欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
长篇回顾|蛋白质组学的发展:生命科学的里程碑巨无霸

长篇回顾|蛋白质组学的发展:生命科学的里程碑

011 蛋白质组学概念的提出早在18世纪,人类就发现了蛋白质这一类型的生物分子,然而直到1938年,瑞典化学家Jons Jakob Berzelius才明确提出了蛋白质的概念,指出蛋白质是由氨基酸组成的一类生物大分子。1949年,英国科学家Frederick Sanger首次测得了蛋白质牛胰岛素的氨基酸序列,并验证了蛋白质由氨基酸组成,他也凭借此项研究成果获得了1958年的诺贝尔化学奖。就在同一年,英国科学家Francis Crick首次提出分子生物学中心法则,这是20世纪生命科学领域最重要的发现之一 :脱氧核糖核酸(deoxyribonucleic acid,DNA)是生物体内遗传信息的载体,DNA以自身为复制模板,通过转录作用将遗传信息传递给核糖核酸(ribonucleic acid,RNA),成熟的信使RNA(messenger RNA,mRNA)在核糖体上被翻译成一条长肽,然后经折叠加工形成具有生理活性的成熟蛋白。蛋白质是生命的物质基础,作为生物体活动功能的最终直接执行者,对生命活动的实现具有十分重要的作用,参与了生物体内几乎所有的生命活动过程。随着分子生物学技术的发展,蛋白质的诸多功能不断被研究和报道,如蛋白质可以作为离子通道参与信号转导等,人们愈发重视对蛋白质的研究。21世纪初,生命科学领域迎来了一个重要的里程碑——人类基因组草图的绘制完成。2001年由美国、英国、法国、德国、日本和中国科学家共同参与的人类基因组计划(Human Genome Project,HGP)与Celera基因公司共同公布了人类基因组DNA序列草图,这也代表着人类在生命科学领域迈上了新台阶。2003年该计划的完成可以说是近半个世纪以来最激动人心的一项生命科学成就,它第一次揭示了人类的DNA序列信息,并提供了人类生命信息的蓝图。该研究成果分别发表在Nature、Science两大国际著名期刊上(Lander et al.,2001;Venter et al.,2001)。人类基因组计划因其破解人类遗传密码的里程碑式意义及对于遗传性疾病预防的潜在应用价值,与阿波罗登月计划、曼哈顿原子弹计划一起,并称为自然科学史上的三大计划。随着人类全基因组序列的破译和功能基因组学研究的展开,生命科学家越来越关注如何用基因组研究的模式开展蛋白质组学的研究。因此,Nature、Science在公布人类基因组草图的同时,分别发表了“And now for the proteome”和“Proteomics ingenomeland”的述评与展望(Abbott,2001;Fields,2001)。文中认为蛋白质组学将成为21世纪最大的战略资源,并将成为人类基因争夺战的战略制高点之一,这将蛋白质组学的地位提高到了前所未有的高度。事实上早在1994年,澳大利亚科学家Marc Wilkins便提出了蛋白质组(proteome)这一概念——表征基因组所能表达的全部蛋白。1997年,蛋白质组学(proteomics)的概念产生,其研究的主要内容是细胞、组织或器官内的全部蛋白质。此后该学科迅速发展,并得到了生命科学研究领域的重视。2001年,国际人类蛋白质组组织(Human Proteome Organization,HUPO)正式宣告成立,推动了蛋白质组学研究领域的发展。在2002年国际蛋白质组研讨会上,科学家明确提出了开展 “人类肝脏蛋白质组计划(Human Liver Proteome Project,HLPP)”的建议,并于2003年正式启动,至此人类蛋白质组计划的帷幕正式拉开。该项目也是我国科学家在生命科学领域领导的一次重大国际合作项目。蛋白质组学在细胞的增殖、分化、肿瘤形成等方面的研究中已经取得了不少成果和进展。尤其在癌症研究方面,已经鉴定到了一批肿瘤相关蛋白,这为相关疾病的早期诊断、蛋白质药物靶标的发现、治疗和预后提供了重要依据和线索。