欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
2019年中国3D打印行业市场现状分析及发展前景预测(附图表)大搬家

2019年中国3D打印行业市场现状分析及发展前景预测(附图表)

增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。 3D打印的工作原理是以计算机三维设计模型为蓝本,通过软件将其离散分解成若干层平面切片,由数控成型系统利用激光束、热熔喷嘴等方式将材料进行逐层堆积黏结,叠加成型,制造出实体产品。 一、3D打印产业链分析3D打印行业产业链从上中下游来看,上游为塑料、金属、蜡、石膏、砂等其他各种材料。中游为3D打印设备及技术,下游则为制造、医疗、建筑、军事等应用领域。 上游:塑料、金属、蜡、石膏、砂等其他各种材料。不同的3D打印技术,对材料的要求也有所不同,例如光聚合成型主要以液态光敏树脂为主要材料;颗粒物成型的主要材料为金属、塑料、陶瓷等;而熔融层积型的适用材料为塑料等混合物。 中游:3D打印的中游为设备研发及制造。目前,3D打印设备主要分为桌面级和工业级两种。桌面级是3D打印技术的初级阶段,可以直观地阐述3D打印技术的工艺原理;工业级的3D打印设备主要分为快速原型制造和直接产品制造,两者在打印速度、精确度、尺寸等方面各有不同。 下游:主要是3D打印服务,延伸到各个细分的实际应用方向,其中包括制造、医疗、军事、建筑等领域均有所应用。随着3D打印行业的快速发展,3D打印技术应用场景将不断拓展。 数据来源:《2019年3D打印行业市场前景及投资研究报告》,中商产业研究院 二、中国3D市场现状全球3D打印正火热,由于中国引进3D打印技术较晚,与国外有一定差距,但近年来也得到快速发展。目前,中国的3D打印应用主要集中在家电及电子消费品、模具检测、医疗及牙科正畸、汽车及其他交通工具、航空航天等领域。据《2019年3D打印行业市场前景及投资研究报告》显示,2018年中国3D打印市场规模达到23.6亿元,同比增长近42%。伴随着中国3D打印技术的相应成熟,在航天航空,汽车等行业需求将持续增加,预计2019年中国3D打印市场规模将近30亿元。 数据来源:《2019年3D打印行业市场前景及投资研究报告》,中商产业研究院 3D打印机主要分为消费级和工业级。工业级3D打印机速度更快、精度更高,在航空航天、汽车制造、医疗等领域广泛应用。目前,工业级3D打印机在国内3D打印市场结构中,从销售收入来看占比远超消费级3D打印机。 数据来源:《2019年3D打印行业市场前景及投资研究报告》,中商产业研究院 消费级3D打印机虽然在销售收入上的份额不及工业级3D打印机,但却占了相当一部分市场出货量。随着人工智能技术的不断成熟,消费级3D打印机逐渐被人们熟知,吸引了大量企业和消费的关注。据数据显示,2012-2018年消个人费级3D打印机市场规模迅速发展。预计2019年,个人消费级3D打印机市场规模将进一步增长,超2亿元。 数据来源:《2019年3D打印行业市场前景及投资研究报告》,中商产业研究院 三、3D打印产业分布目前,国内3D打印产业在北京市、浙江省、湖北省、广东省、陕西省得到较快发展。 北京市:增材制造技术(3D打印)研发和生产服务的企业达70家以上,2018年实现销售收入超6亿元。 浙江省:位于浙江省的先临三维是这个3D数字化和3D打印第一股,据业绩快报显示,2018年实现营业收入达4.1亿元。 湖北省:共有数十家增材制造(3D打印)相关的企业和研发机构。 广东省:从事3D打印业务的企业超过400家,拥有多个3D打印产业园。 陕西省:从事3D打印研发、生产的企业超过70家。 此外,3D打印行业的快速发展离不开政府的支持,在此背景下,3D打印产业园不断涌出。目前,国内3D打印产业园主要分布在沿海地区,而中部地区也有形成产业集聚区。此外,青岛等地有3D打印产业园在建项目。 数据来源:《2019年3D打印行业市场前景及投资研究报告》,中商产业研究院 四、行业前景我国高度重视增材制造产业,计划到2020年,增材制造产业年销售收入超过200亿元,年均增速在30%以上。关键核心技术达到国际同步发展水平,工艺装备基本满足行业应用需求,生态体系建设显著完善,在部分领域实现规模化应用,国际发展能力明显提升。 (1)行业监管加强,行业规范化发展 随着行业的快速发展,行业发展进入新阶段,监管力度持续提升。未来促进行业规范发展以及维护市场秩序,出台多项重磅政策。 (2)智能化和便捷化 随着3D打印技术越来越普遍地运用到服装、设计、生活生产当中,用户使用有更好的使用体验,才能更普遍地推广这一技术。设备智能化、便捷化是走向普及的保证。 (3)增材制造技术加速融合相关技术 全球范围内新一轮科技与产业革命正在萌发,世界各国纷纷将增材制造作为未来产业发展新增长点,推动增材制造技术与信息网络技术、新材料技术、新设计理念的加速融合。 (4)通用化 在科学教育,工业制造,产品创意,工业美术等方面有广泛地应用前景和巨大的商业价值,同时3D打印技术向低成本、高精度、高性能的方向发展。

天忘朕邪

中国3D打印市场产业链分析一览(附产业链全景图)

中商情报网讯:增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。我国高度重视增材制造产业,计划到2020年,增材制造产业年销售收入超过200亿元,年均增速在30%以上。关键核心技术达到国际同步发展水平,工艺装备基本满足行业应用需求,生态体系建设显著完善,在部分领域实现规模化应用,国际发展能力明显提升。3D打印行业产业链从上中下游来看,上游为塑料、金属、蜡、石膏、砂等其他各种材料。中游为3D打印设备及技术,下游则为制造、医疗、建筑、军事等应用领域。数据来源:中商产业研究院整理上游3D打印行业产业链上游为塑料、金属、蜡、石膏、砂等其他各种材料。不同的3D打印技术,对材料的要求也有所不同,例如光聚合成型主要以液态光敏树脂为主要材料;颗粒物成型的主要材料为金属、塑料、陶瓷等;而熔融层积型的适用材料为塑料等混合物。中游3D打印的中游为设备研发及制造。目前,3D打印设备主要分为桌面级和工业级两种。桌面级是3D打印技术的初级阶段,可以直观地阐述3D打印技术的工艺原理;工业级的3D打印设备主要分为快速原型制造和直接产品制造,两者在打印速度、精确度、尺寸等方面各有不同。下游下游领域主要是3D打印服务,延伸到各个细分的实际应用方向,其中包括制造、医疗、军事、建筑等领域均有所应用。随着3D打印行业的快速发展,3D打印技术应用场景将不断拓展。更多资料请参考中商产业研究院发布的《2019-2024年中国3D打印行业市场前景及投资研究报告》,同时中商产业研究院还提供产业大数据、产业规划策划、产业园策划规划、产业招商引资等解决方案。

白钻石

2020年3D打印产业市场现状与发展趋势分析 汽车为第一大应用领域「组图」

3D打印服务规模大3D打印也称为增材制造技术,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。增材制造技术经过多年的发展,已经形成了一条完整的产业链。上游涵盖增材制造原材料及零件如金属材料、陶瓷材料、塑料材料等,中游以3D打印设备生产厂商及打印服务为主,涉及的打印技术包括熔融成积成型FDM、光固化成型技术SLA等,下游行业应用已覆盖医疗领域、航天航空、机器设备、个人市场、汽车工业等各领域。3D打印经过多年的发展,市场规模逐渐扩大。据《Wohlers Report 2020》数据,2019年全球增材制造(AM)行业的产品和服务收入为118.67亿美元(约842亿人民币),比2018年增长了21.2%。相比于2018年,增长速度有所放缓。3D打印细分产业方面,3D打印服务规模占比较产品销售规模高,3D打印服务规模占比达到57%左右,3D打印产品规模占比42%左右。据《Wohlers Report 2020》数据,2019年,全球3D打印产业结构中,来自增材制造产品的收入是50.43亿美元,同比增长了22.3%。来自增材制造服务的收入估计是68.23亿美元,同比增长了20.3%。可见,增材制造服务的收入比产品销售所带来的收入多。汽车工业是3D打印第一应用领域下游应用领域方面,据《Wohlers Report 2020》问卷调查显示,目前工业中使用3D打印最多的行业是汽车工业,遥遥领先,占比为16.4%。汽车工业零部件繁多,生产成本与生产效率对于汽车工业发展具有重要作用,3D打印能够从设计到生产,为汽车行业降本增效。其次为消费领域/电子领域,占比达到15.4%。3D打印在电子消费品行业的应用优势主要有两点,第一是提升设计水平,3d打印设备技术能够实现繁杂设计方案的模型的制作,赋予产品设计师更多的自由,设计产品技术水平大幅度增强。第二是节省材料和时间成本,3D打印的原料平均利用率要远远高于传统式技术。传统式减材生产制造方式的原料的均值利用率大概在25%左右,而3D打印原料均值利用率理论上达到100%。注:其他的领域是指栏目中没有列出的较宽范围的其他工业领域,如矿物加工、化工、水处理、木材/纸张以及其他目前还没能单独列出的行业。汽车已经成为全球范围内3D打印的第一大应用,甚至超越了航空航天、医疗等领域。作为一种日渐成熟的研发和生产手段,3D打印技术在汽车行业的应用将愈发成熟,未来也越发可期。更多数据请参考前瞻产业研究院《中国3D打印产业市场需求与投资前景分析报告》,同时前瞻产业研究院提供产业大数据、产业规划、产业申报、产业园区规划、产业招商引资等解决方案。

小煞星

3D打印行业2019年数据分析及2020年发展趋势

近几年,3D打印在个性化定制、复杂结构部件制备、医疗等方面表现出显著优势,从产业看,世界工业发达国家纷纷将3D打印作为新的发展增长点,大力推动3D打印技术创新和产业化应用。我国3D打印行业也发展迅猛,工业制造、教育、医疗等方面相关的3D打印技术取得重大突破。1. 全球3D打印产业情况2019年,全球3D打印产业规模达119.56亿美元,增长率为29.9%,同比增长增加4.5%。放眼国内,国内19年3D打印产业规模达157.47亿元,较18年实现大幅提升。正是3D打印产业的一路向好,疫情当前的时候,3D打印企业仍保持迅猛发展,甚至利用3D打印技术帮助解决疫情各种难题。以浙江迅实科技为例,疫情当前,该公司获得了柯桥区2020年第一笔外资投资,投入到复工后的创新研发工作中。2. 全球3D打印产业结构情况2019年,全球3D打印产业结构中,3D打印设备产业规模52.97亿美元,占比最高,达到44.3%;3D打印服务产业规模37.78亿美元,占比第二,达到31.6%;3D打印材料产业规模28.81亿美元,占比24.1%。国内3D打印设备占比45%,其他两项基本持平。可见,3D打印企业在发展过程中,形成体系化产业规模,从上游到下游都能保持供能才能在众多3D打印企业中保持良好的发展势头,立于不败之地。现阶段,3D打印企业还向细分行业发展。以往,3D打印企业生产的3D打印设备往往适合多个领域使用。现在,越来越多的企业着力以一个行业为发展重心。同样以浙江迅实科技为例,该公司自2016年进军数字化齿科市场,每年营收年复合增加率超100%。旗下的齿科3D打印机在美国已占比较大市场份额。在细分行业的立足,意味着3D打印企业的发展更加深入各行各业,且扮演了重要角色。3. 全球3D打印产业区域结构情况从图中可以看出,2019年美国产业规模占全球比重40.4%,德国仅次于美国,中国位居第三。作为3D打印起步较晚的中国,近几年,抓紧自主创新和研发,虽然和国外的技术还有一定差距,但也一步步朝着精细化和专业发展。当然,国内巨大的市场潜能,也吸引了不少国外3D打印行业巨头的目光和投资,进一步推动了中国3D打印产业的发展。总的来说,国内3D打印行业的发展是稳步上升的。且有政策的支持,让这几年大放光彩的3D打印更加欣欣向荣。同时,从产业结构来看,3D打印企业要想获得生存,构建一体化的产业体系也是当务之急。

