考研数学和高等数学不是一个概念,考研之前一定要分清楚否则白学。考研数学分为数学一、数学二、数学三、数学基础四个类别。四个类别的考研数学分别对应不同的一级学科和二级学科。一、考研数学包含的科目首先来看考研数学一:考研数学一是考研数学中难度最大,范围最广的。数学一的考试科目包括高等数学、线性代数、概率统计三科。请记住,这里考的是三科可不只是高等数学哦!其中高等数学占比百分之五十六;线性代数占比百分之二十二;概率统计占比百分之二十二;其次来看考研数学二:考研数学二是考研数学中考试范围最小,但是高等数学占比最高的。考研数学二的考试科目包括高等数学和线性代数其中高等数学占比百分之七十八;线性代数占比百分之二十二。发现了吗?考研数学二考的也不只是高等数学哦。但是比较庆幸的是考研数学二不考概率统计。再次来看考研数学三:考研数学三是考研数学中考试难度最简单的(个人观点)。考研数学三的考试科目与数学一完全一样,各科目的分值占比也与考研数学一完全一样。但是考试难度相对于考研数学一而言较为简单。最后来看数学基础:看到这里很多考生可能要疑问了,考研数学还包括初等数学吗?回答是:不仅有,而且涵盖的专业还很热门。在专业硕士的考试中工商管理硕士也就是我们耳熟能详的MBA以及会计专硕MPAcc的考试科目中的《管理类联考综合能力》科目代码199,其中初等数学的考试分值为75分。考试科目有算术、代数、几何、数据分析。这一科是不包含高等数学的。金融硕士、应用统计硕士、税务硕士、国际商务硕士、保险硕士、资产评估硕士所考试的科目中《经济类联考综合能力》中初等数学的考试分值为70分。考试科目为《微积分—部分》、《概率论—部分》、《线性代数—部分》。在此科目的考试中虽然没有标明要考高等数学但是《微积分—部分》所考试的内容实际上就是高等数学的内容。二、高等数学在考研数学中的地位从上一小节的分析中我们能够看到,除管理类联考综合能力所考的初等数学外。考研数学一、二、三以及经济类联考综合能力的考试内容中高等数学的考试占比都是比较大的。当然这些只是我们能够从表面上分析出来的数据。在实际学习以及考试过程中,高等数学不仅本身分值占比大,而且还担任着一个不可或缺的角色:为线性代数和概率论提供计算方法(这一点在考研复习之初考生一般很难发现)。在关于考研数学复习指导的文章以及课程中,很多老师建议大家在考研数学复习过程中可以首先复习内容较少的《线性代数》或《概率论》。在小编看来凡是发表以上言论的老师都没有真正研究过考研数学的考试结构以及考试重点。在考研数学的考试难度以及考试重点的综合约束下,如果没有高等数学作为支撑,线性代数和概率论的很多习题根本是无从下手的,甚至是,即便你找到了思路也是需要用到高等数学的方法来进行运算的。从这个角度来讲,高等数学是考研数学的根本和基础。三、高等数学在考研数学中考试难度以及范围的区别高等数学在考研数学一二三以及经济类联考综合能力中都有涉及到,从上文的数据中我们看到了高等数学部分分值占比最大的是考研数二。那么也就有人得出结论说考研数学二所考察的高等数学范围最广、难度最大。根据小编对于考研大纲以及考研真题的分析发现,在考研数学中,数学一才是对于高等数学考核范围最关难度最大的。数学二中高等数学的分值占比最大,这主要体现在了对于高等数学的细节部分考核较多,但是考试范围和考试难度并没有数学一大。数学三的分值比例虽然跟数学一相同,但是考试难度以及考试范围也比数学一小。在考研数学中,一般情况下涉及到的相同的考试知识点考察的难度也几乎是一样的,有时甚至在考试试卷上会有同一道题同时出现在数学一二三的试卷上。四、考研数学的考试方向我们知道进入大学以后我们对于任何一个学科的学习都会有比较明确的方向性。考研数学座位研究生的入学选拔考试自然也不例外。考试数学的考试方向主要体现在考试范围上,比如空间解析几何与多元函数积分学只有数学一要求;无穷级数只有数学一和数学三有考核要求;微积分的物理应用只有数学一和数学二要求;而微积分的经济应用却是数学三的考察重点,数学一和二对其不做要求。线性代数在考试内容上是区别最小的,只有数学一会涉及到向量空间的内容,但是这一部分在实际的考试中出现的次数是极少的对于考生的复习并没有实质性影响。但是在最抽象的概率论部分,数学一却要考察参数估计包括评选标准、区间估计以及假设检验。五、数学基础就真的好学吗从管理类联考综合能力中我们看到了有一个叫做基础数学的学科居然出现在考研数学这个科目中很是费解。很多老师断文取义般的在告诉学生们,高数学不会就学初等数学。在描述中将初等数学描述的极为简单,这种引导其实是不负责任的。