就总体难度而言,2019年考研数学一试题与2018年相比,难度相差无几。这与近年来的考研趋势是非常契合的,随着考研人数的增加,试题的难度也在增加,这也体现了考研是选拔性考试的特点,不过从2013年开始试题的难度整体是比较平稳的。另外,2019年的考研数学一高数部分试题体现了考研数学的一贯特点:重基础,综合性强,计算量大。首先,考题重在考查学生对基本概念的理解和运用数学的基本方法来解决基本问题的能力。其实从1990年到2019年以来,重基础这个出题的侧重点从未改变过。与此同时,近几年试题中不断凸显的综合性和灵活性增加了考试的难度,要求考生注重对方法的总结和能力的培养,从而做到活学活用。最后,计算量大的特点要求考生要多做题,只有量的积累才能把计算能力提升上来,在考场上不仅做到会,而且要快,这样才能考取理想的分数。考研是一场持久战,要把握好复习的节奏,尤其是对考研数学的复习,制定好复习计划,进而保证高数复习的效率。因此,中公考研制定了比较科学的梯度学习法,把考研数学全年的复习计划划分为四个阶段,即基础阶段(6月份之前)、强化阶段(7-9月份)、提高阶段(10-11月份)以及冲刺模考阶段(12月份)。以上四个阶段循序渐进,每个阶段都有对应的学习任务和目标,一步一个脚印,稳扎稳打。考生在复习中,最重要也是最容易忽视的就是基础阶段,只有打好基础,具备扎实的基本功,这是最关键的一个环节,这与考查目标—重基础是非常契合的。在此基础上,通过适量的练习做到灵活运用,最后才能够转化为考场上的得分能力。最后,中公考研祝各位考生取得优异的成绩,考取理想的学校!
考研数学和高等数学不是一个概念,考研之前一定要分清楚否则白学。考研数学分为数学一、数学二、数学三、数学基础四个类别。四个类别的考研数学分别对应不同的一级学科和二级学科。一、考研数学包含的科目首先来看考研数学一:考研数学一是考研数学中难度最大,范围最广的。数学一的考试科目包括高等数学、线性代数、概率统计三科。请记住,这里考的是三科可不只是高等数学哦!其中高等数学占比百分之五十六;线性代数占比百分之二十二;概率统计占比百分之二十二;其次来看考研数学二:考研数学二是考研数学中考试范围最小,但是高等数学占比最高的。考研数学二的考试科目包括高等数学和线性代数其中高等数学占比百分之七十八;线性代数占比百分之二十二。发现了吗?考研数学二考的也不只是高等数学哦。但是比较庆幸的是考研数学二不考概率统计。再次来看考研数学三:考研数学三是考研数学中考试难度最简单的(个人观点)。考研数学三的考试科目与数学一完全一样,各科目的分值占比也与考研数学一完全一样。但是考试难度相对于考研数学一而言较为简单。最后来看数学基础:看到这里很多考生可能要疑问了,考研数学还包括初等数学吗?回答是:不仅有,而且涵盖的专业还很热门。在专业硕士的考试中工商管理硕士也就是我们耳熟能详的MBA以及会计专硕MPAcc的考试科目中的《管理类联考综合能力》科目代码199,其中初等数学的考试分值为75分。考试科目有算术、代数、几何、数据分析。这一科是不包含高等数学的。金融硕士、应用统计硕士、税务硕士、国际商务硕士、保险硕士、资产评估硕士所考试的科目中《经济类联考综合能力》中初等数学的考试分值为70分。考试科目为《微积分—部分》、《概率论—部分》、《线性代数—部分》。在此科目的考试中虽然没有标明要考高等数学但是《微积分—部分》所考试的内容实际上就是高等数学的内容。二、高等数学在考研数学中的地位从上一小节的分析中我们能够看到,除管理类联考综合能力所考的初等数学外。考研数学一、二、三以及经济类联考综合能力的考试内容中高等数学的考试占比都是比较大的。当然这些只是我们能够从表面上分析出来的数据。在实际学习以及考试过程中,高等数学不仅本身分值占比大,而且还担任着一个不可或缺的角色:为线性代数和概率论提供计算方法(这一点在考研复习之初考生一般很难发现)。在关于考研数学复习指导的文章以及课程中,很多老师建议大家在考研数学复习过程中可以首先复习内容较少的《线性代数》或《概率论》。在小编看来凡是发表以上言论的老师都没有真正研究过考研数学的考试结构以及考试重点。