欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
中国蛋白质组研究站在了全球制高点三学

中国蛋白质组研究站在了全球制高点

前不久,国际顶级学术刊物《细胞》(Cell)正式发表由中国科学家完成的大规模临床肺腺癌蛋白质组草图的绘制工作,引发关注。这是“中国人蛋白质组计划”重点专项继肝癌、胃癌研究之后取得的又一重大成果,也是中国科学家主导的“蛋白质组学驱动的精准医学”的又一次重大突破。作为该成果的共同通讯作者之一,中国科学院院士、国家蛋白质科学中心(北京)首席科学家贺福初给出这样的评价:“该成果再次证明了蛋白质组学的成熟度,足以帮助解决认识一系列的重大医学问题,也再度证明了中国的蛋白质组研究,不仅站在了全球的制高点,也站在了时代的制高点。”说起“中国人蛋白质组计划”,不得不提“人类基因组计划”。上世纪90年代,“人类基因组计划”吸引了全世界的目光。随着人类基因组测序的完成,科学家们发现基因组虽在基因活性和疾病相关性方面提供了根据,但大部分疾病却不是因为基因改变引起;而且,基因的表达方式错综复杂、表达产物千差万别,同样的基因在不同条件、不同时期可能会起到完全不同的作用。在人类基因组图谱完成之际,一批基因组学大家不约而同地向蛋白质组学发出呼唤:“用蛋白质组学解读基因组这部天书。”于是,一批科学家迅速集结于国际人类蛋白质组的组织旗下,酝酿启动“人类蛋白质组计划(HPP)”。但该计划面临明显不同的科学问题:同一个体不同器官、同一器官不同细胞的基因组相同,而其蛋白质组不同,因此人体只有一个基因组,却有千千万万个蛋白质组。人类蛋白质组计划如何推进?各国莫衷一是。据贺福初介绍,我国科学家率先提出“两谱、两图、三库和两出口”的人类蛋白质组计划总体研究策略,这其中,“两谱”是指表达谱、修饰谱,“两图”是指连锁图、定位图,“三库”是指样本库、抗体库、数据库,“两出口”则是指生理组、病理组。贺福初说,中国科学家倡导并领衔完成了人类第一个组织、器官的“肝脏蛋白质组计划”,为人类蛋白质组计划的全面展开发挥了示范作用。这一贡献得到《自然》(Nature)、《科学》(Science)等国际学术期刊领域的肯定。2014年,科技部正是在“肝脏蛋白质组计划”成功经验的基础上,启动了“中国人蛋白质组计划(CNHPP)”重点专项,该专项由原军事医学科学院牵头组织全国60余家优势单位联合攻关。“这是我国863计划、973计划、国际合作计划再次‘联手资助’的重点专项,也是国家大科学设施与大科学计划的‘首次会师’!”贺福初说。据他介绍,“中国人蛋白质组计划”实施以来,实现了蛋白质组研究和应用的系统突破,率先提出国际疾病蛋白质组计划研究策略,引领了国际蛋白质组学与精准医学研究的汇聚。值得一提的是,科研团队率先公布早期肝细胞癌的蛋白质组分子分型并发现新的治疗靶标,首次向全球证明:“蛋白质组学驱动的精准医学新时代正向我们走来”;团队揭示了弥漫型胃癌的蛋白质组全景图,建立首个与其预后相关的蛋白质组分子分型。贺福初列举一组数据:多年过去,“中国人蛋白质组计划”先后在《自然》(Nature)、《细胞》(Cell)等国际核心期刊发表SCI论文380余篇,申请/授权发明专利120余项,获软件著作权100余项,为推动蛋白质组学科和生物医药产业发展作出了重大贡献。“经过10余年的积累沉淀,由我国主导的蛋白质组学驱动精准医学研究已开始‘领跑’国际蛋白质组学发展!”贺福初说,肝癌、肺癌、胃癌等研究突破,即是“中国人蛋白质组计划”的标志性成果,此外,有关胰腺癌、心血管病等10余种重大疾病的研究成果也即将陆续发布。据他透露,下一步,“中国人蛋白质组计划”团队将在国际大科学计划的支撑下,打造医药卫生领域的“千人千面”体系,进一步提升对重大、疑难疾病的“精准定位”和“精确打击”能力,从而提升国民健康水平,造福大众。

不过此矣

蛋白质组研究:生命天书的新解码?

深科·浅说蛋白质组研究:生命天书的新解码?前不久,《自然》杂志在线发表了中国科学家在早期肝细胞癌蛋白质组研究领域取得的重大科研成果。这一研究测定了早期肝细胞癌的蛋白质组表达谱和磷酸化蛋白质组图谱,发现了肝细胞癌精准治疗的潜在新靶点——胆固醇酯化酶SOAT1。90%以上的肝癌属于肝细胞癌。对于普通人来说,这一研究最耀眼的成绩,是给治疗最凶险的一类肝细胞癌带来了希望;对于蛋白质组相关科研人员来说,这一成果是“中国人类蛋白质组计划迎来的第一道曙光”。该成果论文的通讯作者、国家蛋白质科学中心(北京)首席科学家贺福初院士认为:“这一成果证明,基因组学不能独打天下,现在轮到蛋白质组学上场了。”回顾此前有关癌症的研究成果,“基因”这个词是在抗癌场景中出现的高频词——科学家相信:人类的某些基因隐藏着打开癌症开关的钥匙。这一思路符合学界对基因组学的一贯期待,贺福初院士介绍:“人们1985年开始酝酿基因组计划的主要动力,就是希望能够通过描绘和破解基因蓝图,揭示人类生老病死的规律和本质。”但人们将基因图谱这本“天书”印出来后,发现解读“天书”依旧是一大难题。1994年澳大利亚科学家Marc Wikins首先提出蛋白质组学这一概念。简单来说,基因承载着人类的遗传物质,而蛋白质是遗传物质传递的最后一个环节,是生命活动的执行者,蛋白质是组成人体所有细胞和组织的重要成分。一个生物系统在特定状态下表达的所有种类的蛋白质就是蛋白质组。1998年,“认为基因组学的发展或许遇到了瓶颈”的贺福初开始转向蛋白质组学研究。2002年,贺福初成为“国际人类蛋白质组计划”的重要参与者,并带领中国科学家牵头实施人类肝脏蛋白质组计划,他相信“基因组学解决不了的问题,或许蛋白质组学能解决”。目前贺福初团队的研究思路与一些美国同行不同。据介绍,贺福初团队的思路是用蛋白质组学驱动的精准医学“领跑”国际精准医疗;而美国的研究主流策略是“蛋白基因组学”,即将蛋白质组的数据用于基因组的注释,蛋白质组的研究仍然需要“背靠”基因组、转录组。科学家们对蛋白质组学研究的价值存在争议。贺福初说,学界更为主流的观点是,蛋白质组学的研究只是基因组学研究的“注解”。而贺福初认为蛋白组研究不是基因组研究的“附庸”。以本次发表在《自然》杂志在线的研究为例,他希望更多人认同蛋白质组研究的价值和作用。贺福初团队的这项研究持续了5年。研究发现,在最凶险的一类肝细胞癌中,胆固醇稳态失调与病发有直接联系,具体来说,胆固醇酯化酶越活跃,这类患者的手术后复发或死亡风险越大。而如果胆固醇酯化酶SOAT1得到抑制,肿瘤的增殖和迁移能力也同时受到有效抑制。他们的研究还发现,胆固醇酯化酶SOAT1在头颈癌、胃癌、前列腺癌、肾癌和甲状腺癌中均和患者较差的术后转移和死亡表现正相关。贺福初认为,这种基于蛋白质组研究的“抗代谢失稳”的抗癌思路,或可成为继抗增殖抗癌疗法和免疫抑制抗癌疗法之后的抗癌新方向。在前不久举行的成果发布会上,施普林格 自然旗下自然科研大中华区总监保罗 埃文斯在祝贺视频中说:“《自然》杂志约有93%的拒稿率,因此这样一篇论文发表出来是一项很大的成就,我深信这项研究工作将为蛋白质组学所引导的精准医学的发展作出有力贡献。”“蛋白组是解读生命天书的利器。”该成果的第一作者、军事科学院军事医学研究院研究员姜颖相信:“蛋白质组学驱动的精准医学时代正向我们走来。”据悉,此前在“蛋白基因组学”研究模式的指导下,美国等国的科学家们已经完成的精准医疗分子分型包括:结直肠癌、乳腺癌、卵巢癌和胃癌等。张茜 来源:中国青年报