虽然在初等数学考试章节上我们看到的考试内容是很简单的,主要涉及到的就是小学以及初中的内容。但是在实际考试中这些题目的难度堪比奥数考试,因此对于没有数学思想的考生来讲,也是极具挑战性的学科。六、考研数学与专业选择在考研专业中,无论是学术型硕士还是专业性硕士,大部分专业的考试都是要涉及到考研数学的。在小编看来,能够进入本科学习的考生(个别大神除外)数学基础相差并不大,那么最后谁能获得高分完全取决于学习方法以及学习的态度。因此完全没有必要因为自己喜欢的专业要考数学而选择放弃。并且在考研数学中基础部分的考试内容占比80分以上,过线并不难。以上分析均基于小编对于考研数学考试大纲及考试真题的研究而得出的结论,不足之处和错误之处欢迎大家指正讨论。
考研百科说明 考研百科是全新栏目,每天为大家用精炼的语言科普考研基础常识,以及基本常识性问题,帮助广大考研小小白快速上车~考试内容不同(一)线性代数数学一、二、三均考察线性代数,所占比例均为22%,而且是数一数二数三考试内容中差别最小的科目,很多年份,考研真题线代部分都是完全一样的,唯一不同的是数一的大纲中多了向量空间部分的知识。(二)概率论与数理统计数学二不考察,数学一与数学三均占22%,从历年的考试大纲来看,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件(三)高数数学一、二、三均考察,而且所占比重最大。数一、三的试卷中所占比例为56%,数二所占比例78%。,数一考察的范围是最广的;数二不考察向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数;数三不考察向量空间与解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。而且侧重有所不同理工类(数一数二)要考微积分的物理应用,而经济类(数三)相应的内容则换成了经济学应用。数三强调级数,数一强调曲面积分温馨提示一般来说数一是考的全面而且相比数二数三来说要难很多。数二虽然考查范围少,但是高数的内容考的很细。数三考的也相对全面主要针对经济类考生。还未确定专业考数学几的考生可以从高等数学的极限、一元函数微分学、一元函数积分学、不定积分、定积分、不定积分的应用、多元函数微分学、微分方程和二重积分等必考公共内容入手,确定好后就要着手开始其他科目的复习啦
【摘要】从大三开始,考生便开始关注与考研政策、择校择专业有关的信息以及考研大纲的消息。了解考研大纲的内容,对初步了解考研很有必要。百优整理了考研数学大纲解析,供考生参考。2019新大纲尚未发布,不过没关系。根据以往经验,大纲的大部分内容是不做大的改动的,所以目前情况下,我们可以参考一下以往的大纲内容,为2019考研备考复习助力!本文通过近年大纲数据进行分析,为考生复习指点迷津。下面根据往年同学备考情况提出一些复习上的建议。2018年考研数学大纲与往年考研大纲保持稳定,根据考研大纲及真题,高等数学是数一、数二、数三中地位最高的,比重最大的科目。从2005年后高数在数一、数三中占比稳定在56%,在数二中占比稳定在78%,因此考研数学的重头戏在高数。下面将基于近年考研大纲及历年真题帮助考生找到高等数学高效的学习方法:1.高数中比较难的有微分中值定理和不等式的证明题,这一部分题目技巧性比较强,难度比较大。2.数一曲线积分和曲面积分在考试中得分率不高,而数二和数三在多元函数微积分里的要求虽然比数一低很多,但得分率也不高。导致这个现象出现的根本原因在于大多数考生对这一部分重视程度不够,基本的积分计算不过关。3.不按照常理出牌。如数三的差分方程,以往出现的频率极低,2003年至2016年没出过,但2017年出了一道小题,4分虽小,但三道小题就是一道大题。又如数一的傅里叶级数,以往出现的频率很低,大概四五年才会出一道小题,但是在2008年,考了一道傅里叶级数的大题,11分,这是任何人事先都没有想到的。又比如说多元积分考查,数一的大题大多出在第二类曲线积分或是第二类曲面积分上,因为这里有一些很重要的公式和定理(格林公式和高斯定理),题目比较好出。但2010年,数一却是一道第一类曲面积分的题目; 2011年也只考了一道二重积分的题目,这在以往的考研中都是很少见的,但是这些题的知识点又是在大纲范围之内的,不能说它超纲。通过以上的分析,考生们要清醒的知道考试大纲只是指明了考试出题的范围,告诉了我们考试的具体内容以及每一部分内容的考试要求,并没有规定哪一部分内容考的高哪部分考的低。