圣人已死

3D打印(增材制造)行业深度研究报告

(如需原文档,请登录未来智库搜索下载)报告综述:增材制造(Additive manufacturing)是快速成型技术的一种,又称增材制造(3DP),属于高端制造行业。它的基本原理是离散- 堆积原理,以数字模型文件为基础,运用粉末状金属或塑料等可 粘合材料,通过逐层打印的方式来构造物体。增材制造工作过程 主要包括三维设计和逐层打印两个过程。先通过计算机建模软件 建模,再将建成的三维模型分区成为逐层的截面,指导打印机逐 层进行打印。 相比于传统的减材制造方式具备很多优势:1、缩短生产制造的 时间,提高效率;2、提高原材料的利用效率;3、完成复杂结构 的实现以提升产品性能。 技术工艺主要由应用材料决定增材制造存在着许多不同的技术,不同之处在于可用的材料的方 式及不同层构建部件。在目前已有的技术中,增材制造的常用材 料有尼龙玻纤、耐用性尼龙材料、石膏材料、铝材料、钛合金、 不锈钢、镀银、镀金、橡胶等。目前,增材制造产业主要主流技 术主要包括 SLA、LOM、SLS 和 FDM 四种技术。 增材制造产业链:设备研制是核心环节增材制造产业链主要由 5 个环节构成,其中上游为原材料、核心 硬件和辅助运行设备,产业链中游为增材制造设备的研制和生 产,下游需求涉及航空航天、汽车、医疗等多个具体应用领域。整体来看,位于产业链中游的设备研制和制造商处于核心地位, 在制造技术的研发应用和提供产品服务方面起到决定性作用。市场规模持续提升,航空航天、汽车应用前景广阔预计全球工业增材制造市场将从 2018 年的 17.3 亿美元增长到 2023 年的 56.6 亿美元,年复合增长率达到 27.21%;2018 年,我 国增材制造行业总收入超过 110 亿元,预计 2020 年产业规模将 达到 240 亿元,年均增速在 30%以上。 目前在中国增材制造行业应用领域结构情况中,工业机械占比最 高,占比为 20%,其次为航天航空领域,占比为 17%,排名第三 的是汽车领域,占比为 14%。伴随着中国增材制造技术的相应成 熟,在航天航空、汽车等行业需求将持续增加。 报告内容:一、增材制造介绍:快速成型技术,较减材制造优势突出 1.1增材制造技术介绍 增材制造(Additive manufacturing)是快速成型技术的一种,又称增材制造(3DP),属于高端制造行业。 它的基本原理是离散-堆积原理,以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印 的方式来构造物体。 增材制造技术起源于 20 世纪 80 年代。当时,美国的科研人员正在研究照相雕塑及地貌成型技术,但在20世纪 80 年代以前,增材制造机的数量非常少,主要功能是用来打印珠宝、玩具、厨房用品等。在 20 世纪 80 年 代以后,随着在下游应用领域的不断渗透,增材制造技术才得以真正的发展和推广。1.2增材制造的基本原理增材制造工作过程主要包括三维设计和逐层打印两个过程。先通过计算机建模软件建模,再将建成的三维模型分区成为逐层的截面,指导打印机逐层进行打印。1、三维设计:设计软件和打印机之间协作的标准文件格式是 STL 文件格式。一个 STL 文件使用三角面来 近似模拟物体的表面,三角面越小其生成的表面分辨率越高。PLY 是一种通过扫描产生的三维文件的扫描器, 其生成的 VRML或者 WRL 文件经常被用作全彩打印的输入文件。 2、逐层打印:打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印 出来,再将各层截面以各种方式粘合起来从而制造出一个实体,可以造出任何形状的物品。 增材制造机与普通打印机工作原理基本相同,但打印材料差别较大。普通打印机的打印材料是墨水和纸张, 而增材制造机内装有金属、陶瓷、塑料、砂等不同的“打印材料”。打印机与电脑连接后,通过电脑控制可以把材料逐层叠加起来(分层加工的过程与喷墨打印十分相似),最终把计算机上的蓝图变成实物。增材制造机 是可以“打印”出真实的3D物体的一种设备。 相比于传统的减材制造方式(通过刀具去除材料的加工方式),增材制造(增材制造)具备很多优势: 1、缩短生产制造的时间,提高效率:用传统方法制造出一个模型通常需要数天,根据模型的尺寸以及复杂 程度而定,而用三维打印的技术则可以将时间缩短为数小时,当然其是由打印机的性能以及模型的尺寸和复杂 程度而定的。 2、提高原材料的利用效率:与传统的金属制造技术相比,增材制造机制造金属时只产生较少的副产品。随 着打印材料的进步,“净成形”制造可能成为更环保的加工方式。3、完成复杂结构的实现以提升产品性能: 传统减材制造方式在复杂外形和内部腹腔结构的加工上具有局 限性,而增材制造可以通过进行复杂结构的制造来提升产品性能,在航空航天、模具加工等领域具备减材制造 方式无可比拟的优势。 二、增材制造技术分类:技术工艺主要由应用材料决定 增材制造存在着许多不同的技术,不同之处在于可用的材料的方式及不同层构建部件。在目前已有的技术 中,增材制造的常用材料有尼龙玻纤、耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、 橡胶等。 增材制造材料一般是由具体工艺技术决定的。选择不同的材料,也就决定了所使用的工艺,也就决定了工 艺技术所带来的缺点,如尺寸精度、最小细节、壁厚的限制。反之,如果知道目标成品必须要达到的尺寸精度、 最小细节和壁厚,也可以据此选择合适的增材制造材料。 目前,增材制造产业主要主流技术主要包括 SLA、LOM、SLS 和 FDM 四种技术。根据数据显示,增材制造 的发展严重依赖于技术的进步和突破,目前全球增材制造应用最受欢迎的技术为 FDM 技术,占平台总收入的 63.9%;SLA+DLP 技术以 18.1%的平台总收入排名第二,排名第三的是SLS技术,平台收入占比为 11.1%。 2.1熔融沉积技术 FDM FDM熔融层积成型技术是将丝状的热熔性材料加热融化,同时三维喷头在计算机的控制下,根据截面轮廓 信息,将材料选择性地涂敷在工作台上,快速冷却后形成一层截面。一层成型完成后,机器工作台下降一个高 度(即分层厚度)再成型下一层,直至形成整个实体造型。 FDM 的优点在于:操作环境干净、安全,材料无毒,可以在办公室、家庭环境下进行,没有产生毒气和化 学污染的危险;无需激光器等贵重元器件,因此价格便宜;原材料为卷轴丝形式,节省空间,易于搬运和替换; 材料利用率高,可备选材料很多,价格也相对便宜。2.2光固化快速成型 SLA SLA是用激光聚焦到光固化材料表面,使之由点到线、由线到面顺序凝固,层层叠加构成一个三维实体。SLA技术可使用的打印材料为光敏树脂,多应用于制造多种模具和模型当中,也可以在原料中通过加入其它成 分,用 SLA原型模代替熔模精密铸造中的蜡模。SLA 工艺的制作过程分为三步: (1)设计模型:通过 CAD 软件设计出需要打印的模型,然后利用离散程序对模型进行切片处理,然后设 置扫描路径,运用得到的数据进行控制激光扫描器和升降台。 (2)打印:激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特 定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;然后,升降台下降到一定距离,固化 层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,逐层叠加而成三维工 件原型。 (3)后处理:待打印完成之后,从树脂液体中取出模型,然后对模型进行最终的固化和对表面进行喷漆等 处理,以达到需求的产品。 2.3箔材叠层实体制造 LOM箔材叠层实体制作是根据三维 CAD 模型中每个截面的轮廓线,由计算机控制发出控制激光切割系统的指令,使切割头作 X 和 Y 方向的移动,进而生产三维产品的方法。由于 LOM 技术在制作中多使用纸材,其成本低而且制造出来的木质原型具有特殊质感,所以该技术在产品 概念设计可视化、造型设计评估、装配检验、熔模铸造型芯、砂型铸造木模、快速制模母模以及直接制模等方 面得到广泛的应用。 2.4粉末材料选择性烧结 SLS分层制造技术于 1989 年研制成功。目前德国 EOS 公司推出了自己的 SLS 工艺成形机 EOSINT,分为适用 于金属、聚合物和砂型三种机型,我国的北京隆源自动成形系统有限公司和华中科技大学也相继开发出了商品 化的设备。 SLS技术的基本工作原理:在开始加工前,需要把充有氮气的工作室升温,并保持在粉末的熔点以下。成型 时,送料桶上升,铺粉滚筒移动,先在工作平台上铺一层粉末材料,然后激光束在计算机的控制下按照截面轮 廓对实心部分所在的粉末进行烧结,使粉末融化继而形成一层固体轮廓。第一层烧结完成后,工作台下降一截 面层的高度,在铺上一层粉末,进行下一层烧结,依次循环,从而形成所打印的模型。该技术可以使用的材料 是可以使用的打印耗材有尼龙粉末、PS 粉末、PP 粉末、金属粉末、陶瓷粉末、树脂砂和覆膜砂。二、增材制造产业链:设备研制是核心环节2.1增材制造产业链 增材制造产业链主要由 5 个环节构成,其中上游为原材料、核心硬件和辅助运行设备,产业链中游为增材 制造设备的研制和生产,下游需求涉及航空航天、汽车、医疗等多个具体应用领域。整体来看,位于产业链中 游的设备研制和制造商处于核心地位,在制造技术的研发应用和提供产品服务方面起到决定性作用。 增材制造行业产业链上游为塑料、金属、蜡、石膏、砂等其他各种材料。材料技术是增材制造技术的核心 之一,决定了增材制造的发展进程。从增材制造技术的发展历程可以看出,一种新的打印技术出现,必须依赖 材料的固有特性。由于材料在物理形态,化学性能等方面的千差万别,才形成了增材制造材料的多品种和增材 制造的不同成型方法。 增材制造产业中游主要为设备及制造服务,参与者包括增材制造机设备商和增材制造制造服务商,这个阶 段主要任务是将增材制造产品生产出来。增材制造设备是整个产业中最重要的一环。首先,设备商是增材制造 技术的推动者,要实现增材制造,首先要完成设备的制造,每一种新的增材制造设备出现,都意味着一种新的 增材制造技术出现;其次,每一台增材制造设备就是一个加工制造中心,设备商掌握整个增材制造过程的核心 技术,因此,在增材制造领域,设备商往往同时扮演者增材制造加工制造服务的角色;同时,设备商是增材制 造技术应用的推广者,可以直接为终端用户提供综合解决方案。 下游领域主要是增材制造服务延伸到各个细分的实际应用方向。增材制造的应用领域广泛,主要包括制造、 医疗、军事、建筑等领域。随着增材制造行业的快速发展,增材制造技术应用场景将不断拓展。 2.2 增材制造设备分类介绍增材制造设备主要分为两大类型:工业级设备和桌面级设备。工业级设备是生产价格在数万美元到数十万美元之间的设备,价格昂贵,主要用于加工大尺寸的产品。一 般使用 SLS/SLM、SLA、FDM 等技术,应用领域主要有汽车、国防航空航天、机械设备、消费品、家电等工业领 域。工业级的增材制造机主要分为快速原型制造和直接产品制造两种。国际上工业级打印机巨头3D systems、 Stratasys、EOS 等在近30年里不断推出适用于不同领域的新产品,将增材制造植入工业化制造中,使增材制造 成功成为推动国际工业化的重要力量。另一类是主要针对个人消费者的设备,这类设备价格低廉,售价通常在数千美元甚至是数百美元,通常称 其为桌面级设备。桌面级是增材制造技术的初级阶段和入门阶段,能够很直观地表现出增材制造技术的工艺原 理。这类设备价格低廉,售价通常在数千美元甚至是数百美元,在市面上种类繁多,但其基本的工作原理相似。 桌面级增材制造设备最初由 Stratasys公司于 2002 年推出,2008 年,第一款开源的桌面级增材制造机RepRap发 布,此后涌现出各类桌面增材制造设备商。 随着竞争加剧,桌面打印机价格逐步下降,国外众筹创业平台已经出现了 3000 元人民币左右的增材制造机。 性能指标及外观方面,桌面机也在不断完善,甚至部分桌面增材制造设备开始向工业级打印机看齐,大型工业 级打印机生产公司也逐步涉入桌面领域。 工业级设备与桌面级设备在打印精度、速度、尺寸等各方面都有不同,其中,打印支撑和打印实体可分参数打印的设计是区分工业机和桌面机的最重要标志。增材制造机组成结构主要分为机身框架和控制系统。以FDM技术个人桌面级增材制造机CR-2020 为例。打 印机整机采用全钢激光航焊接框架,刚性好、精度高,特殊行走机构架构设计采用十字轴滑动型的运动机构, 能够使打印机速度得到很大的提升。