在考研数学的考试难度以及考试重点的综合约束下,如果没有高等数学作为支撑,线性代数和概率论的很多习题根本是无从下手的,甚至是,即便你找到了思路也是需要用到高等数学的方法来进行运算的。从这个角度来讲,高等数学是考研数学的根本和基础。三、高等数学在考研数学中考试难度以及范围的区别高等数学在考研数学一二三以及经济类联考综合能力中都有涉及到,从上文的数据中我们看到了高等数学部分分值占比最大的是考研数二。那么也就有人得出结论说考研数学二所考察的高等数学范围最广、难度最大。根据小编对于考研大纲以及考研真题的分析发现,在考研数学中,数学一才是对于高等数学考核范围最关难度最大的。数学二中高等数学的分值占比最大,这主要体现在了对于高等数学的细节部分考核较多,但是考试范围和考试难度并没有数学一大。数学三的分值比例虽然跟数学一相同,但是考试难度以及考试范围也比数学一小。在考研数学中,一般情况下涉及到的相同的考试知识点考察的难度也几乎是一样的,有时甚至在考试试卷上会有同一道题同时出现在数学一二三的试卷上。四、考研数学的考试方向我们知道进入大学以后我们对于任何一个学科的学习都会有比较明确的方向性。考研数学座位研究生的入学选拔考试自然也不例外。考试数学的考试方向主要体现在考试范围上,比如空间解析几何与多元函数积分学只有数学一要求;无穷级数只有数学一和数学三有考核要求;微积分的物理应用只有数学一和数学二要求;而微积分的经济应用却是数学三的考察重点,数学一和二对其不做要求。线性代数在考试内容上是区别最小的,只有数学一会涉及到向量空间的内容,但是这一部分在实际的考试中出现的次数是极少的对于考生的复习并没有实质性影响。但是在最抽象的概率论部分,数学一却要考察参数估计包括评选标准、区间估计以及假设检验。五、数学基础就真的好学吗从管理类联考综合能力中我们看到了有一个叫做基础数学的学科居然出现在考研数学这个科目中很是费解。很多老师断文取义般的在告诉学生们,高数学不会就学初等数学。在描述中将初等数学描述的极为简单,这种引导其实是不负责任的。虽然在初等数学考试章节上我们看到的考试内容是很简单的,主要涉及到的就是小学以及初中的内容。但是在实际考试中这些题目的难度堪比奥数考试,因此对于没有数学思想的考生来讲,也是极具挑战性的学科。六、考研数学与专业选择在考研专业中,无论是学术型硕士还是专业性硕士,大部分专业的考试都是要涉及到考研数学的。在小编看来,能够进入本科学习的考生(个别大神除外)数学基础相差并不大,那么最后谁能获得高分完全取决于学习方法以及学习的态度。因此完全没有必要因为自己喜欢的专业要考数学而选择放弃。并且在考研数学中基础部分的考试内容占比80分以上,过线并不难。以上分析均基于小编对于考研数学考试大纲及考试真题的研究而得出的结论,不足之处和错误之处欢迎大家指正讨论。
文|冷丝栏目|丝说考研2017年的全国研究生入学考试初试,公共科目高等数学试卷中,很多所谓考研备考专家专家对一道很重要的试题解答出现错误,这也导致很多备考生跟着出错。冷丝今天想说的话题是:考研试卷除了政治和英语公共课,官方公布标准答案,其他试卷有参考答案,但均未通过官方渠道进行公布。因此,无论是文科还是理科,考研一族备考时需要找准找对资料,千万不要因此而出大的差错。研究生入学考试考场冷丝在这里友情提醒,我接下来的解释涉及很多专业性问题,很多读者可能看不懂,这个不要紧,本文主要是通过展现一些错误,让你理解:一些考试中的典型错误为什么经常出现,源于部分教材存在瑕疵,部分教师的专业素养或多或少有问题,而备考生需要瞪大眼睛辨别,敢于质疑,不要迷信,并且要学会辨别一些辅导机构、辅导教材是否权威。网上流传的错误答案被当成权威解答,典型错误具有代表性。2017年全国硕士研究生入学统一考试《数学(一)》试题,第18题的解答,很多网站上流传的解答是错误的,据专家介绍,这种错误是高等数学教师在课堂上经常遇到的问题,也是学生经常出错的难题。原题是这样的:而网上广为流传的错误答案是这样的:从上面的解答可以看到函数F(x)需要存在3个不同的零点,而上面解答中得到了3个零点分别是0,ξ和ξ1,忽略了ξ和ξ1可能是同一个点,这样的证明是错误的。