基于此,建议广大考生在复习的时候尽可能地全面,不要因为某一个知识点在真题中出现得比较少就不重视。也不要去相信什么押题,数学考的是基本功,不是靠一两套模拟试卷就能抓得起来的。基本功靠什么?靠做题。现在,同学们脑中一定存在两个疑问,怎么做题?题量究竟多大?就这两个问题,根据往年学员备考情况,给出如下一些建议。众所周知,考研题目的一个特点是综合性较强,在基础扎实的前提下,提高解决综合题目的能力。这个阶段考生可以练习一些综合性较强的题目,可以在市面上选取合适的参考书。辅导材料千千万,适合自己才是真。这里要特别提醒一点真题很重要!很重要!很重要!比如如下两题:大家是否有似曾相识之感。考研数学的题量究竟多大为宜?王国维在《人间词话》说——古今之成大事业、大学问者,必经过三种之境界:"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境也。由于考研数学不同于数学竞赛,考研数学考察基本运算能力。考研数学题量是可以大致估计的。正如王国维做学问有三境界,考研数学做题也有三境界:第一境界,借助辅导材料(如李永乐复习全书)梳理考点脉络,题目以单一考点题目为主,题源来自教材或基础阶复习材料,题量约1000题。第二境界,在第一境界基础上,根据强化阶材料总结的真题题型及方法,训练解决综合题型的能力,题源首选2003至2017年十五年真题(数一、二、三相关题),题量约1000题。第三境界,在第二境界基础上,注意一些数学概念细节,合理处理考试细节,对做过的题进行总结分析,查缺补漏,题源为以前做过仍有问题的题及1987至2002的真题,题量约1000题。首先,一定要用手“做”题而不是用眼“看”题,正所谓“眼过千遍不如手过一遍”;其次,最好规范做题,“误以题小而不做,误以题简而不为”;最后,要养成刻苦钻研、独立思考、独立做题的习惯,“眼高手低”要不得。百优 希望同学们 既然走上了这条考研路,就勇往直前,相信明年的这个时候,你会感谢今年的自己!PS:(有的童鞋问百优,公众号的免费资料还更新吗? 答:更,会持续更的,只是前一段时间各个官网给百优投诉了,555...,所以后面文章都不让加人家机构的东西,所以没有发文章 ,但是资料是都更新了的,同学们还在汇总的那个连接里保存即可)本公众号除了“百优拼课”下面的拼课版块外,其他的都是免费下载的,我们为大家整理了2019年考研复习资料汇总页面,具体详情关注微信公众号(百优学习网)在干货菜单中找到。
2020考研数学大纲发生了哪些变化?答案是:0。是的,你没有听错,相比于2019的考研大纲,考研数学一二三的所有科目加到一起没!有!变!化!试卷内容结构上:数学一、数学三中,高等数学、线性代数、概率论与数理统计占比依旧为56%、22%、22%。数学二中,高等数学、线性代数分别占比78%、22%。试卷题型结构上:永远的“869”,即8道选择、6道填空、9道解答。试卷分数上:选择、填空每题4分,共56分;解答题共94分。2020考研数学:怎么正确运用全新的考研数学大纲?今年的考研数学大纲“0”变化!2020年考研数学大纲可以说是2019年的大纲换了个“帽子”。不仅如此,2010-2019,十年的时间里,考研数学大纲只有一处知识点名称的变化。那么,该如何正确运用考研数学大纲这个“新古董”呢?明确考试范围:大纲上没有的一定不会考,大纲上有的不一定会考。毕竟考试只有23道题目,不可能覆盖大纲上的所有知识点。但是,凡是大纲上提到的知识点,考生一定要认真复习。明确重点与非重点:要求“理解”“掌握”的内容为考试重点和核心考点。要求“会”“会用”“会求”和“了解”的知识点都是非重点内容。非重点内容考试难度与几率较低,但考生也需要掌握。其实,只要考生能够坚持到最后,都能取得好成绩的。
每一个考研人都知道,考研大纲对于考研来说非常关键,正确解读考研大纲是考研成功的前提。小编为大家精心准备了考研数学大纲发布后的复习要点,欢迎大家前来阅读。考研数学大纲发布后的复习重点了解对这样的概念、这样的公式和这样的理论,我们只要知道它是怎么样的概念和公式、理论就够了,不需要对它进行更多的讨论,它是怎么来的,用它怎样解决什么样的实际问题的,这个可能应该在以后的问题来讨论,对了解只是知道这个概念它是怎么样的概念,这个公式是怎样的公式,这样的理论是什么样的理论就够了,比方说提到了这样的概念,你就能知道这是在哪个地方的,是哪个问题当中的概念,达到这样的程度就行了,这叫了解。