022 蛋白质组学的特点人类基因组序列的测定,标志着基因的研究迈上新台阶。随着基因测序技术的改进和成熟,人们对基因的研究更加便捷,对基因的认识也逐渐深入。目前认为可编码蛋白质的基因约20 000个。然而同一个基因可以表达出不同的信使RNA片段,而信使RNA在成熟过程中可能会出现剪切重组等,这显著增加了可表达蛋白的数目。同时,信使RNA翻译出的蛋白质会经历翻译后修饰(Berget,1995;Witze et al.,2007),实现对自身功能的调控,这进一步使蛋白质组的研究复杂化。此外,细胞内表达的蛋白质在时间和空间尺度上具有动态变化的性质,因此细胞内蛋白质的分析远比基因组的分析复杂和具有挑战性。基因组学的研究对象是DNA,DNA的性质较为稳定,且微量的目标样品可以通过PCR技术将其扩增,从而便于研究。目前DNA测序技术已较为成熟,且基因组学的数据库已相对完善,对于基因的研究已经进入了相对成熟的阶段。然而作为基因组后时代,蛋白质组目前尚处于探索和发展阶段。蛋白质组学研究的对象——蛋白质,其本身的性质不够稳定,可能同时存在多种不同的翻译后修饰类型,且其在不同细胞、组织内的表达丰度的动态范围较大。随着高分辨生物质谱技术的迅速发展及基于基因序列的蛋白质数据库的逐步完善,目前已可以实现对蛋白质氨基酸序列的测定,但是仍有大量的内容是未知的,包括蛋白质的定位、蛋白质与小分子的相互作用、蛋白质与蛋白质的相互作用、蛋白质的生命周期等。蛋白质组学的研究,可以从时间和空间角度对细胞、组织的蛋白质进行全面深入的研究,从而深入理解细胞如何利用蛋白质实现各种生理功能的调控。蛋白质组学亟待发展,研究技术也有待进一步发展和提升。033 生物质谱技术科学的进步往往带来技术的革新,而技术的革新会加速科学的发展。在蛋白质组学概念提出后的几年,由于受到研究技术的限制,发展十分缓慢。近些年,高分辨质谱技术(mass spectrometry,MS)的迅速发展,成为了蛋白质组学领域的核心技术。质谱技术是化学领域中研究化合物的一个重要手段。然而,直到软电离离子化技术的出现,才使得用质谱研究生物大分子成为了可能。2002年的诺贝尔化学奖授予美国科学家John Fenn和日本科学家Koichi Tanaka(“The Nobel Prize in Chemistry 2002”。Nobelprize.org. Nobel Media AB 2014. Web. 30 Apr 2015),以表彰他们在将软电离离子化方法用于生物大分子质谱分析方面所作出的贡献。John Fenn发明了电喷雾离子化方法(electrospray ionization,ESI)(Fenn et al.,1989)。样品在毛细管色谱柱中分离,经毛细管柱柱头流出时,在高压电场的作用下形成带电的小液滴。随着液滴的溶剂蒸发,液滴表面离子密度逐渐增大,当达到瑞利(Rayleigh)极限时,液滴发生破裂,形成更小的带电液滴。而后在电场作用下重复蒸发、分裂的过程,直至形成气相离子进入质谱,并被检测。该方法的优点在于可以实现从液态到气态分子的转变,产生的离子可以带有一个或多个电荷。Koichi Tanaka发明的基质辅助激光解析离子化技术(matrix-assisted laser desorption ionization,MALDI)利用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,从而使生物分子电离(Tanaka et al.,1988)。由于电喷雾离子化可形成单电荷离子及多电荷离子而有别于其他的MS离子化技术,并能实现高效液相与质谱的串联。特别是在1994年,Wilm和Mann发展了纳升级喷雾离子源(nano-electrospray ionization source,nanoESI source),与传统的ESI源(流速1~100 L/min)相比,该离子源可以采用更小的溶剂流速(10~500 nL/min),并且电喷雾更稳定,生成的带电液滴更小,能在室温条件下更好地实现去溶剂化(Wilm and Mann,1996),所以在目前的生物质谱中尤其是蛋白质组学研究领域,nanoESI离子化技术应用较为广泛。