课堂教学中存在的类似问题,柯西中值定理的证明,比如,同济版本《高等数学》(第六版)中的柯西中值定理结论如下,在(a,b)内,至少有一点ξ,这样的等式才会成立:很多学生在使用这个教材是会问,能否在等式左侧的分子与分母中分别用拉格朗日中值定理?显然不行,这是为什么呢?因为,学生犯了拉格朗日中值定理中的不一定是同一个值的错误。即使是同一个值也要给出严格证明,ξ只是在(a,b)内的一个点,而在(a,b)内存在数不尽的不可数的点。同济办教材《高等数学》(第六版)习题中的习题,许多学生在用罗尔中值定理证明f’=0也是错误的。那么,这道入学考试真题的正确答案是怎样的呢?因为f(x)在[0,1]上二阶可导,所以,f(x)在[0,1]上是连续的,因此,可以这么解答:这个答案应该是很详细了,一看就明白。还有一个问题,很多学生为什么会出错呢?怎样避免错误。除了部分教材存在瑕疵之外,最重要的问题是,高等数学的学习内容不连贯,存在知识盲点。许多高校在安排学生学习同济版本《高等数学》(第六版)等教材时,没有让学生事先学习“实变函数”中实数论的相关内容,这样导致学习内容的脱节。比如,实数具有有序性——就是任何两个或多个实数之间一定可以比较大小。所以,在同一个问题中出现两个或多个实数时要有明确的大小顺序关系,学生要掌握有序性。天津市考点再如,有理数与无理数的关系是稠密的——任何一个有理点的任何小的邻域内都有不可数个无理点,反之,任何一个无理点的任何小的邻域内会有无数、但可数个有理点,即我们所说的"稠密性"。当然,还涉及有其他一些高等数学知识,你如果没有学,在考研中遇到这样的问题,肯定会出错。这些基础知识,学生没有学习,在遇到实数间的比较,区间中有理点与无理点个数的多少和它们之间的关系时,出错就是一件很正常的事情了。特别需要提出的是,部分年轻教师由于缺乏上述的基础知识,特别是对狄利克雷函数本质的理解等等,那么,他们在教学生时,就会让学生跟着他一起出错。研究生入学考试现场确认冷丝最后还想说,教师的任务责任重大,自己的一个小错或者知识盲点会导致无数个学生跟着出错。同时,无论是哪一个阶段的教材编写,也无论是什么课程,编写者要精益求精,出现错误要及时更正,否则,很多人也会跟着教材出错。(感谢:本文参考了张德存教授的观点)。多选|你觉得考研难度如何?竞争激烈,难度大试题难度大,复习辛苦考试内容多,复习难度大复习时间长,难以坚持打开百度APP进行投票
要知道高等数学是考研数学中分值最高的一个科目,达整张卷面分值的百分之五十六(数一和数三),数三的分值占比更是高达百分之七十八,而且概率与统计的题目在解题过程中也会大量用到高数微积分的知识,毋庸置疑高数是考研数学中最重要的科目。从难度上来说,也是考研数学三科(高等数学、线性代数、概率论与数理统计)中,相对来说难度最大的一个科目。高数难度大主要体现在以下三个方面:第一,高数的内容非常多,知识体量大,光是高数教材就有七百多页,且微积分的计算要求熟练运用高中学的指数函数、幂函数、对数函数、三角函数等知识,这无疑使高数的考点变得更多,考试的难度变得更大。第二,高数不只考查的知识多,而且对知识的综合运用能力有较高的要求,也就是说只是单纯地掌握单一的知识点是远远不够的,一道题目通常会考查两个或者是更多的知识点,而且有些考查的知识点还是不同章节的,如果不能将知识融会贯通,有清晰的解题思路是很难得高分的。这就要求我们在复习的过程中,不仅要熟练掌握每一个知识点,而且要提高对知识的综合运用能力,说白了就是要大量做题,知易行难,在实际解题过程中,提高对知识的运用能力。第三,高数的题量比较大,考试的时候对解题速度和计算能力的要求较高。学生会出现有些题目虽然会做但最后时间来不及,或者是会做但是花费大量的时间,占用做其他考题的时间的情况,这就要求我们在复习的过程中,不光是要看书学习,还要不断地去计算,做题,不要停留在知识看懂了的阶段,一定要自己动手去做题,熟练掌握考题背后要求的知识点,达到拿到题目有思路,计算过程快又准的程度。希望各位同学可以在高数上找到合适的方法,顺利成研,多做题,总结经验总是有好处的!
