就总体难度而言,2019年考研数学一试题与2018年相比,难度相差无几。这与近年来的考研趋势是非常契合的,随着考研人数的增加,试题的难度也在增加,这也体现了考研是选拔性考试的特点,不过从2013年开始试题的难度整体是比较平稳的。另外,2019年的考研数学一高数部分试题体现了考研数学的一贯特点:重基础,综合性强,计算量大。首先,考题重在考查学生对基本概念的理解和运用数学的基本方法来解决基本问题的能力。其实从1990年到2019年以来,重基础这个出题的侧重点从未改变过。与此同时,近几年试题中不断凸显的综合性和灵活性增加了考试的难度,要求考生注重对方法的总结和能力的培养,从而做到活学活用。最后,计算量大的特点要求考生要多做题,只有量的积累才能把计算能力提升上来,在考场上不仅做到会,而且要快,这样才能考取理想的分数。考研是一场持久战,要把握好复习的节奏,尤其是对考研数学的复习,制定好复习计划,进而保证高数复习的效率。因此,中公考研制定了比较科学的梯度学习法,把考研数学全年的复习计划划分为四个阶段,即基础阶段(6月份之前)、强化阶段(7-9月份)、提高阶段(10-11月份)以及冲刺模考阶段(12月份)。以上四个阶段循序渐进,每个阶段都有对应的学习任务和目标,一步一个脚印,稳扎稳打。考生在复习中,最重要也是最容易忽视的就是基础阶段,只有打好基础,具备扎实的基本功,这是最关键的一个环节,这与考查目标—重基础是非常契合的。在此基础上,通过适量的练习做到灵活运用,最后才能够转化为考场上的得分能力。最后,中公考研祝各位考生取得优异的成绩,考取理想的学校!
十一月已经过半,相信很多研友都在忙着刷真题,但是刷真题只是简单地做一篇、然后再对着答案改一遍就完事了吗?今天小编就来告诉大家,如何更加有效地在最后一个月的时间里利用真题。一、如何复习真题这个其实很关键了,有些同学题目一做,答案抄完,然后就把试卷扔在一边,其实这是非常错误的。这种复习方式简直是在浪费时间。第一,必须严格按照考试时间和纪律做真题。完全按照考试时间来,中途不许上厕所不许玩手机不许聊天。就假设自己正在考研,找一张白纸作为答题纸,书写工整、字迹清晰、步骤明确,不得跳步越项。切忌草草了事,敷衍应付!第二,认真根据答案批改这里要先提醒一点,每年考试难度都不一样,所以不必太在意分数。更不可因为某年的试卷分数过低还怀疑自我,保持心态最重要。批改过程中要做好记录,查漏补缺。一定要按照答案要求严格批改,必须自己对自己负责。哪怕分数低点也没关系。第三,错题集有这个相信很多同学都有。其实在复习的最后阶段,我们只需要复习错题集就足够了。有了错题集、你的目标会更加明确,心态也会更加的踏实自然,可以"有的放矢";而不会明明紧张得要死,却发现"无事可做"。也就是说,错题集存在的根本原因,是为了给你提供一个复习的目的。它会很明确地告诉你,你还有哪些软肋、还有哪些知识点没掌握。会为你后面的复习提供一个目标,不至于让你太过于盲目。下面小编来根据具体学科为大家提供真题复习的范围和推荐书籍。二、高等数学这可以说是考研最大的一个门槛,无数人都挂在那颗名叫“高数”的树上。其实考研数学的命题,都是从题库中选取的题目,出题规律很明显,真题利用价值非常高,所以做真题是性价比非常高的复习方式。1、范围考研数学的真题总共有1988-2019总共32年的试卷。其中1988-1996(共5个卷种,卷1、2相当于现在的数学一,卷3相当于现在的数学二,卷4、5相当于现在的数学三),卷面分值100分;1997-2002(数学一、二、三、四各一套试卷),卷面分值100分;2003-2008(数学一、二、三、四各一套试卷),卷面分值150分;2009-2019(数学一、二、三各一套试卷),卷面分值150分。当然没有必要把这么多试卷全做了,小编这里推荐大家只需要做1997年之后的题目就可以。有些同学可能会疑惑,为什么要做这么二十年前的试卷呢?原因有两个,第一,早年的真题有一些相当经典的题目,试卷的质量也比较高,例如98和99两年的。