汤家凤1800题》:汤神的书和宇哥1000题很相似,都是覆盖面很广包含内容很全的习题集。不过汤神的这本书题量比较大,较适合基础较好,时间较为充裕的同学使用。《张宇闭关修炼》:这本书放在最后说是因为宇哥今年把这本书进行改版了。以前的闭关修炼只有一百道重点难题,现在的闭关修炼则是从36讲和1000题中挑出的题集合成一本书。比较适合时间不够想要抓住重点复习的同学。学长建议:因为我数学基础比较好,时间也比较充裕,所以去年做题比较多。大家如果时间不是很充足的话,可以选择两本书进行练习即可。其中张宇1000题和汤家凤1800题大家任选其一即可,二者的重复度还是很高的。如果大家有其他的练习册推荐,也可以在下方评论区留言。2、习题集应该怎么刷?大家在进行刷题的过程中应该分出步骤和阶段。第一阶段:不计时间以完全掌握知识点和题型。开始做题的时候能大家会出现做题的第一个难关,就是不适应。难以将所学知识灵活的应用到题目的解答上面。这个时候大家不要着急追赶准确率和做题速度,应当静下心来把每道题的知识点、题型、易错点、解题套路详细整理。我用下面这道题为例给大家演示一下:第二阶段:进行专项题型突破。在大家完成了第一阶段的刷题之后,应该对数学题有一个初步的了解,同时也适应了数学的出题方式。在第一阶段之后,大家会对自己哪部分知识点掌握的还不够充足、做题容易在哪里出错会有一个清晰的认识。因此我们的第二阶段刷题就是要集中突破这些薄弱点,不足我们的短板。这一块的习题在做的过程中要不断的回顾基础知识点,同时熟悉出题思路和常见答题套路,具体步骤和第一阶段类似我就不赘述了。第三阶段:综合训练、计时完成。在弥补自己的薄弱点之后,大家就可以开始进行各种题型的综合训练了。这一阶段的习题大家可以从以往做过的习题中自行选取,也可以利用真题或者模拟题进行训练。在联系的时候要注意控制时间,在做对的基础上提高做题速度。真题每套应该在两个半小时内完成,这样大家在考场上才能游刃有余。3、遇到难题怎么办?大家在进行刷题的过程中会遇到不少的难题,如果感觉自己实在解答不出来,可以直接翻阅答案解答。但是大家要注意,翻阅答案解答对的过程是为了让大家了解难题的解题思路和知识点是如何复合在一起进行考察的,一定不要做完就过去了。难题在类型上主要分为:知识点复合型、思路清奇型、计算困难型。除了第二种在出题思路上难为大家的题目比较难突破外,其余两种都可以通过拆分题目和逻辑的推导进行解答。大家在练习过程中要注意积累这部分习题的解答经验。同时在刷题过程中大家应该准备一本错题本进行记录。(如果不知道怎么整理错题本的同学可以查看我们以往的推文:数学,如何整理错题笔记?140分学长总结的模板,拿去直接用!)数学的练习重在积累,在大家刷题的过程中一定要记住时刻回顾和整理自己的做题套路、知识点等细节。我们是为了更快更准的答卷而刷题而非为了刷题而刷题。今天的干货分享就到这儿啦,希望对大家的暑期数学复习能够有所帮助。

法中情

2020考研:数学三真题及答案解析,高清完整版

2020考研初试之后就接近尾声了,此时,2021考研的学子们需要开始准备复习,至少复习的计划需要安排上了,精细化计划下之后一年之中每个月需要复习到哪一步,每周需要复习完成哪些内容,每天需要复习哪些内容,越精细越好,同时,要培养自己的自律习惯,严于律己嘛。2020考研数学三真题及答案解析:来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)