在前面的内容中,小编已经给大家梳理了高等数学中的所有核心知识点。如果要说高等数学中哪一个部分的内容最难,那不好说。但微分中值定理一定是最难的内容之一,且微分中值定理这部分的内容往往以考察高分值的大题的为主。许多同学往往觉得微分中值定理的题构造十分的复杂且繁多,所以做题有些困难。其实,不只是构造,而且其形式多变,还可以结合积分等多部分内容来考核。下面,小编带大家一起来盘点一下常见的微分中值定理题型。考研基础知识首先,我们应该熟悉几个常见的中值定理,并且能够独立的推导出他们的证明过程。之所以这么严格要求,原因有下面两个。①因为在考研数学中,很有可能直接考察定理的证明。②定理证明过程的思想往往就是我们做题的证明过程思路。基础下面,小编根据自己的理解,给大家大致的叙述一下主要的几个定理的证明思想。由于许多定理证明的方法不止一种,所以小编提供的方法仅供参考。(1)介值定理(与根的存在性定理等价,也称作为零点定理,证明了解即可,基本不会考。)证明思想:通过构造,结合确界原理,推出在函数值等于0的点在区间的两端取不到。其次,在利用反证法设函数在开区间中取不到0。(2)最大、最小值定理(了解即可)证明思想:想要证明最大最小值定理,我们首先要知道有界性定理,即若一个函数在闭区间上连续,那么这个函数在闭区间上也有界。其次,我们再通过结合确界原理使用反证法,证明函数在闭区间上存在上确界是错误的。考研(3)Rolle(罗尔)定理(重点)证明思想:因为函数f在闭区间上连续,所以满足最大、最小值定理,一定存在最大值与最小值,分两种情况讨论。①最大值等于最小值时,那么函数为常数函数。②最小值小于最大值时,我们发现函数f满足费马定理的条件,可以使用费马定理,从而直接得到证明。(4)lagrange(拉格朗日)定理(重点)证明思想:证明拉格朗日中值定理时,我们常常需要构造辅助函数,其中我们最常见的是构造助函数:F(x)=f(x)-f(a)-(x-a)(f(b)-f(a)/(b-a)然后使用罗尔中值定理即可。同学其实想不太明白这个函数的构造是如何得到的,其实这个构造只是为了方便验算罗尔中值定理。直接把拉格朗日中值定理两等式两边,进行积分构造也是可行的,只是验证罗尔定理条件的时候麻烦一点。考研(5)cauchy(柯西)中值定理(重点)证明思想:要通过构造辅助函数,利用罗尔定理就可以证明。(6)积分第一中值定理(重点)证明思想:同样我们利用最大、最小值定理,函数f在闭区间上存在最大值与最小值,使用积分不等式结合连续函数的介值定理就可以得到证明。题型总结小编大致总结了一下常见的几种微分中值定理题型,共为6种题型。其中,整理的许多题目来自考研数学真题,值得去斟酌思考。(电子版领取方式在文末)总结总结总结总结我的学习建议微分中值定理的学习,对于初学者或者是第一遍考研复习的同学而言,做题会显得十分吃力,几乎每一题都要校对答案才能明白,甚至有了答案也不明白答案的函数构造是从何思想而来。其实,这是一种正常状态。学习微分中值定理的内容,首先,就是要把几个中值定理本身的证明思想吃得通透,然后再对常见题型、常用方法进行总结归纳。事实上,考研数学也逃不过在这几个题型上反复考察。难就难在题型和方法的总结上,每一道题,每一个题型都要耗费大量的时间。现在,小编在这里总结出了完整的版本,希望这篇文章对考研同学们或初学者有所帮助。由于篇幅有限,小编只能放几张整理的题型图片,有需要电子版的同学,关注我,私信回复中值定理即可领取电子版。大学高等数学核心内容大总结,掌握这些知识,高数成绩杠杠的!
大家好!我是向上好青年!众所周知,考研数学满分是150分,考试时间为180分钟。考研数学试卷从题型结构分为单选题、填空题、解答题。考研数学试卷从内容上包括高等数学、线性代数、概率论与数理统计。其中,高等数学在整个考研数学中具有举足轻重的作用。可以说高等数学是后期线代和概率学习的一个知识积淀。因此,同学们要十分重视高等数学的复习!注重基础基本概念、基本方法、基本性质一直是考研数学的重点,从多年的考研阅卷经验看,考生对数学基本概念掌握不够牢固,理解不够透彻。有些同学在考场上,不知道怎样下手,不知道该用哪个公式。所以,建议考生在数学复习中一定要重视基础知识,要复习所有的公式、定理、定义,多做一些基础题来帮助巩固基本知识。 高等数学中基本概念和性质较多,他们之间的联系也比较多。考生特别要根据高数考试的内容,找出所涉及到的概念与方法之间的联系与区别。注重真题考研历年真题是考研复习必不可少的重要资料,甚至可以毫不夸张地说真题是关系考研成败的关键要素,尤其到了9月份以后,数学复习主要以真题为主。首先考研真题是大家了解考研形势的重要途径。其次考研真题集结了出题老师的精华总结,包含了许多考试信息和讯号,在做真题的过程中,可以掌握出题人的思路以及答题的方式方法。最后真题也是检查考生复习情况的最佳衡量标准。注重归纳总结高等数学涉及的知识点比较多,有些知识点同学们理解起来也比较困难,如果只是一味的做题,容易导致思维混乱,不可能得高分。所以同学们在平时复习时,一定注重归纳总结。高数重点知识点比较多,要逐一击破!数学的复习需要稳扎稳打,掌握住每一个重难点。我是向上好青年,愿你在考研路上勇往直前!考研相关的问题可以私信、评论!