第二,考研大纲几十年来变化一直不大,不像中学教学大纲,隔几年就改版一次。所以即使二十年前的试卷仍然有一定参考价值。2、书籍推荐这里给大家推荐两本首先是大名鼎鼎的李永乐!这位大神不多解释了,大家都懂得。这本书主要对2005以后的真题进行了详细解析,但是也附赠了1987-2005的试卷和答案。还有一位也是很多研友耳熟能详的老师——张宇!这本书收录了1987年以后所有考研真题详解,也是非常好的真题解析教材。三、英语1、范围英语真题不需要像数学那样做那么多,建议至少做到除去近三年真题外,其他年份的真题的4篇阅读都刷过一遍。得阅读者得天下。2、错题集英语的错题主要在于词汇、语法记忆不全和长难句的分析方面。因为英语归根到底还是一个需要大量记忆及背诵的科目。3、推荐书籍张剑黄皮书,这也是考研圈中非常有名的一位老师了,相必大家都不陌生。他的真题覆盖范围也比较广,解析比较透彻,是本不错的辅导书。四、专业课这是一个非常麻烦、非常需要人脉的事情。因为大多数高校是不会提供专业课的真题的。而且各个高校、尤其是自主命题的高校,对于外校考研的学生其实不是那么友好的。很多同学在考研专业课上走了很多弯路,就是因为没有真题在手,复习的特别盲目,甚至连大概难度都无法预测,最终栽了跟头。1、直接去目标院校购买虽然大部分的高校已经不提供考研历年真题,但是还有一些学校会提供上一年的考研真题。建议你去学校的研招办询问,运气好的话他们会提供一份。在院校附近的一些打印店里,会有老板卖该院校的专业课真题,不过比较贵,大概300块一份。黑心商家啊!2、找研究生学长学姐要这个方法可谓是最靠谱的了,但是非常考研你的人脉。对于那些刚考上研究生的学长学姐们,大部分都有真题、或者有渠道获得真题。而且是考上研究生的,对于真题和复试都有自己的见解,如果此刻结交了,在你进入考研复试的时候也能对你有很大的帮助!这里注意区别真假,有的骗子就是冒充学长学姐骗钱的!每年都有无辜的研友们上当受骗,这里建议线下交易。3、网上搜索现在网络比较发达,很多读研的同学会把考研真题和经验分享到网上,这个时候考生可以根据自己掌握的信息区分。考研真题哪怕是回忆版都比没有强!但是网上信息鱼龙混杂、真假难辨,各位研友要谨慎!4、多渠道购买专业课真题,因为比较难以获得,所以网上有很多电商就是卖真题赚钱的。淘宝上这类店家层出不穷,但也要小心挂羊头卖狗肉。还有一种是考研机构,他们也有自己的内部渠道能搞到真题,这种比较靠谱,因为一般人不会干砸自己招牌的事情。最后有的研友们会问,为什么没有政治的?其实政治这门课时效性很明细,真题的意义并不大,所以就不再推荐了。至于最后的模拟考试,推荐肖秀荣的四套卷和八套卷。还是和其他科目一样,完全按照考研时间和纪律来考试。
在前面的内容中,小编已经给大家梳理了高等数学中的所有核心知识点。如果要说高等数学中哪一个部分的内容最难,那不好说。但微分中值定理一定是最难的内容之一,且微分中值定理这部分的内容往往以考察高分值的大题的为主。许多同学往往觉得微分中值定理的题构造十分的复杂且繁多,所以做题有些困难。其实,不只是构造,而且其形式多变,还可以结合积分等多部分内容来考核。下面,小编带大家一起来盘点一下常见的微分中值定理题型。考研基础知识首先,我们应该熟悉几个常见的中值定理,并且能够独立的推导出他们的证明过程。之所以这么严格要求,原因有下面两个。①因为在考研数学中,很有可能直接考察定理的证明。②定理证明过程的思想往往就是我们做题的证明过程思路。基础下面,小编根据自己的理解,给大家大致的叙述一下主要的几个定理的证明思想。由于许多定理证明的方法不止一种,所以小编提供的方法仅供参考。(1)介值定理(与根的存在性定理等价,也称作为零点定理,证明了解即可,基本不会考。)证明思想:通过构造,结合确界原理,推出在函数值等于0的点在区间的两端取不到。其次,在利用反证法设函数在开区间中取不到0。(2)最大、最小值定理(了解即可)证明思想:想要证明最大最小值定理,我们首先要知道有界性定理,即若一个函数在闭区间上连续,那么这个函数在闭区间上也有界。