同滥而浴

长篇回顾|蛋白质组学的发展:生命科学的里程碑

011 蛋白质组学概念的提出早在18世纪,人类就发现了蛋白质这一类型的生物分子,然而直到1938年,瑞典化学家Jons Jakob Berzelius才明确提出了蛋白质的概念,指出蛋白质是由氨基酸组成的一类生物大分子。1949年,英国科学家Frederick Sanger首次测得了蛋白质牛胰岛素的氨基酸序列,并验证了蛋白质由氨基酸组成,他也凭借此项研究成果获得了1958年的诺贝尔化学奖。就在同一年,英国科学家Francis Crick首次提出分子生物学中心法则,这是20世纪生命科学领域最重要的发现之一 :脱氧核糖核酸(deoxyribonucleic acid,DNA)是生物体内遗传信息的载体,DNA以自身为复制模板,通过转录作用将遗传信息传递给核糖核酸(ribonucleic acid,RNA),成熟的信使RNA(messenger RNA,mRNA)在核糖体上被翻译成一条长肽,然后经折叠加工形成具有生理活性的成熟蛋白。蛋白质是生命的物质基础,作为生物体活动功能的最终直接执行者,对生命活动的实现具有十分重要的作用,参与了生物体内几乎所有的生命活动过程。随着分子生物学技术的发展,蛋白质的诸多功能不断被研究和报道,如蛋白质可以作为离子通道参与信号转导等,人们愈发重视对蛋白质的研究。21世纪初,生命科学领域迎来了一个重要的里程碑——人类基因组草图的绘制完成。2001年由美国、英国、法国、德国、日本和中国科学家共同参与的人类基因组计划(Human Genome Project,HGP)与Celera基因公司共同公布了人类基因组DNA序列草图,这也代表着人类在生命科学领域迈上了新台阶。2003年该计划的完成可以说是近半个世纪以来最激动人心的一项生命科学成就,它第一次揭示了人类的DNA序列信息,并提供了人类生命信息的蓝图。该研究成果分别发表在Nature、Science两大国际著名期刊上(Lander et al.,2001;Venter et al.,2001)。人类基因组计划因其破解人类遗传密码的里程碑式意义及对于遗传性疾病预防的潜在应用价值,与阿波罗登月计划、曼哈顿原子弹计划一起,并称为自然科学史上的三大计划。随着人类全基因组序列的破译和功能基因组学研究的展开,生命科学家越来越关注如何用基因组研究的模式开展蛋白质组学的研究。因此,Nature、Science在公布人类基因组草图的同时,分别发表了“And now for the proteome”和“Proteomics ingenomeland”的述评与展望(Abbott,2001;Fields,2001)。文中认为蛋白质组学将成为21世纪最大的战略资源,并将成为人类基因争夺战的战略制高点之一,这将蛋白质组学的地位提高到了前所未有的高度。事实上早在1994年,澳大利亚科学家Marc Wilkins便提出了蛋白质组(proteome)这一概念——表征基因组所能表达的全部蛋白。1997年,蛋白质组学(proteomics)的概念产生,其研究的主要内容是细胞、组织或器官内的全部蛋白质。此后该学科迅速发展,并得到了生命科学研究领域的重视。2001年,国际人类蛋白质组组织(Human Proteome Organization,HUPO)正式宣告成立,推动了蛋白质组学研究领域的发展。在2002年国际蛋白质组研讨会上,科学家明确提出了开展 “人类肝脏蛋白质组计划(Human Liver Proteome Project,HLPP)”的建议,并于2003年正式启动,至此人类蛋白质组计划的帷幕正式拉开。该项目也是我国科学家在生命科学领域领导的一次重大国际合作项目。蛋白质组学在细胞的增殖、分化、肿瘤形成等方面的研究中已经取得了不少成果和进展。尤其在癌症研究方面,已经鉴定到了一批肿瘤相关蛋白,这为相关疾病的早期诊断、蛋白质药物靶标的发现、治疗和预后提供了重要依据和线索。022 蛋白质组学的特点人类基因组序列的测定,标志着基因的研究迈上新台阶。随着基因测序技术的改进和成熟,人们对基因的研究更加便捷,对基因的认识也逐渐深入。目前认为可编码蛋白质的基因约20 000个。然而同一个基因可以表达出不同的信使RNA片段,而信使RNA在成熟过程中可能会出现剪切重组等,这显著增加了可表达蛋白的数目。同时,信使RNA翻译出的蛋白质会经历翻译后修饰(Berget,1995;Witze et al.,2007),实现对自身功能的调控,这进一步使蛋白质组的研究复杂化。此外,细胞内表达的蛋白质在时间和空间尺度上具有动态变化的性质,因此细胞内蛋白质的分析远比基因组的分析复杂和具有挑战性。基因组学的研究对象是DNA,DNA的性质较为稳定,且微量的目标样品可以通过PCR技术将其扩增,从而便于研究。目前DNA测序技术已较为成熟,且基因组学的数据库已相对完善,对于基因的研究已经进入了相对成熟的阶段。然而作为基因组后时代,蛋白质组目前尚处于探索和发展阶段。蛋白质组学研究的对象——蛋白质,其本身的性质不够稳定,可能同时存在多种不同的翻译后修饰类型,且其在不同细胞、组织内的表达丰度的动态范围较大。随着高分辨生物质谱技术的迅速发展及基于基因序列的蛋白质数据库的逐步完善,目前已可以实现对蛋白质氨基酸序列的测定,但是仍有大量的内容是未知的,包括蛋白质的定位、蛋白质与小分子的相互作用、蛋白质与蛋白质的相互作用、蛋白质的生命周期等。蛋白质组学的研究,可以从时间和空间角度对细胞、组织的蛋白质进行全面深入的研究,从而深入理解细胞如何利用蛋白质实现各种生理功能的调控。蛋白质组学亟待发展,研究技术也有待进一步发展和提升。033 生物质谱技术科学的进步往往带来技术的革新,而技术的革新会加速科学的发展。在蛋白质组学概念提出后的几年,由于受到研究技术的限制,发展十分缓慢。近些年,高分辨质谱技术(mass spectrometry,MS)的迅速发展,成为了蛋白质组学领域的核心技术。质谱技术是化学领域中研究化合物的一个重要手段。然而,直到软电离离子化技术的出现,才使得用质谱研究生物大分子成为了可能。2002年的诺贝尔化学奖授予美国科学家John Fenn和日本科学家Koichi Tanaka(“The Nobel Prize in Chemistry 2002”。Nobelprize.org. Nobel Media AB 2014. Web. 30 Apr 2015),以表彰他们在将软电离离子化方法用于生物大分子质谱分析方面所作出的贡献。John Fenn发明了电喷雾离子化方法(electrospray ionization,ESI)(Fenn et al.,1989)。样品在毛细管色谱柱中分离,经毛细管柱柱头流出时,在高压电场的作用下形成带电的小液滴。随着液滴的溶剂蒸发,液滴表面离子密度逐渐增大,当达到瑞利(Rayleigh)极限时,液滴发生破裂,形成更小的带电液滴。而后在电场作用下重复蒸发、分裂的过程,直至形成气相离子进入质谱,并被检测。该方法的优点在于可以实现从液态到气态分子的转变,产生的离子可以带有一个或多个电荷。Koichi Tanaka发明的基质辅助激光解析离子化技术(matrix-assisted laser desorption ionization,MALDI)利用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,从而使生物分子电离(Tanaka et al.,1988)。由于电喷雾离子化可形成单电荷离子及多电荷离子而有别于其他的MS离子化技术,并能实现高效液相与质谱的串联。特别是在1994年,Wilm和Mann发展了纳升级喷雾离子源(nano-electrospray ionization source,nanoESI source),与传统的ESI源(流速1~100 L/min)相比,该离子源可以采用更小的溶剂流速(10~500 nL/min),并且电喷雾更稳定,生成的带电液滴更小,能在室温条件下更好地实现去溶剂化(Wilm and Mann,1996),所以在目前的生物质谱中尤其是蛋白质组学研究领域,nanoESI离子化技术应用较为广泛。