距离考研初试仅有6周了,你的考研数学复习怎么样了?考研数学可以说是非常难的一门科目,而2021考研又出现重大改革。试卷结构、分值、内容均发生变化,高等数学所占分值比例增加了,考生关于数学备考中心应转为高等数学。近日,张宇老师针对高等数学冲刺复习进行了针对性指导。提到张宇,你第一印象是不是歌手张宇。那只能说你不是考研人,如果你有备战考研第一个想到的应该是数学老师张宇。张宇老师可以说是考研数学辅导中实力派之一。本人至今还能想起张宇老师的一句话:立即推、放弃考研。或许张宇老师这是在激发考生逆反心理,你叫我放弃,我偏不。当然也有不少考生被这句话打击到,本人当年在图书馆备考时,就有考生因为这句话,将桌子掀翻,弃考了。言归正传,一起来看下张宇老师划的重点题型吧。如果考生用的正是张宇老师编写的高数18讲,那就恭喜了。如果不是,本人建议考生借用下别人的,如果想买也可以。(1)函数与极限函数极限与连续,考生重点看14页的例题1.24和25。数列极限,考生重点看27页的例题2.7、28页例题2.9、37页习题2.7、31页例题2.14、33页例题2.17、29页例题2.10、30页例题2.12。(2)一元函数微分学一元函数微分学的计算,考生需注意第59页的例题4.12,202页例题11.13。一元函数微分学的应用一,135页的例题8.14,考察最值问题。79页的例题5.18,考察值域问题。一元函数微分学的应用二,第97页例题6.12,第99页例题6.15和6.16。主要考察中值定理、微分等式和微分不等式。(3)一元函数积分学一元函数积分学的概念与性质,第132页的例题8.10。一元函数积分学的计算,考生需注意第156页的例题9.24。一元函数积分学的应用一,第185页的例题10.22、190页的例题10.30。一元函数积分学的应用二,第199页的例题11.9和200页例题11.10。202页的例题11.13和204页的习题11.8。这部分主要考察积分等式与积分不等式。一元函数积分学的应用三,第212页的例题12.5和6、214页的例题12.9。这部分属于物理应用和经济应用。个人认为,数一和数三的需要学习,数二考生可以根据自己情况自行决定。(4)多元函数多元函数难度非常大,本人当初考数一,差点被三元函数弄崩溃。还好最后调整心态,选择性放弃一部分三元函数的知识。宇哥本次画的重点不多,但是本人还是建议数一看看三元函数微积分,数二看二元函数就可以了。第240页的例题13.29。无穷级数。本部分考数一、数三的考生需要复习。主要是掌握几种变形方式。第329页的例题16.37。如果考生觉得和别人用一本教材不方便,考生还是自己买本较好。最近一段时间,快递一定非常忙,越早点击购买,书籍越早能够到底你手中,毕竟只剩下最后42天了,还要犹豫错失时间吗?以上就是张宇老师针对考研数学冲刺重点针对性地划题,主要还是一元函数的微积分,考生如果能够拿到这部分分数,过线将会变的简单许多。希望考生能够抓紧掌握,预祝大家顺利上岸。
哈喽,各位小伙伴们大家好,又和大家见面了!我是Jackie,今天呢也是借着上一期的视频和大家谈一谈考研的一些知识。上期和大家分享了政治学习的一些思路,今天这期和大家聊一聊高等数学的复习和备考计划。首先,简单带大家回顾一下我前期的学习规划。一句话概括就是听课,做题,做题,做题。都知道高数是拉分最大的,不管你大学高数考多少分,考研基本都是从头再来,因为你也知道学校期末的高数试卷试题基本都是原题,这里的原题是指数据和结果都不变的;而考研的高数基本也可以认为是原题,只是这里的原题指的是同一类型的题,它不是不变的数据和结果,而是固定的解题套路。因此做了这么多题,同学们应该也有感觉,平时做的题是又怪又难,比如某某某的1000题,某某的500题之类的。然而,做过真题的朋友都知道,高数真题考的内容是真的很基础,难题就有一道而已。道理都明白,就是不愿意放弃做题的心理,万一考到怎么办?对于这种心理的同学,我可以直接告诉你,不用慌,你做的题太多了,真的遇到,你即便已经做过,你仍然还是不会。你只会说,哇!太好了,这题我见过,我熟悉,然而你会吗?不会吧!言归正传,今天我所做的这一期视频只是针对最后两个月复习时间的同学。对于高数你需要注意的是以下几点:1. 回顾真题。如果最后两个月你还想着去做题,估计是来不及了,但是你是为了保持手感和做题的熟悉感,那么你可以试一试,但是,你是否发现,最后的这段时间你根本没办法静下心来做题,并且命中率也是出奇的低,甚至连一些简单的题你都不会做了,公式定理基本已经忘记了或是记忆模糊了。那这个时候,做题是最愚蠢的了。你要做的就是,拿出你曾经做过的真题,一道一道的看,标出它的考点和解题思路。2. 回归课本和基础知识。一定要把你整理过的最基础的公式和定理进行深度熟读和理解记忆,并大概回顾他的用法。这部分基础知识才是最核心的部分。因为“舌尖效应”,我们背诵的公式和定理在考场上往往只能记住一部分或是根本就记不全。熟悉基础知识才是取胜的关键,一味的去做那些难题怪题,其实作用不大。3. 心态不好不做题。有些小伙伴确实想练一练,但是一做发现做错了好多。这时不要灰心,要正确认识,调整心态。这是一种正常的现象,你停下做题,直接去复习真题就行了。(参照1和2)4. 别攀比。在做到以上三条的前提下,保持好的心态,别随意和别人攀比和讨论难题,因为你的心态会受到影响,感觉自己知识盲点还有很多,给你的自信心造成挫伤,因此保持好的心态,最后时期自己修行,可能会有意想不到的效果。最后,其实对考研的学子而言,这是一种煎熬和无言的痛苦,无论是你不被同学理解,不被你爱的TA理解;还是你正在经历失眠和脱发的困扰,都应该勇敢的去面对。考研比到现在已经不是在比能力了,更多的是在比拼谁的心态更好。这些痛苦我也同样经历过,希望我能共同面对,再次祝愿各位同学能够考出好成绩,拥有属于自己内心的那份荣耀!好了,今天的分享就到这里。 感谢您的关注,点赞和评论,谢谢您!