其次,我们再通过结合确界原理使用反证法,证明函数在闭区间上存在上确界是错误的。考研(3)Rolle(罗尔)定理(重点)证明思想:因为函数f在闭区间上连续,所以满足最大、最小值定理,一定存在最大值与最小值,分两种情况讨论。①最大值等于最小值时,那么函数为常数函数。②最小值小于最大值时,我们发现函数f满足费马定理的条件,可以使用费马定理,从而直接得到证明。(4)lagrange(拉格朗日)定理(重点)证明思想:证明拉格朗日中值定理时,我们常常需要构造辅助函数,其中我们最常见的是构造助函数:F(x)=f(x)-f(a)-(x-a)(f(b)-f(a)/(b-a)然后使用罗尔中值定理即可。同学其实想不太明白这个函数的构造是如何得到的,其实这个构造只是为了方便验算罗尔中值定理。直接把拉格朗日中值定理两等式两边,进行积分构造也是可行的,只是验证罗尔定理条件的时候麻烦一点。考研(5)cauchy(柯西)中值定理(重点)证明思想:要通过构造辅助函数,利用罗尔定理就可以证明。(6)积分第一中值定理(重点)证明思想:同样我们利用最大、最小值定理,函数f在闭区间上存在最大值与最小值,使用积分不等式结合连续函数的介值定理就可以得到证明。题型总结小编大致总结了一下常见的几种微分中值定理题型,共为6种题型。其中,整理的许多题目来自考研数学真题,值得去斟酌思考。(电子版领取方式在文末)总结总结总结总结我的学习建议微分中值定理的学习,对于初学者或者是第一遍考研复习的同学而言,做题会显得十分吃力,几乎每一题都要校对答案才能明白,甚至有了答案也不明白答案的函数构造是从何思想而来。其实,这是一种正常状态。学习微分中值定理的内容,首先,就是要把几个中值定理本身的证明思想吃得通透,然后再对常见题型、常用方法进行总结归纳。事实上,考研数学也逃不过在这几个题型上反复考察。难就难在题型和方法的总结上,每一道题,每一个题型都要耗费大量的时间。现在,小编在这里总结出了完整的版本,希望这篇文章对考研同学们或初学者有所帮助。由于篇幅有限,小编只能放几张整理的题型图片,有需要电子版的同学,关注我,私信回复中值定理即可领取电子版。大学高等数学核心内容大总结,掌握这些知识,高数成绩杠杠的!
文|冷丝栏目|丝说考研2017年的全国研究生入学考试初试,公共科目高等数学试卷中,很多所谓考研备考专家专家对一道很重要的试题解答出现错误,这也导致很多备考生跟着出错。冷丝今天想说的话题是:考研试卷除了政治和英语公共课,官方公布标准答案,其他试卷有参考答案,但均未通过官方渠道进行公布。因此,无论是文科还是理科,考研一族备考时需要找准找对资料,千万不要因此而出大的差错。研究生入学考试考场冷丝在这里友情提醒,我接下来的解释涉及很多专业性问题,很多读者可能看不懂,这个不要紧,本文主要是通过展现一些错误,让你理解:一些考试中的典型错误为什么经常出现,源于部分教材存在瑕疵,部分教师的专业素养或多或少有问题,而备考生需要瞪大眼睛辨别,敢于质疑,不要迷信,并且要学会辨别一些辅导机构、辅导教材是否权威。网上流传的错误答案被当成权威解答,典型错误具有代表性。2017年全国硕士研究生入学统一考试《数学(一)》试题,第18题的解答,很多网站上流传的解答是错误的,据专家介绍,这种错误是高等数学教师在课堂上经常遇到的问题,也是学生经常出错的难题。原题是这样的:而网上广为流传的错误答案是这样的:从上面的解答可以看到函数F(x)需要存在3个不同的零点,而上面解答中得到了3个零点分别是0,ξ和ξ1,忽略了ξ和ξ1可能是同一个点,这样的证明是错误的。课堂教学中存在的类似问题,柯西中值定理的证明,比如,同济版本《高等数学》(第六版)中的柯西中值定理结论如下,在(a,b)内,至少有一点ξ,这样的等式才会成立:很多学生在使用这个教材是会问,能否在等式左侧的分子与分母中分别用拉格朗日中值定理?显然不行,这是为什么呢?因为,学生犯了拉格朗日中值定理中的不一定是同一个值的错误。