机械框架部分,现在大部分采用步进电机带动同步带的方式,而有的打印 机则使用滑台组成XYZ 轴,具体需要的部件有电机、支架、同步轮、同步带等。增材制造过程主要是由电路来控制的,控制系统部分主要由主板、驱动器、步进电机、限位开关、风扇、 加热器、热电偶组成。增材制造机所使用的是一块专门定制而成的电路主板,它将所需的电子元器件、驱动器 以及控制器等都整合在主控制器上,能够实现与打印机的即插即用,并且兼容性和课扩展性较强。主板作为增 材制造机的心脏,控制着打印机的一切工作过程,进行数据文件的传输以及对主板的固件升级等工作。步进电 机驱动器、步进电机、限位器、加热器、热电偶及风扇都可以直接与主板相连,主板由外界电源直接供电。3.3全球增材制造产业格局 增材制造产业是一个生态圈体系,增材制造推动分布式制造业的发展是设备硬件、设计软件、打印材料、后处理、质量控制技术综合发展的结果。国际上增材制造企业大致可分为硬件制造商(塑料增材制造机、专业级桌面机、金属增材制造机、陶瓷增 材制造机及电子增材制造机)、软件供应商(设计和CAD,仿真软件、工作流程软件和安全类软件)、材料供 应商(塑料与复合材料、金属)、质量控制与检测(过程中质量控制软件、质量检测)、其他(增材制造服务 企业)等类别。3.3.1硬件制造商 随着将增材制造技术集成到生产中的制造企业的数量不断增加,增材制造硬件制造商正在持续研发更快、 更准确的工业级增材制造设备。这些企业不仅仅包括了在业内具有独角兽地位的公司,也包括一些有意愿布局 增材制造技术的传统制造公司。 目前,硬件制造商企业都具有各自擅长的领域,据此可大致分为三类:(1)塑料增材制造设备,如德国工 业级增材制造设备制造商 voxeljet-维捷,推出了 HSS-高速烧结设备VX200,这一设备目前可用于尼龙 12 或TPU材料的高速制造,其速度实 SLS 激光烧结的 100 倍;(2)面向专业的桌面增材制造机,满足需要小型增材制造 设备、但性能不低于工业级系统,成本低于同类型工业级增材制造设备的专业用户或企业的需求,例如Formlabs提供的立体光固化(SLA)增材制造设备Form 2 价格为 3350 美元,而同类型的大型 SLA 设备售价通常要高一个 量级;(3)金属增材制造,2017 年金属增材制造系统的销售额增长 80%,驱动增长的力量主要来自于两个方面, 一方面是像 Concept Laser 和 Arcam 这样的老牌品牌,而另一方面来自于金属增材制造的新的参与者,包括 Desktop Metal、Digital Alloys 等初创公司。 3.3.2软件供应商 随着增材制造技术走向工业生产,除了设计软件和仿真软件之外,与增材制造相关的软件中出现了两个关 键的类别,即工作流程和安全软件。设计和仿真软件对于增材制造至关重要,增材制造技术提供了传统制造方 法无法实现的复杂几何形状的可能,同时这也为拓扑优化、创成式设计等先进设计优化工具增加了需求。目前, 设计和 CAD软件、仿真软件仍由市场上主流 CAD 软件公司主导。 作为一种数字制造技术,增材制造引发了有关知识产权保护和数据安全的关键问题,安全类软件的出现则 有效地解决了此类问题。目前,三家公司正在领导增材制造数据安全的软件解决方案。LEO Lane 提供安全和 IP 加密解决方案,GROW 提供“安全分布式制造”,以实现安全的增材制造工作流程,保护设计文件的知识产权。 虽然保护数据安全类的软件目前仍是一个非常小的细分领域,随着增材制造技术在生产中应用的增加,对数据 安全解决方案的需求也在增加。 3.3.3材料供应商 增材制造材料通常对耐热性、灵活性、稳定性及敏感性有着极高的要求,均需要针对增材制造工艺和设备 而研发,目前大约有 200余种。作为增材制造的“墨水”,增材制造专用材料开发难度大、成本高,因此在供应 方面需要供应商有针对性地进行研发和生产。目前全球排名前列的增材制造材料供应商有:(1)位于瑞典的Arcam公司,该公司提供一系列的增材制造 技术和 增材制造解决方案,并拥有金属增材制造技术EBM的专利,公司目前主要销售 EBM 硬件、EBM 构建材 料、金属粉末和粉末处理设备;(2)总部设在德国的EOS公司,主要提供金属制造(材料、系统和设备)等, 其 M290 和 M100 金属增材制造解决方案都是很受欢迎的 DMLS 机器,除此之外该公司也提供铝、钴/铬合金和 钢等增材制造材料;(3)瑞典的 Hoganas 公司是世界领先的铁和金属粉末制造商;(4)位于瑞典的Sandvik公 司,主要使用的材料是特殊合金和先进的不锈钢,其旗下的 Sandvik Materials Technology 主要从事增材制造业务, 并在 2015 年初成立了 Sandvik 增材制造中心。另外,该公司还为医学、航天以及快速模具部门生产用于增材制 造应用的气体雾化金属粉末。同时,材料市场也以发生了多起收购。例如,2018 年 7 月,巴斯夫新业务有限公 司(BNB)收购了德国公司Advanc3D,将公司整合到其增材制造部门;Carpenter 收购了金属材料的领先供应商 LPW。 3.3.4后处理 增材制造工作原理是通过逐层叠加成型,那么分层制造就会存在台阶效应。虽然每层都分解的非常薄,但 在微观尺寸下仍会存在一定厚度的多级台阶。模型打印表面质量与打印材料、机器精度、打印速度、温度、三 维数据模型质量、切片参数等都有关系。 后处理通常是劳动密集型,走向自动化也是大势所趋。PostPro3D 提供“自动化表面处理技术”,据称可以使 打印增材制造零件的表面质量与注塑成型件相媲美。德国 DyeManison针对塑料粉末增材制造零件提供粉末清洁、 表面处理和染色解决方案。 3.3.5检测与过程监测 工业成像可以通过不破坏产品的方式,细微地展现产品内部是否有裂纹、夹渣等缺陷。它不仅可以在生产 阶段检测出不合格的产品,还可以在产品的设计研发阶段分析判断并预测隐患的发生、识别设计缺陷,以确保 最终产品的高可靠性。当要将增材制造复杂零部件加扩展到规模化生产的时候,是否能够保障产品的高质量成 为关键之处。这决定了 X射线、CT 技术与增材制造技术密不可分。在科技部增材制造重点专项 2017 年度项目申报指南中,将开发金属增材制造缺陷和变形的射线检测技术与装备作为重大共性关键技术。 四、增材制造下游需求:市场规模快速增长,航空航天应用前景广阔 4.1全球及国内市场处于快速增长期 无论是在全球范围内还是我国市场内,增材制造的行业规模都呈现快速上涨的趋势。根据 MarketsandMarket对外发布的研究报告显示,全球工业增材制造市场将从 2018 年的 17.3 亿美元增长到2023年的 56.6 亿美元,年 复合增长率达到 27.21%。增长因素主要有从开发原型到最终用途零件生产的增材制造演变、开发定制产品的复 杂程度增加、工业增材制造材料市场的发展、政府对增材制造项目的投资以及制造效率的提高等。2018年,我国增材制造行业总收入超过 110 亿元。随着国家规划的出台,各地纷纷将增材制造作为未来发 展新的增长点重点培育,并加速与信息网络技术、新材料技术、新设计理念加速融合,力争抢占未来科技和产 业的制高点。预计到 2020年,中国增材制造产业规模将达到 240 亿元,年均增速在 30%以上。4.2增材制造下游应用市场 目前在中国增材制造行业应用领域结构情况中,工业机械占比最高,占比为 20%。其次为航天航空领域, 占比为 17%。排名第三的是汽车领域,占比为 14%。其后分别为消费品/电子、医疗、科研、政府/军用以及建 筑领域,占比分布为 13%、12%、11%、6%和 3%。伴随着中国增材制造技术的相应成熟,在航天航空,汽车等 行业需求将持续增加。 4.2.1航天航空领域 增材制造技术在航空航天领域中的应用主要在于关键零部件的生产。航空航天装备的关键零部件通常具有 复杂的外形和内部结构,且工作环境特殊,而增材制造的加工过程不受复杂成型的限制,因此能够完成传统制 造工艺难以承担的任务。2018年,全球增材制造在航空航天领域的应用市场规模达到9.3 亿美元。 增材制造技术在航空工业中主要应用在钛合金、铝锂合金、超高强度钢,高温合金等材料领域。这些材料 基本都是强度高,化学性质稳定,不易成型加工,传统加工工艺成本高昂的类型。例如在飞机零部件制造方面, 由于零件的形状复杂,用传统方式制造成本很高,而 3D 技术有效地降低了飞机零部件的制造费用。波音公司已 经广泛地利用增材制造技术,在 2014 年制造了超过 2 万 2 千种零部件,波音 787 梦幻飞机上有 30 个由增材制 造技术制造的零件。 增材制造技术在航空航天制造行业的一个突破在于它在涡轮螺旋桨发动机领域的应用。2018 年,GE 公司 试飞的ATP飞机发动机为通过增材制造制作可以实现的可能性打开了新的空间。GE 公司先进的 ATP 发动机中, 有三分之一以上的部件是由增材制造来完成的。 根据增材制造技术的特点,设计师将八百多个独立部件减少到12 个。此外,增材制造用降低发动机重量的 方式来减少成本。轻5%的发动机可以节约20%的燃油消耗,并且其功力比传统加工方式制造的发动机多10%。 而在发动机的内部,增材制造技术完成燃烧室和许多结构元件的制造,这使得发动机更简洁、更轻和更紧凑,具有16:1 的工业级总压力比。与其竞争对手比较起来,这使其仅仅通过设计提高燃料燃烧效率带来的节约15% 的燃料,同时提高10%的巡航功率。 4.2.2工业汽车领域 增材制造技术在汽车领域中的应用主要包括汽车零部件打印、汽车个性化定制和电池电极打印三个方面。在汽车零部件设计方面,增材制造技术使得更具设计性且颠覆传统的零部件设计得以实现。增材制造的快速成 型可以快速将设计图转换为实物,减少了复杂零件开发的开模环节,并且精度比传统制造更高;其次,增材制 造允许多种材料的选择,有助于汽车兼具轻量化、安全性和舒适性。在汽车个性化定制方面,使用增材制造技 术打印汽车,能够根据客户的偏好和需求制造出独一无二的车型,实现整车个性化定制。2015 年,全球增材制 造汽车行业总规模达到4.8 亿美元,预计到2020 年将达到15 亿美元。 在电池电极打印方面,增材制造技术能够打印出一种有受控气孔的微观金属结构,这种结构允许锂离子大 量进入电池的电极区,从而达到更高的电极利用率和蓄电能力。用作锂离子电池电极的微观金属结构能够将比 容量提升四倍,而且与传统固体电池相比区域容量增加了两倍。 4.2.3医疗领域 医药生物行业是目前增材制造技术扩张最为迅猛的行业。增材制造技术能够为医疗生物行业提供更完整的 个性化解决方案,典型应用有 3D手术预规划模型、手术导板、增材制造植入物,以及假肢、助听器等康复医疗 器械。同时,生物增材制造技术将促进再生医学领域在人造活体组织与器官的研究,研究人员已经在利用生物 增材制造技术培养人造器官方面取得了很大的进展。 近年来医疗行业越来越多地采用金属增材制造技术(直接金属激光烧结或电子束熔融)设计和制造医疗植 入物。澳大利亚联邦科学与工业研究组织(CSIRO)、墨尔本医疗植入物公司Anatomics和英国医生联手,为一 名 61 岁的英国患者实施了增材制造钛-聚合物胸骨植入手术,这也是全球首创。新型胸骨植入物能够比之前的 纯钛植入物更好地帮助重建人体内的“坚硬与柔软组织”,病人在术后仅 12 天就能出院,并且恢复十分迅速。而 增材制造技术用于制造骨科植入物,可以有效降低定制化、小批量植入物的制造成本,并可以制造出更多结构 复杂的植入物。 使用金属、塑料等非活体组织材料增材制造的定制化假肢、牙科、骨科植入物、助听器外壳等医疗器械都 属于“初级阶梯”。而打印血管、软骨组织这类单一的活体组织属于“中级阶梯”。增材制造的人工肝脏、心 脏等人工器官则属于“顶级阶梯”。无论是人造血管、软骨组织,还是肝脏组织、肾脏组织,其核心是特定类 型细胞的分离(或定向诱导)及大规模扩增。而生物增材制造技术,在人工组织、器官培养过程更多承担了三 维形状的构建,即让人体细胞按照预先设计好的形状来生长。因此人造器官、组织的发展更大程度上取决于生 物技术的发展。 根据毕马威对医疗器械行业的研究,医疗行业有望保持稳定增长,全球年度销售额预测以每年超过5%的速 度增长,到2030 年销售额将达到近8000 亿美元。这反映出随着人们现代生活习惯病日益普遍,对创新型新设 备(如可穿戴设备)和服务(如健康数据)的需求持续增长,以及新兴市场(尤其是中国市场)的经济发展释 放了的巨大潜能。2015 年,全球医疗行业增材制造市场规模3.5 亿美元,预计到2020 年将达到7.6 亿美元, 复合增长率将超过15%。 如需原文档,请登陆未来智库,搜索下载。(报告来源:中信建设证券)