考研数学:高数23大易考点浅要分析哈喽,大家好,我是小编微笑,专注考研领域,贴心的指导让您在研途少走弯路,暖心的陪伴让您在枯燥研路中不再孤单,本文是第25篇原创文章考研数学历年都是考生吐槽最多的科目,也是拉开考生之间差距的主要科目,在考察题型侧重点,考试出题难易程度方面很难有效的去把握,往往成为考生复习头痛的科目,微笑根据去年考研数学大纲和相关教育机构视频进行整理分析,总结出23大易考点供各位研友参考,希望对你们能有所帮助。考察特点分析第一种题目比较常规,很容易了解所考察对象与采用的计算方式方法,但计算量很大,需要考生有耐心,认真仔细,一旦中间马虎错一步很容易失分。微笑建议通过平时解题过程中书写清晰明了,养成良好做题习惯第二种题目比较灵活,思维比较开放,按照常规公式解题方式不仅费时间还容易出错,因此需要考生深一些层次来思考所学数学知识,学会分析题目考察侧重点与不同的解题方式,注重知识点之间联系,灵活运用,通过一定刷题量来总结技巧,最后一种题目属于简单易会,每年都有少量分值俗称“白送分”,一定要全部得到,平时做题注意不要眼高手低,规规矩矩做好每一道题,保证会的都做对易考点分析考点1:用经典工具计算函数,数列极限,七种未定式,单调有界定理,夹逼准则,海涅定理考点2:深刻理解,并会使用无穷小比阶,无穷大比阶,应用场景为,极限本身,积分判断,级数判敛考点3:深刻理解导数定义及其几何意义,从导数定义,求切线法线,高阶导数入手。考点4:三大逻辑题 ① 最值、介值、费马、罗尔、拉格朗日、泰勒、柯西、积分中值定理(可以开区间也可以闭区间)② 不等式 ③ 方程根(等式)考点5:导数的几何应用三点(极值点、拐点、最值点)两性(单调性、凹凸性)一线(渐近线)(数一数二曲率)考点6:不定积分与定积分存在定理考点7:换元法、分部积分法、凑微分法、有理函数的积分(思路)考点8:积分的几何应用考点9:多元函数概念(5个:极限、连续、可微、导函数连续、偏导数存在)、计算、多元函数极值与最值考点10:二重积分性质与计算考点11:按类求解微分方程(凑到基本形式)考点12:数一数三:级数判敛、收敛域、求和、展开考点13:数一:投影、旋转、切平面法线、切线法平面;三重积分(形心公式)、一类曲面积分、二类曲线曲面积分,傅里叶级数考点14:N阶行列式计算(消零,加边,递推,数学归纳法,差分)考点15:伴随矩阵、初等矩阵、分块矩阵(理解、计算、使用)考点16:相关与无关的证明与方程组的求解(同解,公共解,反问题)考点17:特征值(λ)特征向量(ξ)及相似对角化(A~Λ)(两矩阵相似的性质)考点18:二次型化为标准形考点19:复杂求概率( P(A))问题:(1)古典概型,几何概型;(2)公式考点20:求一维随机变量的分布Fx(X)以及一维随机变量函数 Fy(Y)的分布考点21:多维随机变量的联合分布、边缘分布、条件分布、事件的独立性、多维随机变量函数的分布Fz(Z)考点22:求随机变量的数字特征考点23:做估计与评价以上就是微笑根据数一内容整理的23大易考点内容,供各位考生参考。在数学科目的复习过程中没有太多的技巧,前期一定要稳扎稳打,牢牢的对基本概念理论打好基础,中后期通过大量的刷题来积累经验,拓展思维。学会针对同一类型题掌握解题规律与技巧,而不是盲目的去做题,抽出一定的时间来分析整理错题,多加练习。对待数学有足够的韧性你也会成为其中的佼佼者。尽管每年考试难易程度不一,但水涨船高,水降船底,端正好心态,不求超长发挥,只要考出自己真实水平即可,愿每个考研梦都被温柔以待。小编:微笑(喜欢记得关注哦)文章为小编原创,转载请注明出处。
中国科学院大学硕士研究生入学考试高等数学(甲)考试大纲一、 考 试 性 质中国科学院大学硕士研究生入学高等数学(甲)考试是为招收理学非数学专业硕士研究生而设置的选拔考试。它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。考试对象为参加全国硕士研究生入学考试、并报考理论物理、原子与分子物理、粒子物理与原子核物理、等离子体物理、凝聚态物理、天体物理、天体测量与天体力学、空间物理学、光学、物理电子学、微电子与固体电子学、电磁场与微波技术、物理海洋学、海洋地质、气候学等专业的考生。二、 考试的基本要求要求考生系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力和综合运用所学的知识分析问题和解决问题的能力。三、 考试方法和考试时间高等数学(甲)考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。四、考试内容和考试要求(一)函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:, 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念考试要求1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。2. 理解函数的有界性、单调性、周期性和奇偶性。掌握判断函数这些性质的方法。3. 理解复合函数的概念,了解反函数及隐函数的概念。会求给定函数的复合函数和反函数。4. 掌握基本初等函数的性质及其图形。