理解这要比了解高一个层次了,我们不仅仅要知道这个概念,而且要知道来龙去脉,这个概念为什么要提出来,从哪一个方面提出来的,这是一个方面,再一个方面对这个概念提出了之后将来要解决什么我要知道,我要达到利用这个概念能够解决我们什么样的问题的目的,就要把这个概念真正做到理解。掌握是所有要求中级别最高的,我们不但知道这个概念、公式或定理,而且要知道它们的来龙去脉,如何推倒出来的,对于这些概念、公式或定理应该不但知道将来能解决什么问题,而且在出现不同题型考察这个知识点时要回灵活运用,达到熟练解决问题的程度。会用这样的词出来之后,这主要是对于某一个概念会用,对某一个结论会用,对某一个公式会用,只要会用这个结论、概念、公式就够了,而对这个概念是怎么来的,对结果是怎么推来的,不追究它的来历,只要会用就可以了,比方说这个公式只要会用了,可以拿它解决问题就可以了,至于是怎么来的不关心。考研数学高数必看的定理证明1、微分中值定理的证明这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。2、求导公式的证明2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。3、积分中值定理该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。4、微积分基本定理的证明该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。考研数学概率复习指导在文字叙述题上下功夫考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。会用公式解题概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。对概率论与数理统计的考点整体把握考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。心理上要重视考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的复习程度。概念不清,只会背不会运用;不能正确地选择概率公式去证明和计算;不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。分析有误,概率模型搞错。
考研大纲是规定全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等政策指导性考研用书。考研大纲是由教育部考试中心组织编写、高等教育出版社出版、官方发布的考研指南。2021全国硕士研究生招生考试大纲已在9月9日正式发布,小编整理了2021年公共课考研大纲变动解析汇总,希望对大家有帮助!#考研政治#一、2021考研政治大纲整体变动情况2021考研政治新大纲在企盼中如约而至,对考生而言,无疑最重要的、最关心的是变动部分。总体来说,今年大纲变动不大,大结构未变,内容上变动也不多。1.变动分类大纲变动主要有几类:删减、新增、位置变动、新表述等。要区分实质性变动与非实质性变动,实质性变动包括新增考点、重要知识点新表述,考查可能性较大,非实质性变动包括知识点的拆分与组合、标题的调整等,这些内容按照原计划复习即可。2.整体变动情况马原理今年没有实质性变动。共5处变动,仅仅是某些考点位置的调整,全部是非实质性变动。考生按照原有计划继续进行复习即可。毛中特有变动但实质性变动不多。共33处变动,其中第8章新时代新思想、第10章“五位一体”总体布局中的经济、文化、生态、第11章“四个全面”战略布局中全面建成小康社会与全面深化改革等在内容上有实质变动,考生在后期复习中要重点关注。史纲基本稳定,新增较少。共25处变动,多为删除。新增集中在第4、7、8、ll章,但新增内容不多,基本不影响复习。思修法基内容一直比较稳定。虽然有48处变动,但实质性新增有3处,新表述有1处,其他为删除与非实质性变动。新增道德实践的养成、树立共产主义要多加留意。形势与政策以及当代世界经济与政治新增部分新表述。共18处变动,多为删除与非实质性变动。中国与大国关系中新增新冠肺炎疫情相关内容在意料之内,这也是今年考查的重点。另外推动构建人类命运共同体内容有新表述,也需重点关注。总之,考研政治新大纲结构上没有调整,内容上变动幅度也较小各位考生在后续复习中除了关注大纲重要变动内容外,还需要关注重要时政,把知识点与时政结合起来。二、2021考研政治考试形式和试卷结构1.试卷满分及考试时间试卷满分为100分,考试时间为180分钟。2.答题方式答题方式为闭卷、笔试。3.