同工同酬

2018年中国3D打印行业前景研究报告

中商情报网讯:3D打印是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。3D打印的工作原理是以计算机三维设计模型为蓝本,通过软件将其离散分解成若干层平面切片,由数控成型系统利用激光束、热熔喷嘴等方式将材料进行逐层堆积黏结,叠加成型,制造出实体产品。来源:中商产业研究院 发布日期:2018-08-22 09:52

撒修

中国3D打印市场产业链分析一览

中商情报网讯:增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。我国高度重视增材制造产业,计划到2020年,增材制造产业年销售收入超过200亿元,年均增速在30%以上。关键核心技术达到国际同步发展水平,工艺装备基本满足行业应用需求,生态体系建设显著完善,在部分领域实现规模化应用,国际发展能力明显提升。3D打印行业产业链从上中下游来看,上游为塑料、金属、蜡、石膏、砂等其他各种材料。中游为3D打印设备及技术,下游则为制造、医疗、建筑、军事等应用领域。数据来源:中商产业研究院整理上游3D打印行业产业链上游为塑料、金属、蜡、石膏、砂等其他各种材料。不同的3D打印技术,对材料的要求也有所不同,例如光聚合成型主要以液态光敏树脂为主要材料;颗粒物成型的主要材料为金属、塑料、陶瓷等;而熔融层积型的适用材料为塑料等混合物。中游3D打印的中游为设备研发及制造。目前,3D打印设备主要分为桌面级和工业级两种。桌面级是3D打印技术的初级阶段,可以直观地阐述3D打印技术的工艺原理;工业级的3D打印设备主要分为快速原型制造和直接产品制造,两者在打印速度、精确度、尺寸等方面各有不同。下游下游领域主要是3D打印服务,延伸到各个细分的实际应用方向,其中包括制造、医疗、军事、建筑等领域均有所应用。随着3D打印行业的快速发展,3D打印技术应用场景将不断拓展。更多资料请参考中商产业研究院发布的《2019-2024年中国3D打印行业市场前景及投资研究报告》,同时中商产业研究院还提供产业大数据、产业规划策划、产业园策划规划、产业招商引资等解决方案。

自觉自愿

2019年市场规模将近30亿元 中国3D打印产业布局分析

中商情报网讯:3D打印是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。全球3D打印正火热,由于中国引进3D打印技术较晚,与国外有一定差距,但近年来也得到快速发展。目前,中国的3D打印应用主要集中在家电及电子消费品、模具检测、医疗及牙科正畸、汽车及其他交通工具、航空航天等领域。据《2019年3D打印行业市场前景及投资研究报告》显示,2018年中国3D打印市场规模达到23.6亿元,同比增长近42%。伴随着中国3D打印技术的相应成熟,在航天航空,汽车等行业需求将持续增加,预计2019年中国3D打印市场规模将近30亿元。数据来源:《2019年3D打印行业市场前景及投资研究报告》,中商产业研究院3D打印产业分布目前,国内3D打印产业在北京市、浙江省、湖北省、广东省、陕西省得到较快发展。北京市:增材制造技术(3D打印)研发和生产服务的企业达70家以上,2018年实现销售收入超6亿元。浙江省:位于浙江省的先临三维是这个3D数字化和3D打印第一股,据业绩快报显示,2018年实现营业收入达4.1亿元。湖北省:共有数十家增材制造(3D打印)相关的企业和研发机构。广东省:从事3D打印业务的企业超过400家,拥有多个3D打印产业园。陕西省:从事3D打印研发、生产的企业超过70家。此外,3D打印行业的快速发展离不开政府的支持,在此背景下,3D打印产业园不断涌出。目前,国内3D打印产业园主要分布在沿海地区,而中部地区也有形成产业集聚区。此外,青岛等地有3D打印产业园在建项目。更多资料请参考中商产业研究院发布的《2019-2024年中国3D打印行业市场前景及投资研究报告》,同时中商产业研究院还提供产业大数据、产业规划策划、产业园策划规划、产业招商引资等解决方案。