此外,对于质谱仪而言,质量分析器是其核心部件。随着分辨率和检测速率的提高,质谱仪在蛋白质组学研究中的优势逐渐凸显。目前已有的质量分析器的类型有 :磁质谱、双聚焦质谱、离子回旋共振质谱、四极杆、四极杆离子阱质谱、时间飞行质谱、傅里叶变换质谱、三重四极杆质谱、线性离子阱质谱、静电轨道场离子回旋加速质谱(Orbitrap)等。其中,Orbitrap无疑是近20年质谱技术中最重要的发明。它极大地缩小了高分辨质量分析器的体积,维护更方便,使得高分辨质谱的台式化和易用化成为了可能,从而便于应用和推广。Thermo公司于2005年推出了第一台商业化的Orbitrap型质谱仪,其分辨率达到了100 000 (m/z 400),最大扫描速度为1.0 Hz。目前高效液相串联质谱在蛋白质和蛋白质的翻译后修饰的鉴定分析方面起着重要的作用,其原理是待测样品经高效液相色谱分离之后,经离子源的离子化,进入质谱。在质谱内通过特定的方式,将母离子碎裂产生碎片离子 ;进一步对碎片离子进行检测,得到该分析物的质谱检测图谱。随后对该图谱进行分析,通过与蛋白质数据库中的理论图谱比对,从而将其氨基酸序列信息和含有的修饰解析出来。质谱技术在生物大分子领域中的应用越来越广,包括定性和定量的高通量蛋白质分析,高通量的蛋白质翻译后修饰分析,鉴定蛋白质-蛋白质相互作用和调控网络,鉴定蛋白质和小分子的相互作用,生物标志物的鉴定和研究等。044 蛋白质组学的研究进展近20年来,蛋白质组学领域的研究技术在不断地革新和提高。1989年,电喷雾离子化技术发明,使得用质谱分析生物大分子成为可能;1993年,肽指纹图谱技术发明,推动了蛋白质鉴定技术的发展 ;1996年,利用二维凝胶电泳技术,实现了对酵母全蛋白的分析 ;2002年,细胞培养稳定同位素标记(stable isotope labeling by amino acids in cell culture,SILAC)技术发明,使得定量蛋白质组学研究迈上新台阶。1998年,中国启动了“人类肝脏蛋白质组计划”。2010年,中国团队完成肝脏蛋白质组的检测,共鉴定到6788个蛋白质,至此第一个人类器官的全蛋白质组检测工作得以完成(He,2005)。但由于当时的技术局限,所鉴定的蛋白质的数目还远远没有达到理论上肝脏全蛋白质组的蛋白数。近几年来,生物质谱技术进一步发展,其检测灵敏度和分辨率明显提高,扫描速度也有了显著提升,已经具备了高通量深度蛋白质组学研究的条件。因而,关于全蛋白质表达谱研究工作的报道越来越多。基于质谱的飞速发展,科研工作者目前已经对细胞内的不同细胞器做了组学研究,包括线粒体、高尔基体、细胞核等。蛋白质组学领域的知名科学家Matthias Mann在2008年报道了用一个月的时间鉴定了接近8000个蛋白质的成果(Hubner et al.,2008)。2011年,经过样品制备方法的创新、色谱分离方法的优化和质谱仪器的升级,Mann团队通过利用样品处理新方法FASP(flter-aided sample preparation)对小鼠的肝脏组织进行蛋白质组学研究,最终在21 d质谱数据采集时间内鉴定了高于10 000个蛋白质(Wisniewski et al.,2011),这是目前最具深度的蛋白质组学研究之一。随着质谱仪准确度、分辨率和扫描速度的不断提高,Mann实验室在2014年利用Q Exactive超高分辨率质谱仪,在4 d时间内定量分析了小鼠肝脏组织样本中的11 520个蛋白质(Azimifar et al.,2014)。因此随着样品制备方法、色谱分离方法及质谱仪器的不断优化和创新,科学家可以对生物体内的蛋白质进行更具深度的鉴定,从而更加深入地研究生命活动中的生理生化过程。2014年,国际著名杂志Nature子刊Nature Methods评述了近10年内的自然科学研究领域方法,基于质谱的蛋白质组学技术便是其中之一(Ten years of Methods,2014),可见质谱的发展对自然科学研究领域产生了极为重要的影响。