即使是同一个值也要给出严格证明,ξ只是在(a,b)内的一个点,而在(a,b)内存在数不尽的不可数的点。同济办教材《高等数学》(第六版)习题中的习题,许多学生在用罗尔中值定理证明f’=0也是错误的。那么,这道入学考试真题的正确答案是怎样的呢?因为f(x)在[0,1]上二阶可导,所以,f(x)在[0,1]上是连续的,因此,可以这么解答:这个答案应该是很详细了,一看就明白。还有一个问题,很多学生为什么会出错呢?怎样避免错误。除了部分教材存在瑕疵之外,最重要的问题是,高等数学的学习内容不连贯,存在知识盲点。许多高校在安排学生学习同济版本《高等数学》(第六版)等教材时,没有让学生事先学习“实变函数”中实数论的相关内容,这样导致学习内容的脱节。比如,实数具有有序性——就是任何两个或多个实数之间一定可以比较大小。所以,在同一个问题中出现两个或多个实数时要有明确的大小顺序关系,学生要掌握有序性。天津市考点再如,有理数与无理数的关系是稠密的——任何一个有理点的任何小的邻域内都有不可数个无理点,反之,任何一个无理点的任何小的邻域内会有无数、但可数个有理点,即我们所说的"稠密性"。当然,还涉及有其他一些高等数学知识,你如果没有学,在考研中遇到这样的问题,肯定会出错。这些基础知识,学生没有学习,在遇到实数间的比较,区间中有理点与无理点个数的多少和它们之间的关系时,出错就是一件很正常的事情了。特别需要提出的是,部分年轻教师由于缺乏上述的基础知识,特别是对狄利克雷函数本质的理解等等,那么,他们在教学生时,就会让学生跟着他一起出错。研究生入学考试现场确认冷丝最后还想说,教师的任务责任重大,自己的一个小错或者知识盲点会导致无数个学生跟着出错。同时,无论是哪一个阶段的教材编写,也无论是什么课程,编写者要精益求精,出现错误要及时更正,否则,很多人也会跟着教材出错。(感谢:本文参考了张德存教授的观点)。多选|你觉得考研难度如何?竞争激烈,难度大试题难度大,复习辛苦考试内容多,复习难度大复习时间长,难以坚持打开百度APP进行投票
文|冷丝栏目|考研复习高等数学是理工科、财经类学科学生在步入大学校园后必修的一门基础课,随着后现代经济的发展,科技的进步,高等数学这门学科得到了广泛的应用,因而高等数学的重要性不言而喻。对很多专业的考生来说,高等数学是一道门槛,会卡下很多人。高校数学课是基础课,一般都在大学的一年级开设。而这时的学生刚从中学跨入大学校门,接受知识的方式还强烈地受着中学教育方式的影响。在中学基本上是每天一节数学课,而每一节课只有45分钟,老师常常只讲解一个数学问题,老师还要通过案例、例题进行强化。然而,高校每周只有1-2次课,每次课讲授的内容非常多,课堂上几乎没有时间做练习题。这就导致课堂内容,学生难以当掌握并被强化。教师课堂上对学生管理不够严格,学生从中学升入大学,脱离原来老师的严格管束,一下子进入舒适轻松的状态,老师课上只负责讲课,很少管学生,每节课结束,老师就离开,导致学生上课睡觉、玩手机的现象普遍。所以说,高等数学对于考研就显得很关键了。对于准备考研的同学来说,首先要了解考试内容和题型。考研数学主要包括8个方面内容,题量大,部分题目还有较大的难度,并且有多种题型,慰问考研学子
距离考研初试仅有6周了,你的考研数学复习怎么样了?考研数学可以说是非常难的一门科目,而2021考研又出现重大改革。试卷结构、分值、内容均发生变化,高等数学所占分值比例增加了,考生关于数学备考中心应转为高等数学。近日,张宇老师针对高等数学冲刺复习进行了针对性指导。提到张宇,你第一印象是不是歌手张宇。那只能说你不是考研人,如果你有备战考研第一个想到的应该是数学老师张宇。张宇老师可以说是考研数学辅导中实力派之一。本人至今还能想起张宇老师的一句话:立即推、放弃考研。或许张宇老师这是在激发考生逆反心理,你叫我放弃,我偏不。当然也有不少考生被这句话打击到,本人当年在图书馆备考时,就有考生因为这句话,将桌子掀翻,弃考了。