赵章

洪泰产业研究院,3D打印产业研究报告

在过去的半个世纪里,拥有质量高、成本低、速度快等特点的机械加工和注塑成型工艺等传统制造工艺,被奉为大批量生产的工业标准。随着制造业全球化及市场的激烈竞争,产品快速开发逐渐成为竞争的重要手段之一为满足制造业日益变化的客户需求,制造技术必须具有高柔性,能够以小批量甚至单件生产迎合市场。但是,传统“减材方式”生产的金属构件,其成形制造方法往往工序多工模具成本高从设计到零件制造周期长,并且对具有复杂内腔结构的零件往往无能为力,难以满足新产品的快速响应制造需求20 世纪90 年代以来,随着激光技术计算机技术CAD/CAM 技术以及机械工程技术的发展,增材制造技术应运而生。增材制造(又称3D打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新型制造技术,深刻改变了传统的工艺流程、生产线、工厂模式、产业链组合,是制造业有代表性的颠覆性技术。目录3D打印产业概况1.3D打印产业链上游2.3D打印产业链中游3.3D打印产业链下游3D打印主要技术路径1.比较多种3D打印技术优缺点2.3D打印设备类型3.3D打印设备市场竞争格局3D打印主要公司分布1.企业区域分布2.产业链分布3D打印主要应用领域3D打印市场前景分析1.材料是金属3D打印发展的关键2.全新工艺带来新型产品创新3.3D打印的结构创新也会带来全新的突破4.新材料的使用也会带来全新的生产方式5.3D打印技术还将极大改变供应链系统图1 制造技术发展进程图传统制造业有两种制造工艺,一种是等材制造,一种是减材制造。等材制造就是在加工制作前后,材料没有损耗。如同古代铸剑,就是把铜或铁融化,倒入磨具,然后不断敲打、淬火成形,铸成剑的重量跟原来材料重量差不多,这就是等材制造。这类工艺已经有 3000 多年的历史了,它的特点是局限性很大,可以制造的工具非常有限。减材制造,是随着工业革命的发展而出现的新技术,就是在零部件、工具制造过程中,对材料进行各种切割以得到想要的形状,因而会出现材料的耗损,比如现代金属制造业,使用的车、刨、磨、钻等切割工艺,就是这种减材制造。虽然这类工艺只有300年时间,却让整个世界进入了工业时代。与等材制造和减材制造的工艺不同,3D打印则带来了一种全新的生产制造方式——增材技术,3D打印技术也被称为增材制造,即通过一种自底而上的打印工艺来制造产品,能够制造出传统工艺难以实现的复杂结构。这一技术被形容为“古登堡印刷机”的发明带给西方文明进步的意义一样,被称为“第三次工业革命”的颠覆性技术。 一、产业概况图2 产业链图谱3D打印的工作原理是以计算机三维设计模型为蓝本,通过软件将其离散分解成若干层平面切片,由数控成型系统利用激光束、热熔喷嘴等方式将材料进行逐层堆积黏结,叠加成型,制造出实体产品。3D打印行业产业链从上中下游来看,上游为塑料、金属、蜡、石膏、砂等其他各种材料;中游为3D打印设备及技术;下游则为制造、医疗、建筑、军事等应用领域。上游:塑料、金属、蜡、石膏、砂等其他各种材料。不同的3D打印技术,对材料的要求也有所不同,例如光聚合成型主要以液态光敏树脂为主要材料;颗粒物成型的主要材料为金属、塑料、陶瓷等;而熔融层积型的适用材料为塑料等混合物。中游:3D打印的中游为设备研发及制造。目前,3D打印设备主要分为桌面级和工业级两种。桌面级是3D打印技术的初级阶段,可以直观地阐述3D打印技术的工艺原理;工业级的3D打印设备主要分为快速原型制造和直接产品制造,两者在打印速度、精确度、尺寸等方面各有不同。下游:主要是3D打印服务,延伸到各个细分的实际应用方向,其中包括制造、医疗、军事、建筑等领域均有所应用。随着3D打印行业的快速发展,3D打印技术应用场景将不断拓展。2019年,中国3D打印材料产业结构中,非金属材料产业规模25.38亿元,占比最高,达到62%;金属材料产业规模15.56亿元,占比38%。3D打印机主要分为消费级和工业级。工业级3D打印机速度更快、精度更高,在航空航天、汽车制造、医疗等领域广泛应用。目前,工业级3D打印机在国内3D打印市场结构中,从销售收入来看占比远超消费级3D打印机。二、3D打印主要技术路径1.3D打印技术技术比较3D打印存在着不同的技术,它们的不同之处在于可用材料,并以不同层构建创建部件,按照技术特点不同,可分为选择性激光熔化成型、选择性激光烧结成型、激光直接烧结、电子束熔化技术、融熔沉积式成型、选择性烧结、立体平板印刷、数字光处理、三位打印技术、细胞绘图打印等。 图3 技术材料图4 技术优缺点比较数据显示,3D打印的发展严重依赖于技术的进步和突破,目前全球3D打印应用最受欢迎的技术为FDM技术,占平台总收入的63.9%;SLA +DLP技术以18.1%的平台总收入排名第二,排名第三的是SLS技术,平台收入占比为11.1%。 粉体材料3D打印的核心是它对传统制造模式的颠覆,因此,从某种意义上说,3D打印最关键的不是机械制造,而是材料研发。3D打印对原材料的要求比较苛刻,满足激光工艺的适用性要求所选的材料需要以粉末或丝棒状形态提供。材料融化后在软件程序驱动下,自动按设计工艺完成各切片的凝固,使材料重新结合起来,完成成型。由于整个过程涉及材料的快速融化和凝固等物态变化,对适用的材料性能要求极高,从而材料成本居高不下。目前3D打印快速成型用特种粉体材料大多是设备工艺厂商针对各自设备特点定制的,优点是与专属设备的适用性好、研制难度相对小,缺点是材料的产业通用性差、产品成型过程的精度有待提高、产品成型后的强度较低。可见,制品表面精度受粉末原材特性的制约明显,工艺对材料依赖性不容忽视。在高性能金属构件直接制造方面,需要低氧含量、细粒径、高球形度的钛及钛合金粉末或镍基、钴基高温合金粉末,粉末粒度以-500目为主,氧含量宜低于0.1%,且粒径均匀,目前高端的合金粉末和制造设备还主要依靠进口。国内受制粉技术所限,目前细粒径粉末制备困难,粉末收得率低、氧及其他杂质含量高等,在使用过程中易出现粉末熔化状态不均匀,导致制品中氧化物夹杂含量高、致密性差、强度低、结构不均匀等问题。2.3D打印设备3D打印设备类型第一类是FDM 3D打印机,也是市场上见得比较多的桌面3D打印机。其原理是通过熔融沉积快速成型,一般打印的材料是ABS和PLA,价格相对便宜,可以打印任何想打印的东西,但是打印精度不高、打印速度慢、表面相对粗糙,因价格相对较低,深受3D打印初学者的喜爱,同时普遍应用于中小学3D打印教育领域。 图5 FDM 3D打印机第二类是SLA 3D打印机,也是常见的一种3D打印机,主要是模型玩家和家庭购买的桌面级SLA打印机。SLA打印机成型原理是通过光固化成型,材料是光敏树脂。相对FDM打印机要贵一些,但它的打印精度很高,可以满足手板设计等对精度要求较高的行业需求。图6 SLA 3D打印机第三类是3DP 3D打印机,也叫“3DP喷墨砂型打印机”或者“3DP喷墨金属打印机”,主要应用在工业领域,价格比较昂贵。主要材料粉末材料,如石英砂、陶粒砂、304/316L等。 图7 FDM 3DP 3D打印机第四类是SLS 3D打印机,也就是选区激光烧结快速成型机,成型材料为树脂砂/精铸模料/工程塑料等,主要应用于工业生产和军工行业。图8 SLS 3D打印机市场竞争格局近几年来,我国3D打印市场呈现出稳中向好的态势。因此,越来越多的企业想要分这块大蛋糕,纷纷进入该领域,目前中国所有3D打印相关企业中,约有46.9%是2016年以后进入3D打印市场的。当前中国市场的主流设备品牌包括联泰、EOS、华曙高科、铂力特、3D Systems、GE、Stratasys、惠普等,多为国外品牌。三、3D打印主要公司分布图9 企业区域分布目前,国内3D打印产业在北京市、浙江省、湖北省、广东省、陕西省得到较快发展。图9 企业产业链分布四、3D打印主要应用领域3D打印需求量较大的行业包括航天、国防、医疗设备、高科技、教育以及制造业。目前,应用领域排名前三的是工业机械、航空航天和汽车,分别占市场份额的20%、16.6%和13.8%。 图9 应用领域五、3D打印市场前景现在,我们已经看到3D打印技术,在医疗器械、航空航天、建筑、汽车、工业制造等领域已经带来众多变革。而从目前的态势来看,这种改变会越来越快,波及的领域也会越来越广。未来,3D打印将颠覆传统产业的生产方式,也会带来更多全新的产业机会。材料是金属3D打印发展的关键 金属3D打印的主要市场是面向航空、航天、船舶、电子等尖端技术领域,同时也涵盖特种工具、工艺品、首饰装饰等广泛的民用领域,是增材制造的核心应用领域之一,而金属球形粉是这一产业发展必须的耗材,未来市场空间十分巨大。全新工艺带来新型的产品创新在医疗行业,医生需要对患者进行特别个性化的诊断,如需要应用到人体的医疗设备也需要极为定制化的制造工艺,如适合股骨头坏死的关节,可以承受咳嗽、打喷嚏压力的3D打印气管,以及可运动的心脏。对于一些复杂的肿瘤切除手术,医生可以通过3D建模,通过3D打印出逼真的器官模型,供医生进行预先练习。3D打印的结构创新也会带来全新的突破比如使用计算机和机器人来精确控制自动化浇筑,来用3D混凝土打印出更稳定也更长的桥梁;一家叫Relativity Space的初创公司正在用3D打印的方式制造火箭,其优势在于可以生产传统制造方法无法实现的几何构型的制冷通道;而像波音、劳斯莱斯、普拉特·惠特尼等航空公司开始使用3D打印来制造喷气式发动机的金属部件,这种方法比铣削更便宜并使得复杂构件更为轻巧。新材料的使用也会带来全新的生产方式比如3D打印技术可以利用一种称为微晶格的新金属材料,内部是空的,完全透明,但是弹性极好,适合于飞机舱壁、舱门等高安全性低质量的需求。由于结构复杂,传统工业制造流程难以应用,使用3D打印技术却可轻松完成这类材料的制造。3D打印技术还将极大改变供应链系统比如英国的一家医疗团队在坦桑尼亚的野外进行疟疾寄生虫的诊断,而光学显微镜的一些设备部件和耗材经常损坏或短缺。研究人员设计了一套显微镜的3D模型,通过3D打印机可以在野外打印除相机、电机和镜头之外的其他部件。