当然,组学的研究并非仅仅是蛋白质测序,还包括了组学定量、靶向蛋白质组的研究等。其中靶向蛋白质组的研究被列入了Nature Methods 2012年度生命科学研究的方法学进展。2014年对于蛋白质组学的研究来说是具有里程碑意义的一年。4月,国际顶级期刊Nature首次报道了两篇关于接近完整的人类蛋白质组表达谱草图的文章。其中一篇文章收集了30种人类正常组织和细胞样本,包括成人和胎儿的组织及血液细胞,最终共鉴定到17 294个基因编码的蛋白,占总编码蛋白基因数的84%(Kim et al.,2014)。另外一篇文章,则综合了已发表的公共数据集及其实验室已有的数据,包括数十种人类组织、体液样本及细胞株等的鉴定分析结果,共鉴定到18 097个基因编码蛋白,占总编码蛋白基因数的92%(Wilhelm et al.,2014)。以上两篇文章共同绘制出了第一张人类蛋白质草图。近些年,中国蛋白质组学研究领域也在快速发展。2014年,“中国人蛋白质组草图计划”(CNHPP)这一科技部的重点项目正式展开,计划绘制包括心脏、肝脏、肺、肾脏等在内的10个最重要人体器官的蛋白质组生理和病理图谱,旨在以中国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,构建中国人类蛋白质组的“百科全书”。055 蛋白质组学的应用通过基因组测序和分析,可以发现多种诱发癌症的驱动基因。2013年在Science杂志上发表了题为“Cancer genome landscape”的综述(Vogelstein et al.,2013),提出大部分癌症的发生是由于2~8个驱动基因突变,人体内目前认知到的癌症驱动基因共有约140个。尽管如此,驱动基因突变并不能解释所有癌症发生发展的现象。例如,2014年Nature杂志上发表的对230例肺腺癌临床样本的研究结果称,部分样本的基因组测序结果未能解释信号通路被激活的现象(The Cancer Genome Atlas Research Network,2014)。为了加深对癌症发生发展机制的认识,迫切需要对癌症进行深入的蛋白质组学研究,从而从蛋白质水平阐释癌症可能的发生发展机制。2006年年初,美国国立癌症研究院(National Cancer Institute,NCI)开始了一项为期5年,耗资1.04亿美元的临床蛋白质组肿瘤分析联盟(Clinical Proteomic Tumor Analysis Consortium,CPTAC)(Ellis et al.,2013),其目的在于建立应用于癌症诊断、治疗和预防的蛋白质组学技术,建立数据分析标准流程及试剂、参考物质的应用等系统,从而达到拓宽蛋白质组学技术在临床癌症诊断中的应用。目前该项目已经取得了非常出色的进展,其中一项工作为对被TCGA项目(The Cancer Genome Atlas)表征的95个结肠和直肠癌样本进行了深入的蛋白质组学及生物信息学分析,从蛋白质组学层面对结肠、直肠癌进行分型。在所得的5种蛋白质分型中,其中的两种与TCGA的一种转录本亚型——“微卫星不稳定亚型/CpG岛甲基化表型亚型”有重叠部分,但也发现了与之明显不同的基因突变、DNA甲基化和蛋白质表达图谱,这些都具有不同的临床表现,为临床疾病的研究提供了新的思路和检测指标(Zhang et al.,2014)。蛋白质组学在人类疾病中的研究应用已经在一些疾病中开展,如癌症、皮肤病、心脏病等。研究包括寻找与疾病相关的单个蛋白,整体研究某种疾病引起的蛋白质表达或修饰水平的变化,利用蛋白质组寻找一些致病微生物引起的疾病的诊断标记和疫苗等。随着精准医疗时代的到来,蛋白质组学在药物研究、临床诊断和个性化治疗等方面将具有更为广阔的应用前景。

京韵情

「蛋白组学研究」热门DIA技术3篇文章总计IF:66分