试卷内容结构马克思主义基本原理概论约 24%毛泽东思想和中国特色社会主义理论体系概论约 30%中国近现代史纲要约l49%愚想道德修养与法律基础约 16%形势与政策以及当代世界经济与政治约 16%4.试卷题型结构单项选择题16分(16小题,每小题1分)多项选择题34分(17小题,每小题2分)材料分析题50分三、2021考研政治大纲变动一览表第一部分 马克思主义基本原理概论信息来源:高教考试在线课堂信息来源:高教考试在线课堂第二部分 毛泽东思想和中国特色社会主义理论体系概论信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂第三部分 中国近代史纲要信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂第四部分 思想道德修养与法律基础信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂第五部分 形势与政策以及当代世界经济与政治信息来源:高教考试在线课堂#考研英语#总体来说,2021考研英语(一)和英语(二)考试大纲只细微调整,其他与去年相比无实质性变化,主要变动体现在两个方面:一、大纲词汇发生变化。总词汇量由去年5497个增加到5522个,其中新增词汇81个,删减词汇46个,同时对144个词汇根据拼写和意思进行整合,调整后变为140个。二、词缀进行了调整变动。词缀总数由116个增加至140个。其中前缀81个,较去年增加19个;后缀59个,较去年增加6个。个别后缀进行了整合,前缀的英文释义进行了扩充,例词也发生了变化。以下为《2021考研英语大纲变动一览表》:信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂信息来源:高教考试在线课堂#考研数学#一、2021考研致学大纲整体变动情况经与去年大纲对比,2l考研数学大纲发生近十年以来的最大变动,数(—,、数((二)、数〔三)变动达48处。接下来我们从题型结构、内容结构、考试内容三个模块来说一下各部分内容的变动情况。一是试卷内容结构变动,共5处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。第一,数《—)、数(三)内容结构中,高等数学分值比例由“569%”变为“约60%”,线性代数和概率论与数理统计分值比例都由“22%"降为“约20%”;第二,数(二〕内容结构变动中,高等数学分值比例由“78%”提高到了“约 809%”,而线性代数分值比例由“22%”降为“约20%”。二是试卷题型结构变动,共7处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。单项选择题,由“8小题,每小题4分”变为“10小题,每题5分”,总分由32分变为50分,分值占比提高;填空题,题目数量不变,分值由“每小题4分,总分24分”变为“每小题5分,总分30分”,分值占比提高;解答题,由“9小题,总分94分”变为“6小题,总分70分”,分值占比降低。三是考试内容与要求变动,共36处。其中高数部分变动29处,主要集中在数(三),线代变动了处。在这些变动中,约80%的内容集中在对概念和题目解题方法的掌握程度上,对概念的要求进一步提升,数(三)高数部分整体要求有所提高,部分内容的要求上接近数《—〉考试要求。总体来看,2021考纲对高数的考查要求进一步提高,不管是考试内容占比还是考试要求上的变动更多的还是体现在了高数上面。因此,在后期的复习中,要更加注重对高数部分的复习,尤其是考纲变动的部分。二、2021考研数学考试形式和试卷结构各卷种试卷满分均为150分,考试时间为180分钟。⒉.答题方式信息来源:高教考试在线课堂各卷种试卷题型结构均为:单项选择题10小题,每小题5分,共50分填空题6小题,每小题5分,共30分解答题〔包括证明题〕6小题,共70分三、2021考研数学大纲变动一览表第一部 考试形式和试卷结构信息来源:高教考试在线课堂第二部分 考试内容和考试要求信息来源:高教考试在线课堂9月10日上午9:00,晚上19:00点,2021考研大纲解析峰会,深度解析!想要获得观看渠道的同学们私信小编嗷!此时正在备考的你是不是还在为了“ 历年真题找不到 ”等这些问题而捉急上火?憋慌!私信小编即可获得10G超全考研资料的获取方式,你想要的历年真题资料这里都有!如果想成功逆袭上岸,请一定收下这份备考大礼包!真没多少时间了,快快抓紧时间学习啦!