黑杰克

金属3D打印行业深度研究

(如需报告请登录 未来智库)1、 3D 打印为传统制造业的补充,技术特点契合航空航天1.1 3D 打印可成形定制化复杂结构,是传统制造业的重要补充3D 打印,又称增材制造(Additive Manufacturing,AM),是对 于传统工业生产的一种变革性方法。传统的减材制造工艺是指利 用已有的几何模型工件,用工具将材料逐步切削、打磨、雕刻,最终 成为所需的零件。而 3D 打印恰恰相反,通过借助于 3D 打印设备, 对数字三维模型进行分层处理,将金属粉末、热塑性材料、树脂等特 殊材料一层一层地不断堆积黏结,最终叠加形成一个三维整体。3D 打印是一种跨学科的交叉技术,涵盖机械、材料、计算机视觉、软件、 电子等多个学科,而其中核心的技术在于 3D 打印机的制造,对于材 料、软件、设计等也有特殊要求。与传统制造工艺相比,3D 打印具有可成形复杂结构、缩短产品 实现周期、产品强度高重量轻、材料利用率高等特点,但其成本也比 较高。3D 打印技术的特点具体如下:(1)可制造复杂几何结构的部 件,实现一体化生产,结构的复杂性不会带来额外的成本。设计师不 再受到传统制造工艺的约束,可以更自由地创造零件。(2)缩短新产 品研发和实现周期。传统工艺在研发新产品时,需要设计生产新模具, 建立装配流程,而 3D 打印无需模具,工艺流程短。(3)产品具有强 度高、重量轻的特点。3D 打印部件可以实现传统工艺难以加工的蜂窝点阵结构,在保证性能的前提下,大幅减轻重量。基于 3D 打印快 速凝固的工艺特点,可以实现良好的力学性能,从而保证强度有所提 高。(4)材料利用率大幅提高。由于材料是逐层叠加的,在生产过程 中几乎不会产生材料的浪费,材料利用率达到 90%以上。(5)设备成 本和材料成本较高。工业级 3D 打印设备价格昂贵,少则一两百万元, 多则上千万元。此外,由于工艺比较特殊,3D 打印对材料有特殊的 要求,普通材料需要经过调整。而材料的研发难度大,成本较高,在 一定程度上限制了 3D 打印的发展。1.2 30 余年发展技术逐步完善,多材料、大型化、批量化为改进方向经过 30 多年的发展,3D 打印技术不断完善,目前已形成了 3D 生物打印、有机材料打印、金属打印等多种打印模式,鉴于国内大型 3D 打印企业如铂力特等主营金属打印,本文重点论述该打印模式的特征。金属 3D 打印一般利用激光、电子束能量源熔化金属粉末,使 得金属粉末熔结,堆积形成一个整体结构。在整个工艺中金属粉末的 输入方式有两种,铺粉和送粉。根据不同送粉方式,金属 3D 打印工 艺原理分为定向能量沉积(也称为送粉)和粉末床选区熔化(也叫为 铺粉)。铺粉指把金属粉末铺到基板上,形成一个薄层,然后通过激 光熔化薄层上的特定区域进而熔结在一起。与铺粉相比,送粉未形成 薄层,通过粉末喷嘴直接把粉末输送到激光在基体上形成的熔池中, 熔结形成一个整体。主流的金属 3D 打印技术根据原理可以大致分为 激光选区熔化技术(SLM)、电子束熔化成形(EBM)、激光净成形技 术(LENS)电子束熔丝沉积技术(EBF)。金属 3D 打印工艺中金属粉末质量是影响最终打印部件结构及性 能的关键因素之一,目前国内制粉水平接近国外但仍有差距。金属粉 末质量越好,粒径越小,其打印出的产品致密性、机械性能越好。 2013 年国外公司3D Systems制出的粉末粒径为6-9μm,国内钢研高纳2019 年生产粉末粒径为 10μm。铂力特公司建成的粉末生产线,可用于其 自制的 3D 打印设备,提高打印产品质量。根据铂力特招股书,其研 制粉末粒径最低为 20μm 左右,与国内外先进公司有一定差距。对于金属 3D 打印(增材制造)而言,其特性决定了它的应用将 是传统制造工艺的重要补充而非完全替代,且体现在不同行业的不同 环节上应用均有所差异。据德勤咨询发布的《2019 科技、传媒和电 信 行 业 预 测 》与《Additive manufacturing methods – state of development, market prospects for instrial use and ICT-specific challenges in research and development》,与使用数控机床相比,增材 制造的每个零件成本更加高昂,且每个零件制造时间为数小时而非数 分钟(同样不包含精加工和各类后期加工时间)。相对于传统制造业 擅长的批量化、规模化生产领域,3D 打印效率较低、成本较高。此 外,3D 打印机目前功能比较单一,对于不同的材料,可能需要不同 型号、工艺的打印机,这就需要制造企业购置多台不同型号打印机, 增加了生产成本。尽管如此,某些零件只可能通过 3D 打印制作,如 上文所述的部件内几何蜂窝结构。另外,当零件量过低时,如原型制 作以及模具应用环节,传统制造方法和减材制造工艺不适用或者成本 过高、时间过长时,则也只可采用 3D 打印方法。基于 3D 打印 自身的特点,从环节上来看,3D 打印更偏向于设计端,更适用于部 分小批量、个性化、定制化高端产品的设计与生产,在铸模、铸件、 工具、模具和夹具上亦有更广泛的应用。金属增材制造技术发展中有三个重要的因素,设备、材料和工艺, 目前在这三方面还有提高的空间。为了扩大 3D 打印技术的应用规模, 金属增材制造技术正在朝着低成本、大尺寸、多材料、高精度、高效 率方向发展。 (1)金属增材设备朝着大型化、专业化方向发展。随着 对打印大尺寸结构和特定领域的需求不断增加,金属 3D 打印设备朝 着大型化、专业化发展已经成为趋势。 (2)可打印原材料不断增加, 复合材料打印开始出现。目前应用于金属 3D 打印的原材料种类偏少、 材料质量不高,随着增材制造在工业领域的不断渗透,市场对于金属3D 打印可实现多材料混合打印的需求也逐步上升。此外,多种复合 材料同时打印开始出现,可结合不同材料的优点。 (3)开发新的金属 增材制造技术。传统的金属增材制造技术存在高成本、效率低等问题, 其中效率低也是限制增材制造在许多领域替代传统减材制造的关键 因素之一。预计随着未来该技术的逐渐成熟,如激光功率的提高、打 印路径的优化等,增材制造生产速率或有所改进。1.3 增材制造可打印复杂件,减重、周期短的特点契合航空航天需求金属增材制造工艺能够契合航天航空产业的苛刻条件。例如,飞 行器要求高速、续航时间长、安全高效低成本等条件,对结构设计、 材料和制造提出了更高要求。对于增材制造这一改进工艺流程,其较 多技术优势能够很好的契合航空航天的多项要求。例如,结合上文, (1)增材制造可实现传统减材工艺无法实现的复杂几何结构件,实 现传统工艺无法加工的蜂窝点阵结构,能够在保证性能的前提下大幅 减轻部件质量,达到提升航空航天装备机动性、速度及节省高昂的航 空燃油费的目的;(2)同时 3D 打印技术能够缩短高性能部件的制造 流程,无需研发制造部件使用的模具,大大缩短了研发周期,降低时 间成本,利于加快项目进程;(3)因航空航天装备服役环境恶劣,尤 以航空发动机为典型,使用环境为高温、高压,传统材料难以承受, 适配于此类环境的材料的研制难度大、价格高昂。增材制造工艺可大幅提高材料利用率的特点可较好契合这特征,可节省装备研制经费。3D 打印技术在航天航空领域也存在一定的缺陷,还需要技术稳 定性验证积累。增材制造技术由于本身各向异性的特点决定了机械性 能,在不同方向的波动相对较大。例如,据《激光增材制造在航空航 天领域中的应用》一文,由于内应力问题和内部质量难控多变等因素, 控制增材制造成形零件的变形开裂是一个永恒的问题。此外,在增材 制造技术制造的零件机械性能稳定性达到航空航天部门的要求之前, 还需要做进一步的工作。随着技术的改进和科技水平的提高,3D 打 印有望在航空航天领域或有更大的作为。2、 商业模式:具有范围经济优势,掌握设备制造居产业主导2.1 3D 打印产品偏小批量居多、定制化直销,范围经济或降成本3D 打印产业链覆盖多种服务与应用领域,打印设备厂商占产业 链主导地位。3D 打印行业上游包括原材料、核心硬件及建模工具(软 件)。中游涵盖各类打印技术,以打印设备生产厂商为主,由于设备 的匹配性要求,此类厂商往往同时涉及上游。3D 打印的下游除了跟 踪服务平台,3D 打印出的产品应用领域广泛,以航空航天、汽车工 业等领域为主,在生物、食品及建筑领域也有特殊应用。由于 3D 打 印的成本较高,真正掌握打印生产能力或设备制造能力的中游厂商在 行业中占主导地位。在国际竞争中领先的 3D Systems、GE 增材、SLM Solutions Group 等,以及国内主要厂商铂力特、鑫精合、先临三维等 均具备 3D 打印设备制造的相关业务。基于增材制造工艺特性下目前多为定制化生产,需较早介入甚至 参与客户产品设计,这决定了其定制化产品多为直接销售。以铂力特 为例,其下游主要是航天航空领域客户。增材制造对微观组织结构的 控制能力,能较好满足功能集成性零件、拓扑优化异性零件等需求。 而为了更好地完成产品定制化需求,相关公司会进行定制化原材料选 择、定制化生产以及设计定制化工艺等。但 3D 打印产品的定制化直 销,有时或导致公司销售额易受下游大客户需求波动所影响。例如, 铂力特在 2016-2018 年航空航天领域客户收入占主营业务收入分别为 62.35%、54.32%、62.21%,前五大客户也主要集中该领域。增材制造对原材料利用率明显高于减材制造,但设备成本高,目 前多为小批量生产。相较于传统建材制造中材料去除、切削、组装等 流程,增材制造按分层制造、逐层叠加的工艺顺序,减免了打磨、拼 接等过程中材料的浪费,据铂力特招股书,金属 3D 打印技术材料利 用率可高达 95%。尽管根据美国国家标准与技术研究院(NIST),增 材制造总体成本与传统制造业相比并不存在明显劣势,但增材制造初 始精密设备成本占总成本 45%-74%。根据国际成本估算和分析协会 (International Cost Estimation and Analysis Association)于 2015 年发 布的研究,按重量计算,增材制造材料的成本比传统制造材料高 8 倍, 设备、材料成本降低依托技术且周期长,边际成本随销量增加几乎不变,难从规模经济受益,导致目前 3D 打印产品主要是小批量模式。依托增材制造缩短产品研发周期、降低产品生命周期成本,中短 期降成本或依靠范围经济而不是规模经济。相对于规模经济,3D 打印 行业依托专一核心技术,可以覆盖多种完全不同的产品领域,且只要 产品设计合理,几乎不存在设备上的转换成本,可以通过打印模型有 效缩短研发周期、产品上市时间,帮助制造企业迅速争取或维持市场 份额。例如,据《Analyzing Proct Lifecycle Costs for a Better Understanding of Cost Drivers in Additive Manufacturing》, 数字齿帽 (invisalign)从模拟全球牙科生产到数字本地生产的转换节省了 85%的物流步骤,将生产以及生产活动的能耗降低了 80%。