言归正传,一起来看下张宇老师划的重点题型吧。如果考生用的正是张宇老师编写的高数18讲,那就恭喜了。如果不是,本人建议考生借用下别人的,如果想买也可以。(1)函数与极限函数极限与连续,考生重点看14页的例题1.24和25。数列极限,考生重点看27页的例题2.7、28页例题2.9、37页习题2.7、31页例题2.14、33页例题2.17、29页例题2.10、30页例题2.12。(2)一元函数微分学一元函数微分学的计算,考生需注意第59页的例题4.12,202页例题11.13。一元函数微分学的应用一,135页的例题8.14,考察最值问题。79页的例题5.18,考察值域问题。一元函数微分学的应用二,第97页例题6.12,第99页例题6.15和6.16。主要考察中值定理、微分等式和微分不等式。(3)一元函数积分学一元函数积分学的概念与性质,第132页的例题8.10。一元函数积分学的计算,考生需注意第156页的例题9.24。一元函数积分学的应用一,第185页的例题10.22、190页的例题10.30。一元函数积分学的应用二,第199页的例题11.9和200页例题11.10。202页的例题11.13和204页的习题11.8。这部分主要考察积分等式与积分不等式。一元函数积分学的应用三,第212页的例题12.5和6、214页的例题12.9。这部分属于物理应用和经济应用。个人认为,数一和数三的需要学习,数二考生可以根据自己情况自行决定。(4)多元函数多元函数难度非常大,本人当初考数一,差点被三元函数弄崩溃。还好最后调整心态,选择性放弃一部分三元函数的知识。宇哥本次画的重点不多,但是本人还是建议数一看看三元函数微积分,数二看二元函数就可以了。第240页的例题13.29。无穷级数。本部分考数一、数三的考生需要复习。主要是掌握几种变形方式。第329页的例题16.37。如果考生觉得和别人用一本教材不方便,考生还是自己买本较好。最近一段时间,快递一定非常忙,越早点击购买,书籍越早能够到底你手中,毕竟只剩下最后42天了,还要犹豫错失时间吗?以上就是张宇老师针对考研数学冲刺重点针对性地划题,主要还是一元函数的微积分,考生如果能够拿到这部分分数,过线将会变的简单许多。希望考生能够抓紧掌握,预祝大家顺利上岸。
声明即日起,博林考研正式并入文都教育,加入文都考研大家庭!燕郊文都考研来到你身边啦!优秀的人总是互相吸引,博林考研全心全意为学生服务,不断提高服务质量。期待以全新的身份服务每一位新同学。文都考研,大家早已耳熟能详。但小编有必要隆重介绍一下:文都集团在考研、四六级、教资、中小学、留学、医考、建考、公考等领域多元化发展。文都考研积累了丰富的教学管理经验,并建立了优秀的管理团队。以数学汤家凤老师、英语何凯文老师、谭剑波老师、政治蒋中挺、万磊老师,为核心的教师团队,深受全国各地学生喜爱。并出版了大量优质考研用书。(比如今年考研数学多数证明题是汤老师的《接力题典1800》书中原题)回归到今天的主题,给大家分享下考研真题及答案解析。回忆版真题,仅供参考,如有错误欢迎各位考生留言:2020数学一真题答案解析
设A={-∞,-5}U{5,-∞},B=【-10,3),写出AUB,A∩B,A/B,及A/(A/B)的表述式。解:由并集定义:由属于集合A的元素或属于集合B的元素组成的集合,称为A与B的并集,记AUB,那么,由题设可知AUB={x/x<3或x>5}.再由交集定义:由既属于集合A又属于集合B的元素组成的集合,称为A与B的交集,记作A∩B。那么,由题设可知:A∩B={x/-10<=x<5}.由差集的定义:由属于集合A而不属于集合B的元素组成的集合,称为A与B的差集,记作A/B。那么,由题设可知,A/B={x/x<-10或x>5}A/(A/B)={x/-10<=x<-5}.以上是用数集的描述法表达出来,那么用区间表示则依次如下:AUB=(-∞,3)U(5,+∞)A∩B=[-10,-5)A/B=(-∞,-10)U(5,+∞)A/(A/B)=[-10,-5).