编者按:在新一年的开端,小鹿首先要祝愿所有的科研工作者新年快乐,愿在这一年中心想事成,科研文章都上榜SCI~~本期,小鹿推出时下热点技术DIA技术,通过热门技术与前沿科技相结合,用3篇影响因子总计66分的文章告诉您DIA技术的应用。DIA技术用于永久定量数字保存对科研研究者来说,科研样本对研究起着决定性的因素。微量样本、独特样本、珍贵样本、甚至有些样本是难以获取的,针对这些样本可能由于研究时间局限性,样本收集不全面,样本失效等损失会带来课题延期、重制样、甚至错失发文先机。本篇由苏黎世联邦理工学院Ruedi Aebersold教授团队在Nature Medicine杂志(IF=30.641)发表题为“Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps”的研究论文,该研究提出了一个方法,可以快速稳定地将组织样本转化为一份数据文档,永久地存贮这个样本经质谱分析得到的蛋白质组结果。影响因子:30.641材料:组织活检样品 发表期刊:Nat.Med.主要技术:PCT-SWATH/DIA中文标题:将组织活检样品快速质谱转换为永久定量数字蛋白质组图谱这篇文章中,作者用PCT-DIA技术方法将来自9个肾癌病人的18个组织切片分别转化为(DIA)SWATH-MS多肽离子碎片谱图,并从这些谱图中对2000个蛋白样本进行定性和定量分析。作者发现肾组织切片的蛋白质组测序结果具有很好的可重复性,而且能完全将肾癌病人和健康人,以及不同组织形态的肾癌亚型区分开来。该方法特别适合大队列(几十上百甚至上千个样品)、少量样品(比如组织活检样品)蛋白组批量分析。2DIA技术在定量准确性和重现性上的优势严格说来:人体各系统器官的疾病都可以在血液当中有一定的呈现,通过测定血液中的蛋白可反映病人的生理病理状态。因此,运用质谱技术来测定蛋白定量的准确性和重现性成了研究的焦点。本文发表在《Theranostics》上由国家蛋白质科学中心的于晓波教授、广东省中医院卢传坚教授、西湖大学郭天南研究员等合作发表的In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicin,详细的总结了运用DIA技术对血液标志物进行探索,进一步的验证DIA 技术在定量的准确性和重现性的优势;材料:血清影响因子:8.063发表期刊:Theranostics主要运用技术:DIA技术、抗体微阵列中文标题:血清蛋白质组学鉴定银屑病及其中药疗效的生物标志物英文标题:In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicin本文通过DIA技术和抗体微阵列技术,以银屑病为疾病模型,对银屑病治疗前、银屑病中药(银屑灵)治疗后、健康对照共50例血清样本建立蛋白质表达谱。鉴定到了106种参与血液凝固、炎症、细胞凋亡和血管生成等银屑病相关生物过程的差异蛋白。聚类和主成分分析发现58种蛋白可区分健康组和银屑病患者,12种蛋白可预测中药治疗效果,相关性分析发现三个血清蛋白(PI3,CCL22,IL-12B)与银屑病面积和严重程度指数(psoriasis area and severity index, PASI)评分呈正相关。质谱DIA技术适合大规模临床样本的检测,抗体微阵列技术可补充质谱无法鉴定到的血清低丰度蛋白,本文结合DIA技术和抗体微阵列技术研究血液生物标志物的思路值得借鉴。3DIA技术与人工智能相结合2019年11月,英国剑桥大学生物化学系和米尔纳治疗学研究所(Department of Biochemistry and The Milner Therapeutics Institute, University of Cambridge)等多家机构在一区期刊Nature Methods(IF=28.467)发表题为“DIA-NN:通过神经网络和干扰校正实现高通量蛋白质组的深度覆盖”的文章,该文章作者提出了一种方便的集成软件包DIA-NN,它利用深层神经网络和新的量化及信号校正策略来处理DIA蛋白质组学的实验结果。DIA-NN提高了传统DIA蛋白质组定性和定量的能力,特别在高通量应用方面具有快捷的优势,与快速色谱方法结合使用时能够对蛋白质实现准确的深度覆盖。