5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。7. 掌握极限存在的两个准则,并会利用它们求极限。掌握利用两个重要极限求极限的方法。8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。10. 掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质。11.理解函数一致连续性的概念。(二)一元函数微分学考试内容导数的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数的四则运算 复合函数、反函数、隐函数的导数的求法 参数方程所确定的函数的求导方法 高阶导数的概念 高阶导数的求法 微分的概念和微分的几何意义 函数可微与可导的关系 微分的运算法则及函数微分的求法 一阶微分形式的不变性 微分在近似计算中的应用 微分中值定理 洛必达(L’Hospital)法则 泰勒(Taylor)公式 函数的极值 函数最大值和最小值 函数单调性 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 弧微分及曲率的计算考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的求导公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。3. 了解高阶导数的概念,会求简单函数的n阶导数。4. 会求分段函数的一阶、二阶导数。5. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数6. 会求反函数的导数。7. 理解并会用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理。8. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。9. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。10. 掌握用洛必达法则求未定式极限的方法。11.了解曲率和曲率半径的概念,会计算曲率和曲率半径。(三)一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分(无穷限积分、瑕积分) 定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念。2. 熟练掌握不定积分的基本公式,熟练掌握不定积分和定积分的性质及定积分中值定理。掌握牛顿-莱布尼茨公式。熟练掌握不定积分和定积分的换元积分法与分部积分法。3. 会求有理函数、三角函数有理式和简单无理函数的积分。4. 理解变上限定积分定义的函数,会求它的导数。5. 理解广义积分(无穷限积分、瑕积分)的概念,掌握无穷限积分、瑕积分的收敛性判别法,会计算一些简单的广义积分。6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、截面面积为已知的立体体积、功、引力、压力)及函数的平均值。(四)向量代数和空间解析几何考试内容向量的概念 向量的线性运算 向量的数量积、向量积和混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程考试要求1. 熟悉空间直角坐标系,理解向量及其模的概念。2. 熟练掌握向量的运算(线性运算、数量积、向量积),掌握两向量垂直、平行的条件。3. 理解向量在轴上的投影,了解投影定理及投影的运算。理解方向数与方向余弦、向量的坐标表达式,会用坐标表达式进行向量的运算。4. 熟悉平面方程和空间直线方程的各种形式,熟练掌握平面方程和空间直线方程的求法。5. 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。6. 会求空间两点间的距离、点到直线的距离以及点到平面的距离。7. 了解空间曲线方程和曲面方程的概念。8. 了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求其方程。9. 了解常用二次曲面的方程、图形及其截痕,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。(五)多元函数微分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限和连续 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分的概念及求法 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 高阶偏导数的求法 空间曲线的切线和法平面 曲面的切平面和法线 方向导数和梯度 二元函数的泰勒公式 多元函数的极值和条件极值 拉格朗日乘数法 多元函数的最大值、最小值及其简单应用 全微分在近似计算中的应用考试要求1. 理解多元函数的概念、理解二元函数的几何意义。2. 理解二元函数的极限与连续性的概念及基本运算性质,了解二元函数累次极限和极限的关系 会判断二元函数在已知点处极限的存在性和连续性 了解有界闭区域上连续函数的性质。3. 