此外,对于质谱仪而言,质量分析器是其核心部件。随着分辨率和检测速率的提高,质谱仪在蛋白质组学研究中的优势逐渐凸显。目前已有的质量分析器的类型有 :磁质谱、双聚焦质谱、离子回旋共振质谱、四极杆、四极杆离子阱质谱、时间飞行质谱、傅里叶变换质谱、三重四极杆质谱、线性离子阱质谱、静电轨道场离子回旋加速质谱(Orbitrap)等。其中,Orbitrap无疑是近20年质谱技术中最重要的发明。它极大地缩小了高分辨质量分析器的体积,维护更方便,使得高分辨质谱的台式化和易用化成为了可能,从而便于应用和推广。Thermo公司于2005年推出了第一台商业化的Orbitrap型质谱仪,其分辨率达到了100 000 (m/z 400),最大扫描速度为1.0 Hz。目前高效液相串联质谱在蛋白质和蛋白质的翻译后修饰的鉴定分析方面起着重要的作用,其原理是待测样品经高效液相色谱分离之后,经离子源的离子化,进入质谱。在质谱内通过特定的方式,将母离子碎裂产生碎片离子 ;进一步对碎片离子进行检测,得到该分析物的质谱检测图谱。随后对该图谱进行分析,通过与蛋白质数据库中的理论图谱比对,从而将其氨基酸序列信息和含有的修饰解析出来。质谱技术在生物大分子领域中的应用越来越广,包括定性和定量的高通量蛋白质分析,高通量的蛋白质翻译后修饰分析,鉴定蛋白质-蛋白质相互作用和调控网络,鉴定蛋白质和小分子的相互作用,生物标志物的鉴定和研究等。044 蛋白质组学的研究进展近20年来,蛋白质组学领域的研究技术在不断地革新和提高。1989年,电喷雾离子化技术发明,使得用质谱分析生物大分子成为可能;1993年,肽指纹图谱技术发明,推动了蛋白质鉴定技术的发展 ;1996年,利用二维凝胶电泳技术,实现了对酵母全蛋白的分析 ;2002年,细胞培养稳定同位素标记(stable isotope labeling by amino acids in cell culture,SILAC)技术发明,使得定量蛋白质组学研究迈上新台阶。1998年,中国启动了“人类肝脏蛋白质组计划”。2010年,中国团队完成肝脏蛋白质组的检测,共鉴定到6788个蛋白质,至此第一个人类器官的全蛋白质组检测工作得以完成(He,2005)。但由于当时的技术局限,所鉴定的蛋白质的数目还远远没有达到理论上肝脏全蛋白质组的蛋白数。近几年来,生物质谱技术进一步发展,其检测灵敏度和分辨率明显提高,扫描速度也有了显著提升,已经具备了高通量深度蛋白质组学研究的条件。因而,关于全蛋白质表达谱研究工作的报道越来越多。基于质谱的飞速发展,科研工作者目前已经对细胞内的不同细胞器做了组学研究,包括线粒体、高尔基体、细胞核等。蛋白质组学领域的知名科学家Matthias Mann在2008年报道了用一个月的时间鉴定了接近8000个蛋白质的成果(Hubner et al.,2008)。2011年,经过样品制备方法的创新、色谱分离方法的优化和质谱仪器的升级,Mann团队通过利用样品处理新方法FASP(flter-aided sample preparation)对小鼠的肝脏组织进行蛋白质组学研究,最终在21 d质谱数据采集时间内鉴定了高于10 000个蛋白质(Wisniewski et al.,2011),这是目前最具深度的蛋白质组学研究之一。随着质谱仪准确度、分辨率和扫描速度的不断提高,Mann实验室在2014年利用Q Exactive超高分辨率质谱仪,在4 d时间内定量分析了小鼠肝脏组织样本中的11 520个蛋白质(Azimifar et al.,2014)。因此随着样品制备方法、色谱分离方法及质谱仪器的不断优化和创新,科学家可以对生物体内的蛋白质进行更具深度的鉴定,从而更加深入地研究生命活动中的生理生化过程。2014年,国际著名杂志Nature子刊Nature Methods评述了近10年内的自然科学研究领域方法,基于质谱的蛋白质组学技术便是其中之一(Ten years of Methods,2014),可见质谱的发展对自然科学研究领域产生了极为重要的影响。当然,组学的研究并非仅仅是蛋白质测序,还包括了组学定量、靶向蛋白质组的研究等。其中靶向蛋白质组的研究被列入了Nature Methods 2012年度生命科学研究的方法学进展。2014年对于蛋白质组学的研究来说是具有里程碑意义的一年。4月,国际顶级期刊Nature首次报道了两篇关于接近完整的人类蛋白质组表达谱草图的文章。其中一篇文章收集了30种人类正常组织和细胞样本,包括成人和胎儿的组织及血液细胞,最终共鉴定到17 294个基因编码的蛋白,占总编码蛋白基因数的84%(Kim et al.,2014)。另外一篇文章,则综合了已发表的公共数据集及其实验室已有的数据,包括数十种人类组织、体液样本及细胞株等的鉴定分析结果,共鉴定到18 097个基因编码蛋白,占总编码蛋白基因数的92%(Wilhelm et al.,2014)。以上两篇文章共同绘制出了第一张人类蛋白质草图。近些年,中国蛋白质组学研究领域也在快速发展。2014年,“中国人蛋白质组草图计划”(CNHPP)这一科技部的重点项目正式展开,计划绘制包括心脏、肝脏、肺、肾脏等在内的10个最重要人体器官的蛋白质组生理和病理图谱,旨在以中国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,构建中国人类蛋白质组的“百科全书”。055 蛋白质组学的应用通过基因组测序和分析,可以发现多种诱发癌症的驱动基因。2013年在Science杂志上发表了题为“Cancer genome landscape”的综述(Vogelstein et al.,2013),提出大部分癌症的发生是由于2~8个驱动基因突变,人体内目前认知到的癌症驱动基因共有约140个。尽管如此,驱动基因突变并不能解释所有癌症发生发展的现象。例如,2014年Nature杂志上发表的对230例肺腺癌临床样本的研究结果称,部分样本的基因组测序结果未能解释信号通路被激活的现象(The Cancer Genome Atlas Research Network,2014)。为了加深对癌症发生发展机制的认识,迫切需要对癌症进行深入的蛋白质组学研究,从而从蛋白质水平阐释癌症可能的发生发展机制。2006年年初,美国国立癌症研究院(National Cancer Institute,NCI)开始了一项为期5年,耗资1.04亿美元的临床蛋白质组肿瘤分析联盟(Clinical Proteomic Tumor Analysis Consortium,CPTAC)(Ellis et al.,2013),其目的在于建立应用于癌症诊断、治疗和预防的蛋白质组学技术,建立数据分析标准流程及试剂、参考物质的应用等系统,从而达到拓宽蛋白质组学技术在临床癌症诊断中的应用。目前该项目已经取得了非常出色的进展,其中一项工作为对被TCGA项目(The Cancer Genome Atlas)表征的95个结肠和直肠癌样本进行了深入的蛋白质组学及生物信息学分析,从蛋白质组学层面对结肠、直肠癌进行分型。在所得的5种蛋白质分型中,其中的两种与TCGA的一种转录本亚型——“微卫星不稳定亚型/CpG岛甲基化表型亚型”有重叠部分,但也发现了与之明显不同的基因突变、DNA甲基化和蛋白质表达图谱,这些都具有不同的临床表现,为临床疾病的研究提供了新的思路和检测指标(Zhang et al.,2014)。蛋白质组学在人类疾病中的研究应用已经在一些疾病中开展,如癌症、皮肤病、心脏病等。研究包括寻找与疾病相关的单个蛋白,整体研究某种疾病引起的蛋白质表达或修饰水平的变化,利用蛋白质组寻找一些致病微生物引起的疾病的诊断标记和疫苗等。随着精准医疗时代的到来,蛋白质组学在药物研究、临床诊断和个性化治疗等方面将具有更为广阔的应用前景。