影响因子:28.467发表期刊:Nature Methods运用技术:DIA蛋白质组学中文标题:DIA-NN:通过神经网络和干扰校正实现高通量蛋白质组的深度覆盖软件版本:DIA-NN(1.6.0)、OpenSWATH18、Spectronaut、Specter、Skyline平台:QExactiveTM HF(Thermo Fisher Scientific )、TripleTOF 6600 (SCIEX)材料:酵母蛋白提取物、人脐带血血浆、酶解的人K562细胞裂解物、Hela细胞蛋白提取物、大肠杆菌蛋白提取物在DIA-NN中引入的计算方法稳定且显著地增加了不同复杂度样品及不同质谱平台上获得定性和准确定量的肽和蛋白质的数量。DIA-NN首次通过使用短色谱梯度实现了蛋白质组的全面覆盖,从而显著缩短了质谱仪的运行时间,为以前无法实现的对高通量蛋白质组进行快速而精确的测量打开了大门。鹿明生物自2017年初建立了DIA、PRM等蛋白组学技术平台,是国内早期开展DIA/PRM技术服务的领跑者;近2余年来,鹿明生物积累了丰富的DIA、PRM蛋白组学等组学项目经验,公司采用高端精密的仪器设备Thermo QE-HF等,迄今为止,鹿明生物已处理DIA+PRM项目样品3000+例,拥有丰富完善的项目经验;目前鹿明生物也已经自主研发了大容量水稻DIA数据库及深度水稻磷酸化DIA数据库、PCT-DIA技术等希望能够为您的科研助力添彩;目前鹿明生物也推出蛋白组学检测+验证一体化--1+1>2的蛋白组学黄金组合服务:DIA +PRM技术,具体可扫码添加技术交流群哦~~鹿明生物上海鹿明生物科技有限公司,一直专注于生命科学和生命技术领域,是国内早期开展以蛋白组和代谢组为基础的多层组学整合实验与分析的团队。经过近数年的发展沉淀,公司建立起了iTRAQ/TMT、DIA、PRM、修饰蛋白组等蛋白组学技术平台和全谱代谢组、靶向代谢组、拟靶向代谢组、脂质组等代谢组学技术平台以及相应的数据整合分析平台,并建立了科学完整的服务流程和精细规范的操作标准。公司拥有:SCIEX-QTRAP-6500,SCIEX-QTRAP-6500 plus,SCIEX-QTRAP-4000,Waters Xevo G2-XS,Thermo-TSQ-Altis,Thermo-Obritrap-QE,Thermo-Obritrap-QE-HF,Aglient-GCMS-7890B/5977A,AglientGCMS7890B/5977A(带顶空进样装置)及云计算分析平台等大型检测设备以及完整的样品前处理系统和数据分析系统(拥有各类分析软件及数据库)。公司荣获国家高新技术企业,通过ISO9001认证,获得代谢组学专利及软件著作等近20余项知识产权专利;同时也取得上海市公共技术服务平台资质认证,获得上海市创新创业计划大赛支持。迄今为止,鹿明完成服务项目上万个,涉及医学、农业、生态学及工业应用等多个研究领域,发表SCI论文数百篇。2017年6月,公司与上海欧易生物医学科技有限公司实现战略整合,实现中心法则上中下游多层组学的串联,整合后的鹿明力求打造优质技术平台,争做优质蛋白代谢服务企业,助力生命科学领域的科学家快出成果,出好成果,从而推动科技创新。鹿明生物,多层组学定制服务专家,为您的科研助力!END

恋空

蛋白互作常用的研究方法

蛋白互作技术蛋白质是生物功能最直接的执行者,虽然一些蛋白质可以独立的完成他的使命,但是大部分的蛋白都是需要一些伴侣分子的协助一起完成任务或者形成复合物之后才能充分发挥他的功能。所以,了解蛋白质与蛋白质之间的相互作用,能够帮助我们更好的了解细胞的生命活性,揭示隐藏在表象下的调控机理。经典的蛋白互作研究方法主要包括三个:酵母双杂交、免疫共沉淀、GST-pull down。1. 酵母双杂交技术:主要用来进行互作蛋白的筛选,缺点就是假阳性较高,所以需要进行结果验证,一般可采用免疫共沉淀或GST-pull down实验进行验证。2. 免疫共沉淀:是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。是确定两种蛋白质在完整细胞内相互作用的有效方法。