叮!考研情报到!面对逐年增长的报考人数,2021年考研大纲有了众多新变化,考研数学更是近十年来最大的一次变动,2021考纲对高数的考察要求进一步提高,不管是考试内容占比还是考试要求上的变动都更多体现在了高数上面。以下为题型结构、内容结构、考试内容三个模块的变动情况:内容结构题型结构考试内容1. 数学(一)数学(一)除高等数学有所变化外,剩余的线性代数和概率论与数理统计相比于2020年大纲均无变化。2. 数学(二)高等数学线性代数对于变动部分,在补充新增知识点的同时,可以用数学(一)历年真题相应部分进行练习,提高实战能力。3. 数学(三)高等数学线性代数数学(三)的大纲内容是变动最多的,许多知识点要求已与数学(一)相同,备考数学(三)的同学可以对变动部分参照数学(一)历年真题进行相应部分练习。蔚然助力深造计划,致力于为各位考研学子保驾护航、逐梦远行。愿:有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。加油,考研人!
2021考研数学大纲整体变动情况与去年大纲对比,2021年考研数学大纲发生近十年以来的最大变动,数(一)、数(二)变动达48处,接下来从题型结构、内容结构、考试内容三个模块详细分析。一、试卷内容结构变动,共5处。试卷整体提高了高数的分值占比,同时降低了线代和概率的分值。1.数(一)内容结构中,高等数学分值比例由“56%”变为“约60%”,线性代数和概率论与数理统计比例由“22%”降为约“20%”。2.数(二)内容结构变动中,高等数学分值比例由“78%”提高到了“约80%”,而线性代数分值比例由“22%”,降为“约20%”。二、试卷题型结构变动,共7处。试卷总分不变,题型结构发生变动,提高了单项选择题和填空题的分值,同时降低了解答题的分值。1.单项选择题,有“8小题,每小题4分”变为“10小题,每小题5分”,总分有32分变为50分,分值占比提高。2.填空题,题目数量不变,分值有“每小题4分,总分24分”变为“每小题5分,总分30”,分值占比提高。3.解答题,有“9小题,总分94分”变为“6小题,总分70分”,分值占比降低。三、考试内容与要求变动,共36处。其中高等数学变动29处,线性代数变动7处。第一部分 考试形式和试卷结构1.试卷内容结构调整2.试卷题型结构调整第二部分 考试内容和考试要求1.数学(一)考试要求变动情况第一篇 高等数学一、函数、极限、连续(无变化)考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形。 初等函数函数关系的建立。数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2.了解函数的有界性、单调性、周期性和奇偶性;3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4.掌握基本初等函数的性质及其图形,了解初等函数的概念;5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系;6.掌握极限的性质及四则运算法则;7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法;8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限;9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分学(无变化)考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径。考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;3.了解高阶导数的概念,会求简单函数的高阶导数;4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;6.掌握用洛必达法则求未定式极限的方法;7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分学(有变化)考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念;2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法;3.会求有理函数、三角函数有理式和简单无理函数的积分;4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式;5.①“了解”反常积分的概念”。变为“理解反常积分的概念”,加强对概念的要求;②了解反常积分收敛的比较判别法”。变为“增加”了解反常积分收敛的比较判别法。6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、向量代数和空间解析几何(无变化)考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示;2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法;5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题;6.会求点到直线以及点到平面的距离;7.了解曲面方程和空间曲线方程的概念;8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程;9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。五、多元函数微分学(无变化)考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件。多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用。考试要求1.理解多元函数的概念,理解二元函数的几何意义;.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质;3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性;4.