钢木兰

考研数学|真题一题多解系列,精选005|5种方法

大家好,我是老梁考研数学!今天老梁继续给大家推送《考研数学真题分类解析系列》第五期,精选了一道极限计算方面的真题。通过这一道真题就几乎能把最常用的极限计算方法进行复习,是一道质量非常高的真题。真题解析【例005】(2008数1&2)【分析一】0/0未定式极限,可使用洛必达法则计算,计算前先利用无穷小等价化简先。【分析二】使用在x=0处的泰勒公式。【分析三】利用无穷小等价替换。【分析四】极限式中含有函数差,所以可以尝试利用拉格朗日中值定理。【分析五】极限式中的sinx比较多,故可采用变量替换。总结本题从不同角度出发进行分析,使用了5种方法进行计算。这五种方法:洛必达法则、泰勒公式、等价无穷小替换、变量替换以及拉格朗日中值定理都是常用方法。方法总结 归纳题型奇思妙解 就找老梁想了解更多精彩内容,快来关注老梁考研数学往期回顾考研数学|真题一题多解系列,精选001考研数学|真题一题多解系列,精选002|最后那种方法你肯定想不到考研数学|真题一题多解,精选003|∞-∞型未定式移位变形小技巧考研数学|真题分类解析系列,精选004|反用等价无穷小考研数学|方法总结,递推数列单调有界原理方法之单调性证明

桃太

2020考研:数学二真题及答案解析,高清完整版

众多考生都知道,考研是离不开复习资料的,课本除外,没有资料就相当于士兵没有刀枪,徒手上阵。所以,找资料成了每一届考研学生的必须要做的事情,那么,在诸多复习备考资料当中,首推的就是一手的真题资料,这是一手考试资源,利用的好,能多加十几分。下面是2020考研数学二的真题及答案解析:来源:文都(免责及版权声明:仅供个人研究学习,不涉及商业盈利,如有侵权请及时联系删除,观点仅代表作者本人,不代表本号立场)

白魔鬼

考研数学|真题一题多解系列,精选002|最后那种方法你肯定想不到

大家好,我是老梁!今天继续推出《考研数学真题一题多解系列》第二期!本期为大家精选了一道2019年考研数学一、二、三试卷共同的一道题,是一道无穷小量比较的问题。无穷小量比较问题是考研数学高频考点之一,每一年都会考(尤其是数学二)。通常以客观题(多数选择题,少量填空题)的形式出现,也会以主观题的形式出现。经常出现的有两种题型:一是无穷小量关系的比较,即将若干个无穷小量(通常是三个)放在一起,比较谁是谁的高阶、低阶、同阶、等价无穷小量等,二是已知两个无穷小量的关系(例如高阶、低阶、同阶、等价等等),然后把无穷小量中所含的参数反求出来。不管是哪种考法,其解决方法都是类似的,即洛必达法则法,泰勒公式法及无穷小等价公式法等。对于客观题,有时还可以根据函数、极限相关的知识点或技巧解决。先看真题,这是第二种考法。已知两个无穷小量的同阶关系,反求无穷小量中所含的参数的问题,难度并不大,利用常规方法就可以解决。【例002】(2019数一、二、三)【分析一】常用的方法就是定义法和无穷小等价公式法。(1)定义法根据无穷小同阶的定义写出下面的极限式然后利用求极限的方法:洛必达法则、泰勒公式等计算其极限。(2)无穷小等价公式法利用已知的无穷小等价关系,将两个无穷小都等价于同一个幂函数无穷小,然后再求参数。【分析二】上述两种方法都是常规方法,然而有时客观题常常需要根据本题条件及选项的特点采取非常规方法,如排除法。本题即可根据函数(无穷小)的奇偶性以及两个等价无穷小的性质排除掉错误选项,从而得到正确选项。【评注】本题难度不大,对于无穷小比较问题,解法一和解法二,洛必达法则,泰勒公式法及等价无穷小这三种方法最为常用,其中解法二简单,但要记住此等价公式。解法三,利用函数奇偶性质和两个等价无穷小之差一定高阶无穷小性质求解这类问题,则比较新颖。实际上,无穷小比较的本质上还是函数极限的问题,因此函数的性质(四大特性)及极限的性质(保号性,有界性等)都可以用来解决这类问题。同学们这些方法,都get到了吗? 如果是你,会用哪些方法解题呢?欢迎留言分享。相关链接考研数学|真题一题多解系列,精选001考研数学|上岸985,等价无穷小要掌握到什么程度?考研数学,一文搞懂无穷小可以等价替换的5个情形考研数学|变限积分函数无穷小的等价性