理解多元函数偏导数和全微分的概念 了解二元函数可微、偏导数存在及连续的关系,会求偏导数和全微分,了解二元函数两个混合偏导数相等的条件 了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。4. 熟练掌握多元复合函数偏导数的求法。5. 熟练掌握隐函数的求导法则。6. 理解方向导数与梯度的概念并掌握其计算方法。7. 理解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。8. 了解二元函数的二阶泰勒公式。9. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。10. 了解全微分在近似计算中的应用(六)多元函数积分学考试内容二重积分、三重积分的概念及性质 二重积分与三重积分的计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分之间的关系 格林(Green)公式 平面曲线积分与路径无关的条件 已知全微分求原函数 两类曲面积分的概念、性质及计算 两类曲面积分之间的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1. 理解二重积分、三重积分的概念,掌握重积分的性质。2. 熟练掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标),掌握二重积分的换元法。3. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。熟练掌握计算两类曲线积分的方法。4. 熟练掌握格林公式,会利用它求曲线积分。掌握平面曲线积分与路径无关的条件。会求全微分的原函数。5. 理解两类曲面积分的概念,了解两类曲面积分的性质及两类曲面积分的关系。熟练掌握计算两类曲面积分的方法。6. 掌握高斯公式和斯托克斯公式,会利用它们计算曲面积分和曲线积分。7. 了解散度、旋度的概念,并会计算。8. 了解含参变量的积分和莱布尼茨公式。9. 会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、曲面的面积、物体的体积、曲线的弧长、物体的质量、重心、转动惯量、引力、功及流量等)。(七)无穷级数考试内容常数项级数及其收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域、和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 泰勒级数 初等函数的幂级数展开式 函数的幂级数展开式在近似计算中的应用 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数。函数项级数的一致收敛性。考试要求1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件2. 掌握几何级数与p级数的收敛与发散情况。3. 熟练掌握正项级数收敛性的各种判别法。4. 熟练掌握交错级数的莱布尼茨判别法。5. 理解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。6. 了解函数项级数的收敛域及和函数的概念。7. 理解幂级数的收敛域、收敛半径的概念,并掌握幂级数的收敛半径及收敛域的求法。8. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。9. 了解函数展开为泰勒级数的充分必要条件。10. 掌握一些常见函数如ex、sin x、cos x、ln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。11. 会利用函数的幂级数展开式进行近似计算。12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会将周期为2l的函数展开为傅里叶级数。13. 了解函数项级数的一致收敛性及一致收敛的函数项级数的性质,会判断函数项级数的一致收敛性。(八)常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降价的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 欧拉(Euler)方程 微分方程的幂级数解法 简单的常系数线性微分方程组的解法 微分方程的简单应用考试要求1. 掌握微分方程及其阶、解、通解、初始条件和特解等概念。2. 熟练掌握变量可分离的微分方程的解法,熟练掌握解一阶线性微分方程的常数变易法。3. 会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换求解某些微分方程。4. 会用降阶法解下列方程:y(n) =f(x),y″ =f(x,y′ )和y″ =f(y,y′ )5. 理解线性微分方程解的性质及解的结构定理。了解解二阶非齐次线性微分方程的常数变易法。6. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。7. 会解自由项为多项式、指数函数、正弦函数、余弦函数、以及它们的和与积的二阶常系数非齐次线性微分方程。8. 会解欧拉方程。9. 了解微分方程的幂级数解法。10.了解简单的常系数线性微分方程组的解法。11 会用微分方程解决一些简单的应用问题。五、主要参考文献《高等数学》(上、下册),同济大学数学教研室主编,高等教育出版社,1996年第四版,以及其后的任何一个版本均可。