丹书

我国蛋白质组研究取得重大突破:科学家发现治疗肝癌潜在新靶点

央广网北京2月28日消息(记者贾斯曼)28日凌晨,英国《自然》杂志在线发表我国研究团队在早期肝细胞癌蛋白质组研究领域取得的重大科研成果。文章测定了早期肝细胞癌的蛋白质组表达谱和磷酸化蛋白质组图谱,发现了肝细胞癌精准治疗的潜在新靶点。成果截图该成果由军事科学院军事医学研究院生命组学研究所、国家蛋白质科学中心(北京)、蛋白质组学国家重点实验室贺福初院士团队、钱小红研究员团队联合复旦大学附属中山医院樊嘉院士团队、北京大学肿瘤医院邢宝才教授团队共同完成。科研人员根据101例早期肝细胞癌及配对癌旁组织样本的蛋白质组数据,将目前临床上认为的早期肝细胞癌患者,分成三种蛋白质组亚型,而不同亚型的患者具有不同的预后特征,术后需要对应不同的治疗方案。其中,第一类患者仅需手术,要防止过度治疗;第二类患者则需要手术加其他的辅助治疗,而第三类患者占比30%,术后发生复发转移的危险系数最大,是最后的“硬骨头”。科研人员发现在第三类患者的蛋白质组数据里,胆固醇代谢通路发生了重编程,其中侯选药靶胆固醇酯化酶的高表达具有最差的预后风险。通过抑制候选药靶——胆固醇酯化SOAT1,能减少细胞质膜上的胆固醇水平,有效抑制肿瘤细胞的增殖和迁移。科研人员进一步研究发现,SOAT1的一种小分子抑制剂“阿伐麦布”在肝癌患者的人源肿瘤异种移植模型上表现出良好的抗肿瘤效果,表明“阿伐麦布”有望成为治疗预后较差肝细胞癌患者的潜在靶向治疗药物。科研团队成员讨论质谱数据。(图片由军科院提供 洪楠/摄)研究团队首次发现胆固醇代谢途径重编程与肝细胞癌之间的直接联系,证实胆固醇酯化在肝癌发生中的重要意义,借助患者群蛋白质组学海量数据发现胆固醇酯化酶可用于早期肝癌的分型、预后及靶向治疗,其蛋白质水平在头颈癌、胃癌、前列腺癌、肾癌和甲状腺癌中均和患者的较差预后正相关,为发展新型抗癌药物提供了重要基础。据悉,这是2014年国家科技部全面启动“中国人类蛋白质组计划”以来,国家蛋白质科学中心(北京)首席科学家贺福初院士以通讯作者在《自然》杂志发表的第2篇标志性成果。中国是国际蛋白质组计划的重要参与者,也是人类肝脏蛋白质组计划的牵头实施方,中国科学家在肝细胞癌蛋白质组领城研究取得的这次重大突破,具有广泛的社会应用价值,是“中国人类蛋白质组计划”迎来的第一道曙光。