黑魔女

高等数学中微分中值定理知识与题型总结(附电子版领取方式)

在前面的内容中,小编已经给大家梳理了高等数学中的所有核心知识点。如果要说高等数学中哪一个部分的内容最难,那不好说。但微分中值定理一定是最难的内容之一,且微分中值定理这部分的内容往往以考察高分值的大题的为主。许多同学往往觉得微分中值定理的题构造十分的复杂且繁多,所以做题有些困难。其实,不只是构造,而且其形式多变,还可以结合积分等多部分内容来考核。下面,小编带大家一起来盘点一下常见的微分中值定理题型。考研基础知识首先,我们应该熟悉几个常见的中值定理,并且能够独立的推导出他们的证明过程。之所以这么严格要求,原因有下面两个。①因为在考研数学中,很有可能直接考察定理的证明。②定理证明过程的思想往往就是我们做题的证明过程思路。基础下面,小编根据自己的理解,给大家大致的叙述一下主要的几个定理的证明思想。由于许多定理证明的方法不止一种,所以小编提供的方法仅供参考。(1)介值定理(与根的存在性定理等价,也称作为零点定理,证明了解即可,基本不会考。)证明思想:通过构造,结合确界原理,推出在函数值等于0的点在区间的两端取不到。其次,在利用反证法设函数在开区间中取不到0。(2)最大、最小值定理(了解即可)证明思想:想要证明最大最小值定理,我们首先要知道有界性定理,即若一个函数在闭区间上连续,那么这个函数在闭区间上也有界。其次,我们再通过结合确界原理使用反证法,证明函数在闭区间上存在上确界是错误的。考研(3)Rolle(罗尔)定理(重点)证明思想:因为函数f在闭区间上连续,所以满足最大、最小值定理,一定存在最大值与最小值,分两种情况讨论。①最大值等于最小值时,那么函数为常数函数。②最小值小于最大值时,我们发现函数f满足费马定理的条件,可以使用费马定理,从而直接得到证明。(4)lagrange(拉格朗日)定理(重点)证明思想:证明拉格朗日中值定理时,我们常常需要构造辅助函数,其中我们最常见的是构造助函数:F(x)=f(x)-f(a)-(x-a)(f(b)-f(a)/(b-a)然后使用罗尔中值定理即可。同学其实想不太明白这个函数的构造是如何得到的,其实这个构造只是为了方便验算罗尔中值定理。直接把拉格朗日中值定理两等式两边,进行积分构造也是可行的,只是验证罗尔定理条件的时候麻烦一点。考研(5)cauchy(柯西)中值定理(重点)证明思想:要通过构造辅助函数,利用罗尔定理就可以证明。(6)积分第一中值定理(重点)证明思想:同样我们利用最大、最小值定理,函数f在闭区间上存在最大值与最小值,使用积分不等式结合连续函数的介值定理就可以得到证明。题型总结小编大致总结了一下常见的几种微分中值定理题型,共为6种题型。其中,整理的许多题目来自考研数学真题,值得去斟酌思考。(电子版领取方式在文末)总结总结总结总结我的学习建议微分中值定理的学习,对于初学者或者是第一遍考研复习的同学而言,做题会显得十分吃力,几乎每一题都要校对答案才能明白,甚至有了答案也不明白答案的函数构造是从何思想而来。其实,这是一种正常状态。学习微分中值定理的内容,首先,就是要把几个中值定理本身的证明思想吃得通透,然后再对常见题型、常用方法进行总结归纳。事实上,考研数学也逃不过在这几个题型上反复考察。难就难在题型和方法的总结上,每一道题,每一个题型都要耗费大量的时间。现在,小编在这里总结出了完整的版本,希望这篇文章对考研同学们或初学者有所帮助。由于篇幅有限,小编只能放几张整理的题型图片,有需要电子版的同学,关注我,私信回复中值定理即可领取电子版。大学高等数学核心内容大总结,掌握这些知识,高数成绩杠杠的!