理解方向导数与梯度的概念,并掌握其计算方法;5.掌握多元复合函数一阶、二阶偏导数的求法;6.了解隐函数存在定理,会求多元隐函数的偏导数;7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程;8.了解二元函数的二阶泰勒公式;9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。六、多元函数积分学(无变化)考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用。考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理;2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标);3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;4.掌握计算两类曲线积分的方法;5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数;6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分;7.了解散度与旋度的概念,并会计算;8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。七、无穷级数(有变化)考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数。考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件;2.掌握几何级数与级数的收敛与发散的条件;3.①掌握正项级数收敛性的比较判别法和比值判别法。变为“增加”会用积分判别法。②“会用”根值判别法。变为“掌握”根植判别法,加强对根植判别法的要求”;4.掌握交错级数的莱布尼茨判别法;5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;6.了解函数项级数的收敛域及和函数的概念;7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法;8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;9.了解函数展开为泰勒级数的充分必要条件;10.掌握 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数;11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。八、常微分方程(无变化)考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用。考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念;2.掌握变量可分离的微分方程及一阶线性微分方程的解法;3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程;4.会用降阶法解下列形式的微分方程:5.理解线性微分方程解的性质及解的结构;6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程;7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程;8.会解欧拉方程;9.会用微分方程解决一些简单的应用问题。
2021全国硕士研究生招生考试大纲在9月9日正式发布了。政治:和往年差不多,变动的幅度在大多数人的预料之中,新增了一些,删除了一些过时的表述,正常呗靠就可以了。英语:没有什么实质上的变化,按部就班的准备复习考试就可以了数学:距2009年之后,迎来了一次大的版本的更新。客观题和主观题的比例发生了变化,同时高等数学的考察比例上升,线性代数和概率论与数理统计的分值下降了。同时对一些知识点有了更高、更细致的要求,区分度或许会进一步上升。“四、试卷题型结构”中,单项选择题由“8小题,每小题4分,共32分”改为“10小题,每小题5分,共50分”;填空题由“6小题,每小题4分,共24分”改为“6小题,每小题5分,共30分”;解答题由“9小题,共94分”改为“6小题,共70分(这70分的分配将随着题目的难度和工作量予以科学确定,不再固定平均分配)”“三、试卷内容结构”表内:数学(一)和数学(三)中高等数学(微积分)分值比例由“56%”改为“约60%”,线性代数分值比例由“22%”改为“约20%”,概率论与数理统计分值比例由“22%”改为“约20%”;数学(二)中高等数学分值比例由“78%”改为“约80%”,线性代数分值比例由“22%”改为“约20%”。考研备考时间仅剩100多天,最新大纲的发布,让准备考数学的同学们心里有点慌,很多同学有些焦虑,然而在这里想和大家说的是不必焦虑和心慌。原因很简单,因为考试大纲的发布和变化是我们所不能控制的,而我们所应该做的事情是努力控制我们所能够控制的事情——认真备考,并且接受那些我们所不能左右的事情,积极地应对大纲带来的变化。专注当下,按照复习计划严格落实,让自己平静下来,踏踏实实的准备考试。同样,至于最终是否能够得到一个令人满意的结果,这个并不是完全由我们所控制的,所以也不需要我们去过度的关注和焦虑。我们不要总是关注以后是否能够被录取,考上理想的院校这些过于久远且巨大的事情,而是应该专注于眼前能做的每一件小事,能够复习到的每一个小的知识点,并把它们都复习到位。#2021考研大纲#我们的心中有自己心仪的院校,可是在行动上我们只能看清脚下,认真复习,等过段时间,回头时,会发现已经准备了很多了。我们再往前看,和往回看时看到的东西经常不一样,往前看,会看到困难往回看会看到方法和路径。现在我们可以想象一下,假如奇迹出现了,你真的考上了心仪的院校、专业,会发生什么呢?再想一想,回顾现在这个过程,你迈出的第一步是什么?