囧哥们

客户文章|8篇文章,平均IF:10.1 带您看尽蛋白质组学研究方法

编者按:俗话说“业精于勤而荒于嬉,行成于思而毁于随”。对于科研者来说,一个成功地研究一定是经历了反复的实验,其中肯定是付出许多艰辛和努力的。可是科研光是勤劳如果没有好的方法可是会走很多弯路的...继上期小鹿盘点了蛋白组学的热门方法【大热点】3篇文章总计IF:66分,带您get时下热点技术后。本期小鹿帮助各位科研老师总结了蛋白质组学常用技术ITRAQ蛋白质组学、TMT蛋白质组学、PRM技术、LC-MS/MS...8篇文章,平均IF:10.6带您看尽蛋白质组学研究方法。1长链非编码RNA-LINC00673中的一个胰腺癌风险变异为miR-1231构建了结合位点使得PTPN11降解受到干扰在胰腺癌的研究中,全基因组关联研究已经确定了几个与胰腺癌风险相关的基因位点,然而遗传因素影响散发性胰腺癌发展的机制仍然很大程度上未知。本篇文章由鹿明生物合作客户北京协和医院肿瘤研究所林东昕教授研究组发表在《Nature genetics》(IF:31.616)的题为“Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation”的研究论文,该研究揭示了LINC00673在维持细胞稳态中的重要作用以及其变异如何赋予胰腺癌易感性。本文中用蛋白质组学技术发现了与LINC00673相互作用的蛋白PTPN11,从而阐明了LINC00673的功能机理。材料:细胞系、小鼠、人胰腺组织、血发表期刊:Nature genetics影响因子:31.616(发表时期影响因子)主要技术:GWAS、qRT–PCR、immunoprecipitation、LC-MS/MS(鹿明生物提供服务支持)2解析潮间带大型绿藻光系统I-捕光天线I复合物结构PSI 是一个极高效率的光能吸收和转化系统,几乎每一个吸收的光子都能产生一个电子,其量子转化效率超过90%。PSI 高效吸能、传能和转能的结构基础是科学研究的前沿问题。2019年3月8日,济南大学、中科院植物所与清华大学合作在Nature Plants发表了题为 Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits的研究长文,(其中:质谱测序由上海鹿明生物科技有限公司协助完成。)报道了一种潮间带大型绿藻(假根羽藻,Bryopsis Corticulans)PSI-LHCI 超分子复合物的3.49 分辨率的冷冻电镜结构,这是继高等植物之后,在 PSI 结构与功能研究领域取得的又一重大突破。本文进一步完善了对光合生物进化过程中 PSI 结构变化趋势的理解;从进化与光环境适应的角度揭示了捕光天线复合物的捕光设计机理;为揭示绿藻光合膜蛋白 PSI-LHCI 高效吸能与传能的机理奠定了坚实的结构基础;为人工模拟光合作用机理,为指导设计作物与提高植物的光能利用效率提供了新的理论依据和新思路。3运用IncRNA、iTRAQ研究诱导自噬抑制葡萄膜黑色素瘤的发生机理葡萄膜恶性黑色素瘤是成年人中最多见的一种恶性眼内肿瘤,在国外其发病率占眼内肿瘤的首位,在国内则仅次于视网膜母细胞瘤,居眼内肿瘤的第二位。此瘤的恶性程度高,眼后是好发部位。易经血流转移,85%转移至肝脏。本篇由欧易/鹿明生物合作客户上海交通大学医学院范先群教授课题组发表在《Autophagy》的”ZNNT1 long noncoding RNA inces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression“运用lncRNA 芯片、iTRAQ 蛋白质定量技术探究lncRNA 在 UM 肿瘤发生中的作用报道。发表期刊:Autophagy影响因子:11.059运用技术:文章中iTRAQ 蛋白质定量技术由鹿明生物提供服务本研究表明,在葡萄膜黑色素瘤中,lncRNA ZNNT1 起到了抑癌基因作用。ZNNT1 可以通过上调 ATG12 表达,调控 ATG12-ATG5 结合,促进细胞自噬,进而抑制了肿瘤的发生。本研究通过运用lncRNA 芯片、iTRAQ 蛋白质定量技术为葡萄膜黑色素瘤的临床治疗提供了新的思路。4LncRNA SNHG10通过正反馈环调节其同源物SCARNA13促进肝癌发生和转移的研究肝细胞癌(HCC)是最常见的恶性肿瘤之一,全球发病率位居第六,死亡率位居第三。极易复发和转移导致了肝癌患者的高死亡率,因此针对肝细胞癌的发生和转移机制的研究迫在眉睫。本文为鹿明生物客户--四川大学肝胆外科研究室的科研者们于2019年5月发布在Cancer Res的研究文章:LncRNA SNHG10通过正反馈环调节其同源物SCARNA13促进肝癌发生和转移的研究,为肝细胞癌的发生和转移机制又进行了深入的研究。发表期刊:Cancer Res影响因子:8.378主要运用鹿明生物技术:TMT标记定量、RNA测序((RNA-seq)、qPCR5在模拟生理环境中通过蛋白冠装饰的超顺磁性纳米粒子靶向电荷介导的癌细胞纳米技术在癌症诊断和治疗中以及生物医学功效各方面起着关键作用,本文由鹿明生物合作单位同济大学、青岛大学等多家科研院校共同合作发表在《ACS APPLIED MATERIALS & INTERFACES 》上的Electrical-Charge-Mediated Cancer Cell Targeting via Protein Corona-Decorated Superparamagnetic Nanoparticles in a Simulated Physiological Environment ,通过在模拟生理液体中对粒子表面蛋白冠对癌细胞靶向的影响进行了研究,为临床灵敏检测血液循环肿瘤细胞开辟了新途径,其中蛋白质组学技术在鉴定蛋白冠成分时发挥了重要作用,该技术已在各个研究领域中得到广泛应用。本文研究为临床灵敏检测血液循环肿瘤细胞开辟了新途径,其中蛋白质组学技术在鉴定蛋白冠成分时发挥了重要作用,该技术已在各个研究领域中得到广泛应用。发表期刊:ACS APPLIED MATERIALS & INTERFACES 影响因子:8.456 鹿明生物提供服务:LC-MSMS(MPI技术)6运用LC-MS/MS鉴定GRP78是鸭Tembusu病毒感染BHK-21细胞的受体研究Tembusu病毒(TMUV)是一大群具有包膜的单正链RNA病毒。该类病毒通过吸血的节肢动物(蚊、蜱、白蛉等)传播而引起感染。在我国,Tembusu病毒(TMUV)的爆发和传播给中国水禽养殖业带来了巨大损失。本篇文章由鹿明生物合作客户江苏省农业科学院兽医研究所赵冬敏博士为第一作者,发表在Frontiers in Microbiology杂志发表题为“Identification of Glucose-Regulated Protein 78 (GRP78) as a Receptor in BHK-21 Cells for Duck Tembusu Virus Infection”的研究论文,该研究报道了BHK-21细胞中TMUV结合分子的探究。发表期刊:Frontiers in Microbiology影响因子:4.259运用鹿明生物技术:LC-MS/MS7垂丝海棠应对盐碱胁迫适应性的生理、蛋白质组学和代谢组学的整合分析由于土壤盐碱化逐年增加造成可耕作面积逐年减少,使盐碱等非生物胁迫已成为严重影响我国粮食生产的重要因素。同时针对抗盐碱功能机理的研究也是选育耐盐碱新品种的关键。在2019年,欧易/鹿明生物合作客户甘肃农业大学王延秀课题组在Horticulture Research杂志发表题为“垂丝海棠应对盐碱胁迫适应性的生理、蛋白质组学和代谢组学的整合分析”的文章。该文章作者通过蛋白质组学、代谢组学以及生理学数据,对可耐受盐碱的垂丝海棠中参与植物胁迫反应的植物途径及其调控机制进行深入研究,为使用基因工程提高该植物的耐盐碱性提供了重要依据。发表期刊:Horticulture Research影响因子:3.64运用技术:蛋白质组学、代谢组学8定量蛋白质组学鉴定鸡脾脏中细胞外基质降解与基因型VII新城疫病毒的免疫病理相关新城疫(newcastle disease,ND)是由新城疫病毒引起禽的一种急性、热性、败血性和高度接触性传染病。以高热、呼吸困难、下痢、神经紊乱、黏膜和浆膜出血为特征。具有很高的发病率和病死率,是危害养禽业的一种主要传染病。OIE将其列为A类疫病。本篇由上海鹿明生物科技有限公司合作客户扬州大学农业部畜禽传染病学重点开放实验室刘秀梵院士课题组发表在《Journal of Proteomics》的文章“Quantitative proteomics identify an association between extracellular matrix degradation and immunopathology of genotype VII Newcastle disease virus in the spleen in chickens”运用TMT定量蛋白质组学技术首次提供了NDV对ECM调节的证据,并将ECM重塑作为NDV病理的新表现形式,加深了对NDV发病机制的了解。发表期刊:Journal of Proteomics影响因子:3.537运用技术:、qRT-PCR、Western blot、ELISA、TMT蛋白质组学(鹿明生物提供技术支持)目前,蛋白质组学研究以其高通量、高灵敏度、高效的蛋白质分离鉴定方法在医学、农学、微生物等方面都有着广泛地应用,并且蛋白质组学研究也为寻找各种疾病的关键蛋白和标志蛋白、对于疾病的诊断、病理的研究和药物的筛选都具有重要的意义。鹿明生物以其多年的蛋白组学研究经验也在蛋白质组学道路上不断地探索~~鹿明生物上海鹿明生物科技有限公司,一直专注于生命科学和生命技术领域,是国内早期开展以蛋白组和代谢组为基础的多层组学整合实验与分析的团队。经过近数年的发展沉淀,公司建立起了iTRAQ/TMT、DIA、PRM、修饰蛋白组等蛋白组学技术平台和全谱代谢组、靶向代谢组、拟靶向代谢组、脂质组等代谢组学技术平台以及相应的数据整合分析平台,并建立了科学完整的服务流程和精细规范的操作标准。公司拥有:SCIEX-QTRAP-6500,SCIEX-QTRAP-6500 plus,SCIEX-QTRAP-4000,Waters Xevo G2-XS,Thermo-TSQ-Altis,Thermo-Obritrap-QE,Thermo-Obritrap-QE-HF,Aglient-GCMS-7890B/5977A,AglientGCMS7890B/5977A(带顶空进样装置)及云计算分析平台等大型检测设备以及完整的样品前处理系统和数据分析系统(拥有各类分析软件及数据库)。公司荣获国家高新技术企业,通过ISO9001认证,获得代谢组学专利及软件著作等近20余项知识产权专利;同时也取得上海市公共技术服务平台资质认证,获得上海市创新创业计划大赛支持。迄今为止,鹿明完成服务项目上万个,涉及医学、农业、生态学及工业应用等多个研究领域,发表SCI论文数百篇。2017年6月,公司与上海欧易生物医学科技有限公司实现战略整合,实现中心法则上中下游多层组学的串联,整合后的鹿明力求打造优质技术平台,争做优质蛋白代谢服务企业,助力生命科学领域的科学家快出成果,出好成果,从而推动科技创新。鹿明生物,多层组学定制服务专家,为您的科研助力!END