考研考数学的同学都知道数学是150分,在考研初试中占着很大的比重,并且数学也是一个拉分科目,别人考130,你考100差30分,30分在竞争激烈的学校,足以拉开很大的差距,并且复试中有很大的优势,所以你想给自己复试一定的优势,数学可以努努力,提高自己的初试优势。对于数学卷纸来说(仅数学一):选择题8题一题4分填空题6题一题4分大题9题94分,高数部分5题线代2题概率论2题分值分布清楚了,现在说一下各部分的大致分配时间,首先考研数学一共3个小时,所以合理分配时间是很重要的。对于选择和填空一般不超过一个小时,一般50分钟要解决,简单的要更快。选择填空是56分,如果想拿高分,选择填空准确率一定要高,各种方法只要能得出正确答案,并且节省时间的都可以使用,像特殊值代入法,取具体的函数值,画草图判断等等,这些方法等刷题的时候你就会发现。对于选择填空准确率和时间控制是重点,一般在做题的时候自己可以进行控制,但是遇到某个特别难的题目时,没有一点思路时,建议先跳过,千万不要强迫自己硬算,抱着不算出来我就不做后面的心态,毫无意义,除了给自己添堵。自己在做模拟卷或者真题的时候,大家也要自己控制,有意的去锻炼自己的心态,有的同学在做选择填空的时候就能把自己的心态搞爆炸,这样对后面大题的计算是极为不利的,原本会算的题可能在心态爆炸之后都不会了,或者算错了。心态也是考试发挥的重要一方面。对于3部分大题,高等数学占比56%,线性代数占比22%,概率论与数理统计22%。一共94分,如果想拿高分的话,一般线性代数和概率论大题要保证不错,高数部分因为压轴题,考验数学功底和素养可以错一部分,关于做题顺序的话,有的老师建议先做线代概率论然后再做高数,个人觉得还是看个人,如果你遇到难题能跳过可以控制自己节奏的话,可以直接按顺序来绝对没问题的,但是你要属于那种头铁选手,建议按老师说法来,线代概率论最后高数,因为一般来说,线代概率论题型较为固定,线代一般两种题型,第一题方程,第二题相似对角化。概率论第一题概率密度,第二题参数估计。题型固定,一般不会出难题,不会让自的心态爆炸。大家在做真题的时候可以自己尝试一下,选择适合自己的,有效率的方法。对于学长来说,我觉得做题和总结是数学考试的灵魂。在数学学习过程中,每个人都有自己的方法。在学长看来,最重要的方法是总结归纳,总结错题,公式,以及常见的并且非常实用的解题套路和方法(学长以后的文章里会给大家分享),这些总结一定会让你事半功倍。一些解题的技巧会让你在计算过程中节省大量时间,从而为冲刺难题做准备。还有一点是对于错题的使用,如果可以的话可以做个错题集,这个真的很难坚持,学长后来就没有坚持下去,只是把常见的个别错题记录了下来,但是这个效果是非常明显的,对以后的做题作用很大。最后,希望大家能够合理地分配时间,数学也许能决定你考研的成败,唯有不断坚持,才会有希望,加油吧!
要知道高等数学是考研数学中分值最高的一个科目,达整张卷面分值的百分之五十六(数一和数三),数三的分值占比更是高达百分之七十八,而且概率与统计的题目在解题过程中也会大量用到高数微积分的知识,毋庸置疑高数是考研数学中最重要的科目。从难度上来说,也是考研数学三科(高等数学、线性代数、概率论与数理统计)中,相对来说难度最大的一个科目。高数难度大主要体现在以下三个方面:第一,高数的内容非常多,知识体量大,光是高数教材就有七百多页,且微积分的计算要求熟练运用高中学的指数函数、幂函数、对数函数、三角函数等知识,这无疑使高数的考点变得更多,考试的难度变得更大。第二,高数不只考查的知识多,而且对知识的综合运用能力有较高的要求,也就是说只是单纯地掌握单一的知识点是远远不够的,一道题目通常会考查两个或者是更多的知识点,而且有些考查的知识点还是不同章节的,如果不能将知识融会贯通,有清晰的解题思路是很难得高分的。这就要求我们在复习的过程中,不仅要熟练掌握每一个知识点,而且要提高对知识的综合运用能力,说白了就是要大量做题,知易行难,在实际解题过程中,提高对知识的运用能力。第三,高数的题量比较大,考试的时候对解题速度和计算能力的要求较高。学生会出现有些题目虽然会做但最后时间来不及,或者是会做但是花费大量的时间,占用做其他考题的时间的情况,这就要求我们在复习的过程中,不光是要看书学习,还要不断地去计算,做题,不要停留在知识看懂了的阶段,一定要自己动手去做题,熟练掌握考题背后要求的知识点,达到拿到题目有思路,计算过程快又准的程度。希望各位同学可以在高数上找到合适的方法,顺利成研,多做题,总结经验总是有好处的!