批量生产并不能进一步降低边际成本,这限制了 3D 打印产品大 批量制造形成规模效应。为更好的分析 AM 制造过程中的成本变化情 况,《Analyzing Proct Lifecycle Costs for a Better Understanding of Cost Drivers in Additive Manufacturing》一文中采用 Augsburg 的一个 汽车部件样本生产案例进行分析,对机器利用率、折旧、投资、维护 费用、构建速率、材料价格等关键因素进行限定,证实机器成本占比 高达 70%以上。后续论证发现,增加生产数量后,单位成本出现断崖 式下降后基本不再受数量增加影响,这是由于建造室利用率对扩大产 能不再敏感,而单位产品所需材料固定,即批量生产并不能进一步降 低边际成本,这限制了 3D 打印产品大批量制造形成规模效应。而在 之后的论证中发现,改变构建速率、材料成本对成本结构影响较大,而改变利用率、机器投资对成本结构影响较小,这说明 3D 打印成本 降低主要环节集中在设备、材料技术升级。2.2 增材设备直销的客户依赖性低于产品,代理经销多用于培育市场基于前文论述,主要厂商多进行设备销售,但由于设备定制化程 度比产品低,且应用领域较广,下游客户对其依赖程度较低。与铂力 特所含的定制化产品制造业务不同,先临三维主要 3D 打印业务涵盖 3D 打印设备及材料、3D 打印服务,其在 2016-2018 年前五大直销客 户变化较大,且营收占比只有 10%-30%,对下游客户的依赖程度明显 低于铂力特对航空航天客户的依赖。设备的定制化程度低的同时,易使公司可通过代理经销模式培育 及拓宽市场,代理商及供应商对渠道依赖程度高于直销。对于国际巨 头如 EOS 等,以及主要集中于打印设备制造的厂商如先临三维等,3D 打印设备及技术的推广需要依靠经销商,设备经销是拓宽国际市场的 重要渠道。而对于铂力特等提供全套服务的厂商,尽管代理业务毛利 低于直销,但代理国际知名厂商 EOS 业务有助于其绑定部分重要客 户,即通过介绍客户使用代理产品拓展客户群,后推进自产设备进行 低成本替代,进而促进长期合作。就渠道依赖程度而言,由于供应商 需要对经销商进行设备配套服务的专业培训,经销代理渠道较直销依 赖程度略高,如先临三维与 UFP Deutschland GmbH、南京威布三维科 技有限公司等存在两年或以上的合作关系,公司海外经销客户促进了 海外业务拓展;铂力特主要代理德国 EOS 的几种设备,代理销售设备 及配件营收占比在 2016-2018 年分别达 29.08%、36.51%、27.64%。3、 竞争格局:美欧发达国家主导,工业级竞争格局良好3.1 全球竞争格局:美、欧发达国家主导,亚洲国家正后起直追全球 3D 打印市场主要集中在北美、欧洲和亚太三个地区,行业 内部设备厂商之间竞争激烈。据 Wohlers Associates 发布的报告,如今 美、欧、亚三个地区的 3D 打印设备累计装机量占到了全球的 95%, 其中北美占据四成,欧洲和亚太地区各占近三成,美国、中国、日本 和德国装机量位列前四。3D 打印内部竞争集中于设备厂商之间,2017年从市场份额看,Stratasys 的市场份额为 27.2%,虽不及 16 年,但仍 连续 16 年占据市占率榜首,累计装机量超过五万台。2017 年 3D systems 的市场份额为 9.8%,位列全球第二。金属 3D 打印新老企业并存,老牌龙头地位稳固,小型企业发展 迅速,中低端市场竞争激烈。3D 打印材料可分为金属和非金属两大 分类,不同材料需要不同的打印原理和设备。美国企业以非金属材料 为主,欧洲企业更偏向于金属材料领域。EOS、SLM solution、3D Systems、Concept Laser/ Arcam(GE 收购)等老牌金属 3D 打印巨头 在早期引领了产业的发展,凭借技术优势和企业的深厚底蕴,已经拥 有较高的市场份额和客户认知度,并且老牌龙头企业大多与客户高度 绑定,地位相对稳固,2017 年 Stratasys 的市场份额为 27.2%,市占率 连续 16 年居全球第一。Desktop Metal、Digital Alloys 等新创企业大多 成立于 2010 年以后,相关专利到期后技术壁垒降低,新创企业通过 不断改进工艺技术、创新业务模式、提升成本控制,部分企业发展迅 速。但是由于老牌企业通过长期市场开拓维持着较高的客户稳定性, 而且金属 3D 打印领域对技术和资金的要求很高,大多数小规模 3D 打印企业处于亏损状态,加之在政府激励政策下涌现了大批企业。据 前瞻产业研究院数据统计,2016 年中国 3D 打印市场 66.7%的企业营 收规模不到 500 万,整体中低端市场竞争尤为激烈。金属 3D 打印总体技术路线趋于稳定,不同企业技术路线相似, 新型技术应用空间有限,较难形成竞争优势。金属 3D 打印经过多年 发展,总体技术路线已基本定型,大多数企业选择使用粉末床选区熔 化(铺粉)和定向能量沉积(送粉)两大技术,这两种技术占据 了全球 72%企业的技术路线(据 Wohlers2018 年统计)。但是在具体实 现工艺上仍有较多分支路线。根据 DigitalAlloys 的统计,在两大总体 技术路线中,激光烧结是主要的工艺实现方式,采用该技术的企业数 量占比过半,产值更是占据主导地位。但新的工艺实现方式依然不断 涌现,不过中短期内市场拓展难度较大,主要为一些面向特定市场的 新型企业等。3.2 国内:铂力特、鑫精合等企业着力培育市场以加大增材制造渗透国内龙头产品的关键技术指标能够达到国外巨头同类产品水平, 产品整体性能相当。由于 3D 打印设备关键零部件仍然依赖进口(如 激光器、振镜等),国内企业技术研发主要集中于基于进口零部件之 上的设备制造与软件优化,因此短期内产品性能可迅速赶上国际领先 水准。国内企业拥有金属 3D 打印工程化应用的丰富经验,针对下游 客户使用过程中的难点和痛点,进行相关技术的优化和改进,产品性 能得到了提升,部分产品指标如成形尺寸、预热温度、氧含量控制以 及铺粉效率等方面甚至超过了国外老牌企业。相较于国外公司近 30 年的发展历史,国内增材制造设备起步较晚,虽然在短时间内取得较 快进步,但在设备运行的稳定性、产品质量等方面需要进一步提升。国内金属 3D 打印企业主要客户集中于航空航天高端装备领域, 盈利能力和稳定性较高,有利于营收规模的稳步增长。海外金属 3D 打印龙头 3D Systems 主要客户领域较为分散,汽车、航天、医药、材 料以及各类消费级市场皆有所涉猎,尽管 2018 年毛利率为 47.17%, 但期间费用率高达约 53.45%,其中销售及一般行政费用率较高,一定 程度上反映消费级及工业级市场的竞争较大且推广应用的难度。国内 企业在品牌效应、渠道、技术等方面有所劣势的情形下,多个领域多 管齐下难度较大且难以稳定快速发展。航空航天领域客户粘性较大, 销售费用率相对较低,盈利能力的绝对值以及稳定性往往能够得到可 靠保证,因此大多数国内优质企业主要依托于航空航天领域发展并逐 渐拓宽市场。铂力特在航空航天领域的主要客户比例高达 68.94%,为 盈利质量和成长稳定性提供了重要保障。国内企业发展时间较短,整体营收规模和市占率水平较低。国内优质企业领衔开展市场培育与国产替代进程,由代理逐步走向自产, 基于成本和需求端的一定优势,发展前景良好。多数国内 3D 打印企 业于 2010 年后进入高速发展期,目前整体市占率依然较低。随着自 有技术和产品的不断进步,国内龙头企业成长较快,已具备一定的市 场规模。据 3D 科学谷统计,目前中国市场份额前八的企业中,国外 品牌占 37.6%,国内联泰(树脂)、华曙(尼龙及金属)、铂力特(金属)分 别占 16.4%、6.6%和 4.9%。但相比海外老牌企业,国内企业的整体营 收规模相对较小,仍有较大的成长空间。由于国内产品相比国外同类 产品价格较低,而整体毛利水平较为一致,都接近 50%,反映出在成 本端具有一定优势。例如铂力特主推 3D 打印设备 S300 平均单价 255.16 万,同类产品 EOS-M290 平均单价 354.63 万,在产品性能相当 的前提下,国内产品具有一定价格竞争优势。目前国内企业如铂力特 等,正逐步开展市场培育与国产替代进程。以国内金属 3D 打印领先 企业铂力特为例,其商业模式包括以销售代理 EOS 设备产品为先获取 稳定客户群体,之后向客户推荐性能相当但价格更低的自产产品进行 国产替代,由此从代理逐步走向自产。近年来铂力特自产比重逐步提 高,在航空航天领域逐步加大使用。4 、金属增材制造市场规模稳步上升,航空航天或为主要增量4.1 全球增材制造市场规模稳步增长,航空航天及汽车应用提升全球增材制造市场规模持续上升,下游应用领域多元。据 Wohlers Associates 数据,2018 年全球增材制造市场规模达到 96.8 亿美元,同 比增长 32%,参考其 2015 年的预测,2020 年市场规模或达到 212 亿 美元。2017 年增材制造五大应用领域分别为航空航天、汽车、工业机 械、消费电子和医疗,合计占比接近 80%。3D 打印在航空航天和汽 车领域应用规模稳步提升。2017 年度,3D 打印在航空航天和汽车领 域应用规模占比分别 18.9%和 16%,市场规模为 13.87 亿美元和 11.74 亿美元,相较 2015 年分别提升了 2.3%和 2.2%。此外,增材制造在消 费电子、医疗器械等方向也有一定拓展。3D 打印技术满足航空航天零部件制造和研发的主要目标,增长 潜力较大。3D 打印在航空航天领域主要应用于飞机、飞船等精密零 部件的设计与制造等方向。它能够缩短设计和测试航空发动机的时 间,减轻零部件重量,提高燃料效率等。与其他应用领域相比,航空 航天领域注重安全与性能,价格敏感度较低,使得 3D 打印在该领域 率先发展。据 EY2016 年发布的《If 3D printing has changed the instries of tomorrow, how can your organization get ready today?》, EY称航空航天当前为 3D 打印渗透率最高的应用,且未来最有可能 成为规模较大的市场。3D 打印性能的提升与成本的降低使其应用规模逐渐扩大。从 1993 到 2012 年 3D 打印市场一直发展低迷,由于性能不高,应用领 域狭窄。2012 年之后,3D 打印快速发展,得益于新的打印机、耗材 和商业模式的推出,不断提升 3D 打印机性能以及探索应用边界。行 业巨头加快收购,扩张全球化销售网络,亚太市场从无到有,欧洲经 济回暖等多重因素促使近年来 3D 打印行业获得快速发展。欧美市场 占比较大,中国市场有增长潜力。据 Wohlers Associates 预测,2019 年-2024 年全球 3D 打印行业将保持年均 24%的复合增速。统计数据显 示,2017 年中国 3D 打印市场规模为 17.5 亿元,同比增长 47.4%,高 于平均水平。