虽狎

军队蛋白质组学实验室通过国家认可,将探索攻克癌症!

28日,军事科学院军事医学研究院蛋白质组学国家重点实验室,被授予“科研实验室认可证书”,成为全军首家通过国家标准化体系认可的科研实验室。该实验室致力于从蛋白质组学领域探索攻克癌症,首开蛋白质组学独立完成胃癌、肝癌、肺癌分子分型先河。为全速发动军事科研创新引擎,军事医学研究院党委机关对照国家认可委制定的科研实验室国家标准《科研实验室良好规范》,加强全院科研实验室规范化建设,并以蛋白质组学国家重点实验室作为先行试点。该实验室结合实际制定《科研实验室认可准则》,将实验室建设标准归纳为“人、机、料、法、环、档”6个方面,提出人员进出规范、检定校准常态、材料标识明确、实验方法科学、环境参数达标、档案采集及时等20项建设标准,形成了完整的实验室管理闭合环路。据悉,得益于规范化运行实践,该实验室取得显著成绩——领衔实施“中国人蛋白质组计划”,首先开展蛋白质组学胃癌、肝癌、肺癌分子分型研究,首先提倡蛋白质组学驱动的精准医学(PDPM)研究范式,在国家科技部2个五年评估中蝉联优秀。原标题:全军首家!军队蛋白质组学实验室通过国家认可来源:综合 央视军事 央广网流程编辑:tf004【来源:北晚新视觉网】声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 邮箱地址:newmedia@xxcb.cn

归休乎君

LabelFree定量蛋白质组学技术研究蛋白质互作——背景介绍(下)

蛋白互作的研究背景内容比较丰富,我们分成两期定量蛋白质组学非标记定LabelFree定量蛋白质组学技术研究蛋白互作的背景进行介绍。本期我们接着说蛋白-蛋白互作方法的研究背景。蛋白互作方法的研究背景免疫印迹或免疫沉淀逐渐转向使用质谱法进行样本中的蛋白质定量,同时,也可使用该方法进行蛋白质鉴定。质谱法为高度复合的定量分析创造了条件,为它们的快速发展提供了条件,无需考虑费时的基于抗体的方法。LC-MS/MS还促进了研究人员对蛋白质异构体和翻译后修饰(PTMs)如何控制和调节多个细胞的了解。在蛋白质互作分析中,亲和纯化与多种定量质谱方法相结合非常常见。在本文中,我们将质谱采集策略分为“数据相关采集(DDA)”和“数据独立采集(DIA)”。目前为止,DDA最常见的用途是通过“鸟枪”技术鉴定化合物。在这些实验中,根据一组简单的启发式规则(通常是母离子强度)选择一个母离子进行碎片化,利用从所选母离子导出的MS/MS图谱进行蛋白质鉴定(图1)。相比之下,DIA并不是根据前体离子扫描中的信息来选择要进行碎片化的离子,而是在质谱仪可见范围内使整组前体离子碎片化,选择离子进行碎片化的方式区别对量化结果有重要影响。图1. QqTOF仪器中典型“鸟枪”实验的示意图。仪器在两种不同的扫描模式之间循环。(A) 在第一模式(MS1)中,所有离子都通过仪器传输,并在检测器处检测,随后可用于母离子测定。利用简单的规则(强度、电荷状态和离子是否已经碎裂)分析导出的质谱图。通过这些规则的离子随后被分离和碎片化。(B) 在MS/MS模式下,特定质量在第一个四极体中分离,在第二个四极体中碎片化。所有的碎片离子都被记录在分析仪中,并产生MS/MS图谱,用于鉴定化合物。质谱仪的不断创新使得检测灵敏度得到显著提高,可以检测样品中成分较少的物质。除了能够更深入地观察样品外,灵敏度的提高还可以提高仪器的扫描速度,这使得用不同的工作流程和方法进行定量和鉴定成为可能。本文我们讨论的是利用亲和纯化联合质谱技术(AP-MS)分析蛋白质-蛋白质相互作用时,肽和蛋白质的定量方法。这些方法也适用于涵盖需要量化的不同应用领域的各种其他类型样本,不过最终使用哪种方法还是由样本复杂性来决定。下期文章中,我们将切入主题,详细介绍几种目前常用的几种研究相互作用蛋白质组学的定量蛋白质组学非标记定量LabelFree法。本文由百泰派克生物科技整理编辑。百泰派克生物科技专注于基于质谱的蛋白质组学服务,结合亲和纯化与定量蛋白质组学非标记定量LabelFree、SILAC或SWATH定量技术,提供一系列定量蛋白质组研究策略,灵敏度高、重复性好,非常适合蛋白质相互作用的研究。文献参考:Stephen Tate, Brett Larsen, Ron Bonner, Anne-Claude Gingras, Label-free quantitative proteomics trends for protein-protein interactions. Journal of Proteomics, 2013.