前两天小编在逛考研论坛的时候,发现有一篇帖子引起了大家的热议:“考研如果选择不考数学的专业,是不是会轻松很多?”评论区里大家议论纷纷,除了吐槽考研数学让一些文科生难到头秃以外,也有些同学发起新的疑问:“考研数学还分一、二、三?”“这三类数学试卷的区别有哪些?”“哪个难度最低?适用的专业是哪些?”当了解到有那么多考研党,都步入考研数学的“知识盲区”,小编也当机立断决定为大家写篇考研数学的解析文,汇总数学一、二、三的区别、难度以及适用专业。01分别适用哪些专业针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求。硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三;除前面三种统考数学试卷之外,还有数学(农)和招生单位自命题理学数学。数学(一)适用的招生专业:(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。 (2)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。数学(二)适用的招生专业:工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。数学(一)、(二)任选其一的招生专业:工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中所有的二级学科、专业。 数学(三)适用的招生专业:(1)经济学门类的理论经济学一级学科中所有的二级学科、专业。 (2)经济门类的应用经济学一级学科中的二级学科、专业:统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、国际贸易学、劳动经济学、国防经济。(3)管理学门类的工商管理一级学科中的二级学科、专业:企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。(4)管理学门类的农林经济管理一级学科中所有的二级学科、专业。02知识点占比大家可以结合自己计划报考的专业,来了解自己要考试哪一个数学科目的类别。值得一提的是,虽然都是考研数学,但是考研数学一、二、三各有区别,考试内容与难度都各不相同!我们先来看看考研数学一、二、三,对应的考试知识点占比分别是多少:03考试内容与难度当我们了解到考研数学一、二、三的重点知识点占比,接下来就要知悉各类考试卷里的“考纲”分别覆盖了哪些内容:数学(一)①高等数学(函数、极限、连续、一元函数微分学、一元函数积分学、向量代数和空间解析几何、多元函数微分学、多元函数积分学、无穷级数、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。数学(二)①高等数学(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积学、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型)。数学(三)①微积分(函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用、微分方程、多元函数微分法及其应用、重积分、无穷级数);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、随机变量的联合概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。总的来说,三类数学试卷知识面多少:数学一 > 数学三 > 数学二知识点难度:数学一>数学二 >数学三数学一:知识点多,难度大,更适合理科出身的同学。数学二:虽然知识点少,但难度大,一些题目比较精、专,适合大部分工科同学。数学三:知识点介于中间,但难度最小,适合经济类或管理类的同学。了解完上述考研数学的”常规内容“,我们再看看“个别案例”:像数学(农)的考试科目就是线性代数、概率论与数理统计。但很多考数学(农)的专业也可以选择考化学,而非固定选择考数学,所以这类同学在考试科目的选择上,自由度更大。以西北农林科技大学为例:值得注意的是,还有一些招生单位自命题理学数学:考试科目和内容可以参考学校官网,通常官网上会列出考试科目大纲,以2020年同济大学自命题数学的大纲为例:小编寄语如果你选择报考没有数学的专业,那么可选择的专业就会变得窄很多,相应的如果复试没有通过,调剂的机会就会更少。并且如果以后想继续深造,可选择的方向就没剩几个了。而很多不需要考数学的专业,虽然不用担心考数学的问题,但在备考的时候就需要备考两门专业课,需要付出更多的精力,最常见的诸如新闻与传播专业;以上图片摘自中国传媒大学2020年研究生招生专业目录其实考研的难度其实和很多方面都有关系,并不仅仅是一个数学考试能决定的。但如果你是从小就对数学科目头疼且不擅长的考生,小编劝你及时止损,不妨选择那些不考数学的专业,减轻自己的压力。其他考生还是要全面考虑,不要让一个数学绊住你的脚步。最后,希望大家都能考上心仪的学校和专业,免受考研数学的“头秃之累“!本篇原创文章由百家号“宗师考研”发布,我们将会持续更新考研及大学生主题的干货文章与上岸经验贴,敬请关注!