从 2018 年地区增材制造设备装机量分布格局看,据铂 力特招股说明书,北美、亚太、欧洲为全球最主要市场,其中分国家 看中国装机量占比达 10.6%位于全球第二,略高于日本的 9.3%,但较 大幅低于美国的 35.9%。中国地区 3D 打印市场是价值洼地,目前国 内产业化不足,高端金属材料紧缺。但随着政策扶持、技术瓶颈攻克 和企业间合作加深,中国市场 3D 打印将取得快速发展。工信部等部 门印发的《增材制造产业发展行动计划(2017-2020 年)》明确提出, 我国增材制造年销售收入超过 200 亿元,年增速在 30%以上。4.2 以 SLM 技术为代表的金属增材制造正逐步加大在航空航天应用金属增材制造 SLM、EBM、LENS 技术正逐步加大在航空航天 领域的应用。应用到航空航天制造领域的金属增材制造技术,按工艺 类型主要可分为: 激光选区熔化(SLM),电子束选区熔化(EBM),激光 近净成形(LENS)等,这三项技术在航空航天制造中都有很多应用。其 中,SLM 技术是近年快速发展的新型金属增材制造技术,在整体化 航空航天复杂零件等领域具有广泛应用前景。目前,欧美发达国家尤 其是美国在 SLM 的设备研发、软件开发、粉末原材料制备、工艺优 化及质量监测等方面处于领先地位。此外,3D 打印市场近几年最大 的转变是市场从塑料打印转向金属打印。据德勤《2019 科技、传媒和 电信行业预测》报告,2017 至 2018 年间,一项 3D 打印行业调查显 示,尽管塑料仍然是最常见的物料,但塑料打印在 3D 打印领域的占 比仅一年已从 88%下滑至 65%,而金属打印的占比从 28%增至 36%, 按该比率计算,金属似乎有可能取代塑料,且最快于 2020 或 2021 年 占据过半 3D 打印市场。航空航天领域正逐步加大对增材制造的应用,以 GE 布局及收购 进程尤为典型。GE 公司从 2010 年开始布局增材制造技术,通过不断 并购实现从增材制造的用户方到服务提供方的转变。如上文所述,金 属增材制造的工艺特点使其可打印内部结构轻量化的复杂部组件,减 重特性下亦吸引国际航空巨头 GE 公司进入该市场。据铂力特招股书, 以燃油喷嘴为例,采用 3D 打印技术比传统生产将零部件数量从 20 个 降为 3 个,重量减少 25%,使用寿命延长到 5 倍,燃油效率也大大提 升。GE 于 2015 年 4 月获得了其首个增材制造零件的联邦航空管理局 (FAA)认证,其喷气发动机 LEAP-1C 被誉为革命性推进系统。 2016 年,GE 公司成功收购瑞典 Arcam 公司和德国 Concept Laser 公司,成为金属增材制造领域的巨头,在航空发动机领域实现了增材制 造零部件的规模化应用。据 GE2016 年年报,这两次收购使得 GE 在 增材制造设备市场占据了 20%的份额,我们相信增材制造的长期市 场潜力是巨大的,大约有 750 亿美元,我们计划到 2020 年在附加设 备和服务方面,从现在 3 亿美元发展到 10 亿美元收入…在未来十年, 增材制造可以使通用电气的产品成本减少 30 亿至 50 亿美元,并创造 新的性能…我们Advanced Turboprop是第一个充分利用增材工具的航 空产品,减少了 30%的零件并将其‘cycle time’缩短 50%。据 GE2018 年年报,GE 已经为 CFM LEAP 发动机(也是我国 C919 飞机选用的 发动机)使用增材制造技术生产了超过 30000 个燃料喷嘴头,仅在 2018 年一年中就交付了 1100 多个,未来 3D 打印技术还将在 GE9X、 Catalyst 涡轮螺旋桨发动机和 T901 等型号上实现更大规模的应用。3D 打印技术在民用航空领域同样备受关注。波音、空客、GE 将 其作为战略性技术之一进行攻克,并已开展布局建设。我国 3D 打印 技术虽然起步较晚,但也取得了辉煌的成就。中国商飞设计制造的国 产大飞机 C919 在设计过程中也大量采用了 3D 打印技术制造的钛合 金技术部件。3D 打印在民用航空航天市场的应用不仅体现在制造领 域,也体现在机务维修方面。3D 打印发动机零部件的出现解决了发 动机维修所需备件的采购难题。利用 3D 打印技术可以方便快捷地制 造出所需的零备件,解决了航空发动机维修企业采用传统方法短时间 内无法满足设备、工艺等基础条件的难题,大大缩短了维修周期。在 机务维修领域,会接触到很多外形结构复杂的异形零件,在高空的极 端环境下,可能发生结构的形变,这时候可以利用 3D 打印制造出同 样零件进行对比、测量判定磨损或者腐蚀情况,从而确定该零部件是 否需要更换。4.3 汽车及医疗领域也是主要方向,短期受成本及规模限制拓展有限汽车、医疗等领域的3D打印技术也正在应用。汽车工业是 3D 打 印技术最早的应用领域之一,其在模型设计、复杂零件制造、整车模 型制作等方面相比传统工艺具有高精度、低成本、重量轻的特点,可 满足汽车零部件定制化需求。而医疗行业一直是 3D 打印技术主流应 用领域,3D 打印技术可应用于齿科、骨科甚至活体器官制作。在模 具行业,3D 打印可替代 CNC 加工技术,具有周期短、成本低的优势。 3D 打印开辟了多元化应用,但由于 3D 打印技术目前受体积、成本、 规模化限制,目前拓展有限。随着技术进步,3D 打印机大型化、打 印速度加快,3D 打印未来有一定的增长空间。细致看,增材制造有望在长期成为汽车领域内重要的工艺补充。汽车行业使用增材制造工艺,可有效减轻重量,改善汽车的性能并提 高燃油经济性。此外,增材制造可以通过直接制造用于注模的工具来 提高制造效率,还可通过将内部冷却通道应用于注塑方法,可以缩短 生产周期,提高工具质量并降低维护成本。此外,汽车原始设备制造 商使用该技术来经济高效地快速生产制造辅助设备,夹具和固定装 置。据 Frost & Sullivan's Global 360° Research Team 2016 年 5 月发布的 《Global Additive Manufacturing Market, Forecast to 2025》, Toyota Central R&D Labs Inc.和Materialize开发了3D打印的汽车座椅设计以 及生产过程。仿生结构和较软的芯材(不包括传统座椅中使用的泡沫) 更轻巧,更舒适。此外,由于坐在阳光下的表面材料吸收的能量不到 一半,因此改善了加热功能。此外,长期看,医疗领域有望也是长期内增材制造主要应用市场 之一。据《Global Additive Manufacturing Market, Forecast to 2025》, 美国助听器生产在不到 500 天的时间内就转换为 100% 3D 打印。这 种转变的关键是 3D 打印机使人工劳动密集型行业转变为自动化行 业。降低成本,提高质量并以患者为中心,其他子行业也在研究增材 制造技术。该技术通过提供义肢和牙科的定制功能,以及通过生物打 印(科学家可以在其中打印人类大小的骨骼,软骨和肌肉)实现了以 患者为中心的方法,医疗植入体领域的定制化特征使其更适合用增材 制造技术。5、 海外复盘:全行业覆盖的双刃剑,聚焦专业领域以求突破5.1 3D 系统:短期并购推动营收,盈利能力受限于多领域渗透不足多年布局下,3D 系统已实现多领域 3D 打印应用全流程覆盖。3D 系统公司(股票代码:DDD.N)于 1993 年成立于美国特拉华州,向 全球客户提供全面的 3D 打印解决方案,包括塑料和金属 3D 打印机、 材料、数字设计工具、定制服务等。公司的 3D 打印机类型多样,包 括立体光刻(SLA)、选择性激光烧结(SLS)、直接金属打印机(DMP)、 多点喷射打印机(MJP)和彩色喷射打印机(CJP),满足医疗保健、 航空航天、汽车和耐用品等应用场景的不同需求。公司的打印机大多 使用自主开发且销售的专有材料,包括塑料、尼龙、金属、聚合物牙 科材料等,同时通过第三方的研发和购买补充材料组合。为了实现价 值链全流程覆盖,公司还提供设计工具、扫描仪、模拟器等产品和维 修培训服务。多环节覆盖下,公司营业收入位于同业前列。在全球主 要上市 3D 打印公司中(AM3D.DF、VJET.N、DDD.N、SSYS.O、688333.SH), 2018 年以美元结算下,公司营收位居第一达 6.88 亿美 元。截至 2019 年 11 月 22 日交易日,3D 系统市值位于上述可比公司 第一,达 10.36 亿美元。公司下游应用广泛易受宏观因素影响,阶段性营收增长的主要推 力为并购扩张。自 1990 年以来,公司营收规模持续增长,但增长率 波动较大。一方面,公司消费级品类多样,营收增速受宏观经济影响, 如 2008-2009 年全球经济衰退造成公司营收下降 28%,2010 年经济复 苏拉动营收增长率超过 40%。另一方面,增长率受公司自身因素影响, 如 1994 年公司推出新的产品和服务使得营收增长率从 19%跃升至 39%,2006 年销售渠道受阻导致营业收入转增为减。总体来看,公司 2010-2014 年销售额增加的绝对值最为明显,但主要来源于企业并购, 自身原有的经营业绩增长较为平缓。不完全统计,2009 年至 2014 年 初,公司累计发生 40 余次并购交易,累计贡献超过 40%的营收。……5.2 3D 打印渗透低限制前期营收规模扩大,先发专利奠定发展基础5.3 大举并购忽视行业需求埋隐患,部分专利到期竞争加剧恶化盈利……6、 投资建议推荐关注国内航空航天金属增材制造领域领先企业铂力特等。 (1)金属增材制造空间广阔,航空航天领域业绩持续稳定性强。历 史看,海外同业公司曾经历市值戴维斯双杀,系家庭及消费级桌面级 打印机预期可实现高速增长的泡沫破裂。但主营专用金属增材制 造设备的德国 SLM 在此阶段市值平稳,工业级增材制造需求相对稳 定。同时,增材制造技术特点及研制契合航空航天市场需求,国际航 空制造巨头 GE 公司在 2016 年并购两家主营金属增材制造设备企业、 截至 2018 年 GE 年报公布日已实现三万余只 C919 选用发动机型号的 燃油喷嘴头的量产,表明中短期看航空航天市场有望成为增材制造最 先大规模应用的领域之一。 (2)客户优势稳定性突出,高端装备放量 有望催化业绩较快增长。航空航天领域装备需求的稳定性优于民航, 研制批产周期较长且供应商更换难度更大,具有显著高于海外同业的 抗周期性特征。良好赛道上的铂力特等企业,凭借与航空航天高端客 户的较稳定合作,未来业绩稳定性及增长的持续性较高。(3)海内外 技术差距小,高端装备领域先发及卡位优势突出。以铂力特为例,其 目前覆盖行业三种商业模式,具备粉末自制、设备自研、服务定制的 全产业链布局优势。该公司是国内铺粉路线领先企业,并已拓展 至送粉路线,因与德国金属增材制造设备老牌企业 EOS 技术差距 较小,公司自研铺粉设备已逐步或客户认可并已实现德国出口。尤其 是对于高端装备客户,采用新技术所制造的产品若进入批产且性能突 出,公司有望继续参与后续其他部件的替换及新装备研制。且若在后 期实现自制金属打印粉末的规模应用及量产,客户粘性更大,先发地 位及卡位优势突出,并有望拓展至其他工业领域。……(报告来源:方正证券)(如需报告请登录未来智库)