妙米

「蛋白组学研究」热门DIA技术3篇文章总计IF:66分

编者按:在新一年的开端,小鹿首先要祝愿所有的科研工作者新年快乐,愿在这一年中心想事成,科研文章都上榜SCI~~本期,小鹿推出时下热点技术DIA技术,通过热门技术与前沿科技相结合,用3篇影响因子总计66分的文章告诉您DIA技术的应用。DIA技术用于永久定量数字保存对科研研究者来说,科研样本对研究起着决定性的因素。微量样本、独特样本、珍贵样本、甚至有些样本是难以获取的,针对这些样本可能由于研究时间局限性,样本收集不全面,样本失效等损失会带来课题延期、重制样、甚至错失发文先机。本篇由苏黎世联邦理工学院Ruedi Aebersold教授团队在Nature Medicine杂志(IF=30.641)发表题为“Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps”的研究论文,该研究提出了一个方法,可以快速稳定地将组织样本转化为一份数据文档,永久地存贮这个样本经质谱分析得到的蛋白质组结果。影响因子:30.641材料:组织活检样品 发表期刊:Nat.Med.主要技术:PCT-SWATH/DIA中文标题:将组织活检样品快速质谱转换为永久定量数字蛋白质组图谱这篇文章中,作者用PCT-DIA技术方法将来自9个肾癌病人的18个组织切片分别转化为(DIA)SWATH-MS多肽离子碎片谱图,并从这些谱图中对2000个蛋白样本进行定性和定量分析。作者发现肾组织切片的蛋白质组测序结果具有很好的可重复性,而且能完全将肾癌病人和健康人,以及不同组织形态的肾癌亚型区分开来。该方法特别适合大队列(几十上百甚至上千个样品)、少量样品(比如组织活检样品)蛋白组批量分析。2DIA技术在定量准确性和重现性上的优势严格说来:人体各系统器官的疾病都可以在血液当中有一定的呈现,通过测定血液中的蛋白可反映病人的生理病理状态。因此,运用质谱技术来测定蛋白定量的准确性和重现性成了研究的焦点。本文发表在《Theranostics》上由国家蛋白质科学中心的于晓波教授、广东省中医院卢传坚教授、西湖大学郭天南研究员等合作发表的In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicin,详细的总结了运用DIA技术对血液标志物进行探索,进一步的验证DIA 技术在定量的准确性和重现性的优势;材料:血清影响因子:8.063发表期刊:Theranostics主要运用技术:DIA技术、抗体微阵列中文标题:血清蛋白质组学鉴定银屑病及其中药疗效的生物标志物英文标题:In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicin本文通过DIA技术和抗体微阵列技术,以银屑病为疾病模型,对银屑病治疗前、银屑病中药(银屑灵)治疗后、健康对照共50例血清样本建立蛋白质表达谱。鉴定到了106种参与血液凝固、炎症、细胞凋亡和血管生成等银屑病相关生物过程的差异蛋白。聚类和主成分分析发现58种蛋白可区分健康组和银屑病患者,12种蛋白可预测中药治疗效果,相关性分析发现三个血清蛋白(PI3,CCL22,IL-12B)与银屑病面积和严重程度指数(psoriasis area and severity index, PASI)评分呈正相关。质谱DIA技术适合大规模临床样本的检测,抗体微阵列技术可补充质谱无法鉴定到的血清低丰度蛋白,本文结合DIA技术和抗体微阵列技术研究血液生物标志物的思路值得借鉴。3DIA技术与人工智能相结合2019年11月,英国剑桥大学生物化学系和米尔纳治疗学研究所(Department of Biochemistry and The Milner Therapeutics Institute, University of Cambridge)等多家机构在一区期刊Nature Methods(IF=28.467)发表题为“DIA-NN:通过神经网络和干扰校正实现高通量蛋白质组的深度覆盖”的文章,该文章作者提出了一种方便的集成软件包DIA-NN,它利用深层神经网络和新的量化及信号校正策略来处理DIA蛋白质组学的实验结果。DIA-NN提高了传统DIA蛋白质组定性和定量的能力,特别在高通量应用方面具有快捷的优势,与快速色谱方法结合使用时能够对蛋白质实现准确的深度覆盖。影响因子:28.467发表期刊:Nature Methods运用技术:DIA蛋白质组学中文标题:DIA-NN:通过神经网络和干扰校正实现高通量蛋白质组的深度覆盖软件版本:DIA-NN(1.6.0)、OpenSWATH18、Spectronaut、Specter、Skyline平台:QExactiveTM HF(Thermo Fisher Scientific )、TripleTOF 6600 (SCIEX)材料:酵母蛋白提取物、人脐带血血浆、酶解的人K562细胞裂解物、Hela细胞蛋白提取物、大肠杆菌蛋白提取物在DIA-NN中引入的计算方法稳定且显著地增加了不同复杂度样品及不同质谱平台上获得定性和准确定量的肽和蛋白质的数量。DIA-NN首次通过使用短色谱梯度实现了蛋白质组的全面覆盖,从而显著缩短了质谱仪的运行时间,为以前无法实现的对高通量蛋白质组进行快速而精确的测量打开了大门。鹿明生物自2017年初建立了DIA、PRM等蛋白组学技术平台,是国内早期开展DIA/PRM技术服务的领跑者;近2余年来,鹿明生物积累了丰富的DIA、PRM蛋白组学等组学项目经验,公司采用高端精密的仪器设备Thermo QE-HF等,迄今为止,鹿明生物已处理DIA+PRM项目样品3000+例,拥有丰富完善的项目经验;目前鹿明生物也已经自主研发了大容量水稻DIA数据库及深度水稻磷酸化DIA数据库、PCT-DIA技术等希望能够为您的科研助力添彩;目前鹿明生物也推出蛋白组学检测+验证一体化--1+1>2的蛋白组学黄金组合服务:DIA +PRM技术,具体可扫码添加技术交流群哦~~鹿明生物上海鹿明生物科技有限公司,一直专注于生命科学和生命技术领域,是国内早期开展以蛋白组和代谢组为基础的多层组学整合实验与分析的团队。经过近数年的发展沉淀,公司建立起了iTRAQ/TMT、DIA、PRM、修饰蛋白组等蛋白组学技术平台和全谱代谢组、靶向代谢组、拟靶向代谢组、脂质组等代谢组学技术平台以及相应的数据整合分析平台,并建立了科学完整的服务流程和精细规范的操作标准。公司拥有:SCIEX-QTRAP-6500,SCIEX-QTRAP-6500 plus,SCIEX-QTRAP-4000,Waters Xevo G2-XS,Thermo-TSQ-Altis,Thermo-Obritrap-QE,Thermo-Obritrap-QE-HF,Aglient-GCMS-7890B/5977A,AglientGCMS7890B/5977A(带顶空进样装置)及云计算分析平台等大型检测设备以及完整的样品前处理系统和数据分析系统(拥有各类分析软件及数据库)。公司荣获国家高新技术企业,通过ISO9001认证,获得代谢组学专利及软件著作等近20余项知识产权专利;同时也取得上海市公共技术服务平台资质认证,获得上海市创新创业计划大赛支持。迄今为止,鹿明完成服务项目上万个,涉及医学、农业、生态学及工业应用等多个研究领域,发表SCI论文数百篇。2017年6月,公司与上海欧易生物医学科技有限公司实现战略整合,实现中心法则上中下游多层组学的串联,整合后的鹿明力求打造优质技术平台,争做优质蛋白代谢服务企业,助力生命科学领域的科学家快出成果,出好成果,从而推动科技创新。鹿明生物,多层组学定制服务专家,为您的科研助力!END

玄览

“发现肝细胞癌精准治疗潜在新靶点!”——中国人类蛋白质组学研究新突破三大看点

新华社北京3月2日电题:“发现肝细胞癌精准治疗潜在新靶点!”——中国人类蛋白质组学研究新突破三大看点新华社记者陈芳、胡喆近日,生命科学研究领域再传喜讯!我国科学家通过国际权威期刊《自然》杂志上线发表了关于早期肝细胞癌蛋白质组研究领域取得突破的论文,发现了肝细胞癌精准治疗的潜在新靶点。什么是蛋白质组学?这次发现有何重大科学价值?对于接下来的临床治疗和药物研发又意味着什么?记者第一时间来到国家蛋白质科学中心·北京,采访了论文团队的科学家们。(小标题)蛋白质组学:破译生命天书的“解码神器”蛋白质是遗传信息表达的“最后一公里”,蛋白质组是构成生物系统与执行生命过程的功能性实体,是人体表型(生理与病理状态)的直接物质基础。蛋白质组学这一概念提出于1995年,是继基因组学研究之后生命科学领域又一重要研究方向。论文通讯作者、军事科学院副院长贺福初院士告诉记者,蛋白质组研究对象比基因组更加复杂,对实验设备、技术水平、数据挖掘能力等多方面都有着比基因组学更大的挑战。近年来,以色谱和质谱技术为核心的蛋白质组学技术的发展,驱动了蛋白质组学研究在深度和广度上的快速增长。论文通讯作者、军事科学院军事医学研究院研究员钱小红表示,通过前期积累,我国在蛋白质组表达谱分析的技术能力上已达到国际先进水平,在2009年的国际蛋白质组标准物质评估中,蛋白质组学国家重点实验室的技术能力,位居全球前列。“蛋白质组学国家重点实验室团队,发展了高效的蛋白质组预分级和检测策略,达到12小时内完成人类8000个基因产物的质谱检测,为目前世界上速度最快的蛋白质组鉴定方法之一。”钱小红说。在上述技术积累基础上,科技部首次整合973计划、863计划、国际合作计划,历经数年论证,由军事科学院军事医学研究院蛋白质组学国家重点实验室牵头,于2014年正式启动“中国人类蛋白质组计划”。据介绍,2018年项目结题时,已完成构建早期肝细胞癌及癌旁组织、弥漫性胃癌及癌旁组织、肠型胃癌及癌旁、肺腺癌及癌旁、胰腺导管腺癌及癌旁、食道鳞癌及癌旁、结肠腺癌及癌旁、肾透明细胞癌及癌旁等疾病组织的深度覆盖蛋白质表达谱,数据量达到45.6TB,在高置信度水平上,定量鉴定人类表达蛋白质15553种,并获得疾病组织信号网络调控蛋白表达变化规律,实现潜在分子标志物和候选靶标的深入发掘。(小标题)发现新靶点:“癌中之王”的破解之法肝癌,常被人称为“癌中之王”。2018年的全球肿瘤统计数据显示,肝癌在全球范围内的发病率高居恶性肿瘤的第五位,致死率居第二位。“如何准确识别出这群预后较差的早期肝癌患者,并提供有效的靶向治疗,是当今世界肝癌早诊早治剩下的‘硬骨头’。”论文通讯作者、复旦大学附属中山医院院长樊嘉院士说。此次论文研究,科研人员根据101例早期肝细胞癌及配对癌旁组织样本的蛋白质组数据,将目前临床上认为的早期肝细胞癌患者,分成三种蛋白质组亚型,而不同亚型的患者具有不同的预后特征,术后需要对应不同的治疗方案。论文第一作者、军事科学院军事医学研究院研究员姜颖介绍,第一类患者仅需手术,要防止过度治疗;第二类患者则需要手术加其他的辅助治疗;而第三类患者占比30%,术后发生复发死亡的危险系数最大。科研人员发现,在第三类患者的蛋白质组数据里,胆固醇代谢通路发生了重编程,其中候选药靶胆固醇酯化酶的高表达具有最差的预后风险。通过抑制候选药靶——胆固醇酯化酶SOAT1,能减少细胞质膜上的胆固醇水平,有效抑制肿瘤细胞的增殖和迁移。(小标题)开启制药性:为发展新型抗癌药物提供重要基础肝癌是对各种组织学上不同类型的原发性肝脏肿瘤的统称,主要包括肝细胞癌、肝内胆管癌、肝母细胞癌等。其中,肝细胞癌约占原发性肝癌的90%左右。自2007年到2017年,针对肝细胞癌的化疗药物就只有索拉菲尼一种,这对于此类病人来讲是极度匮乏的。近年来有几类药物在肝细胞癌临床三期研究中已取得良好效果。此外,免疫疗法中的PD-1抑制剂中也有已进入治疗肝细胞癌三期临床实验研究的。樊嘉表示,虽然新型药物在临床中的应用为肝细胞癌患者带来了希望和曙光,但这些药物均是针对中晚期肝癌病人使用的靶向药物,有限的药物种类和疗效并不能满足肝细胞癌患者的临床需求。“为了改善肝细胞癌患者的生存情况,进一步扩大受益人群,亟须发展新的肝细胞癌药物干预靶点,尤其是早期治疗策略。”贺福初说。我国科学家团队另辟蹊径,通过“中国人类蛋白质组计划”,对以肝癌为代表的多种人体肿瘤进行了全面深入的蛋白质组分析,初步创立了中国主导的蛋白质组学驱动的精准医学。贺福初表示,相对基因组学驱动的第一代精准医学而言,蛋白质组学驱动的精准医学属于第二代精准医学,蛋白质组学对早期肝癌治疗性靶标的发现与验证开启了精准医学的新阶段。此次,研究人员通过进一步研究发现,SOAT1的一种小分子抑制剂“阿伐麦布”在肝癌患者的人源肿瘤异种移植模型上表现出良好的抗肿瘤效果,表明“阿伐麦布”有望成为治疗预后较差肝细胞癌患者的潜在靶向治疗药物。研究团队还首次发现胆固醇代谢途径重编程与肝细胞癌之间的直接联系,证实胆固醇酯化酶在肝癌发生中的重要意义。“借助患者群蛋白质组学海量数据,我们发现胆固醇酯化酶可用于早期肝癌的分型、预后及靶向治疗,其蛋白质的高表达在头颈癌、胃癌、前列腺癌、肾癌和甲状腺癌中均和患者的较差预后正相关,为发展新型抗癌药物提供了重要基础。”贺福初说。(参与采写:李洋)(完)

追之

全军首家!蛋白质组学国家重点实验室获得认证

来源:证券时报网证券时报网讯,据央视新闻消息,今天(28日),军事科学院军事医学研究院蛋白质组学国家重点实验室被中国合格评定国家认可委员会授予“科研实验室认可证书”,这标志着实验室成为全军首家通过国家标准化体系认可的科研实验室。