当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。当用预先固化在argarose beads上的蛋白质A的抗体免疫沉淀A蛋白,那么与A蛋白在体内结合的蛋白质B也能一起沉淀下来。再通过蛋白变性分离,对B蛋白进行Western blot检测,进而证明两者间的相互作用。3. GST pull-down实验:是一个行之有效的验证酵母双杂交系统的体外试验技术。其基本原理是先构建靶蛋白-GST融合蛋白载体,然后进行体外表达及纯化。将得到的靶蛋白-GST(Glutathione-S-transferase谷胱苷肽巯基转移酶)融合蛋白亲和固化在谷胱甘肽亲和树脂上,充当一种“诱饵蛋白”,然后将目的蛋白溶液过柱,可从中捕获与之相互作用的蛋白,将目的蛋白洗脱下来,通过SDS-PAGE电泳及western blot分析证实两种蛋白间的相互作用。以上三种方法是比较经典的研究筛选和验证蛋白互作关系的方法。但是也存在一定局限性。酵母双杂交可以大规模的筛选未知的互作蛋白,但是假阳性高,免疫共沉淀及pull down只是对已知的蛋白互作关系进行验证,不能发现新的未知蛋白。免疫沉淀-质谱联用IP-MS技术随着蛋白质组学技术的发展,将免疫亲和与质谱技术结合产生的IP-MS技术则逐渐显示出他的优势。原理是以细胞内源性靶蛋白为诱饵,将靶蛋白抗体与细胞总蛋白进行共孵育,促进免疫复合物的形成;随后加入能够与抗体结合的protein-A/G(预先结合固化在琼脂小珠上),形成”结合蛋白-靶蛋白-靶蛋白抗体-proteinA/G小珠”复合物,纯化该复合物凝胶电泳分离蛋白,应用质谱分析鉴定靶蛋白的结合蛋白。免疫共沉淀与质谱结合,不仅能验证已知蛋白的相互作用,而且还可以鉴定与目标蛋白互作的未知蛋白,为科学研究提供全新的实验思路。北京百泰派克生物科技有限公司提供蛋白互作,GST pulldown,免疫共沉淀及IP-MS相关服务,欢迎垂询!资料来源:网络资料图片来源:百泰派克生物【biotech-pack】

鬼教練

LabelFree定量蛋白质组学技术研究蛋白质互作——背景介绍(下)

蛋白互作的研究背景内容比较丰富,我们分成两期定量蛋白质组学非标记定LabelFree定量蛋白质组学技术研究蛋白互作的背景进行介绍。本期我们接着说蛋白-蛋白互作方法的研究背景。蛋白互作方法的研究背景免疫印迹或免疫沉淀逐渐转向使用质谱法进行样本中的蛋白质定量,同时,也可使用该方法进行蛋白质鉴定。质谱法为高度复合的定量分析创造了条件,为它们的快速发展提供了条件,无需考虑费时的基于抗体的方法。LC-MS/MS还促进了研究人员对蛋白质异构体和翻译后修饰(PTMs)如何控制和调节多个细胞的了解。在蛋白质互作分析中,亲和纯化与多种定量质谱方法相结合非常常见。在本文中,我们将质谱采集策略分为“数据相关采集(DDA)”和“数据独立采集(DIA)”。目前为止,DDA最常见的用途是通过“鸟枪”技术鉴定化合物。在这些实验中,根据一组简单的启发式规则(通常是母离子强度)选择一个母离子进行碎片化,利用从所选母离子导出的MS/MS图谱进行蛋白质鉴定(图1)。相比之下,DIA并不是根据前体离子扫描中的信息来选择要进行碎片化的离子,而是在质谱仪可见范围内使整组前体离子碎片化,选择离子进行碎片化的方式区别对量化结果有重要影响。图1. QqTOF仪器中典型“鸟枪”实验的示意图。仪器在两种不同的扫描模式之间循环。(A) 在第一模式(MS1)中,所有离子都通过仪器传输,并在检测器处检测,随后可用于母离子测定。利用简单的规则(强度、电荷状态和离子是否已经碎裂)分析导出的质谱图。通过这些规则的离子随后被分离和碎片化。(B) 在MS/MS模式下,特定质量在第一个四极体中分离,在第二个四极体中碎片化。所有的碎片离子都被记录在分析仪中,并产生MS/MS图谱,用于鉴定化合物。质谱仪的不断创新使得检测灵敏度得到显著提高,可以检测样品中成分较少的物质。除了能够更深入地观察样品外,灵敏度的提高还可以提高仪器的扫描速度,这使得用不同的工作流程和方法进行定量和鉴定成为可能。本文我们讨论的是利用亲和纯化联合质谱技术(AP-MS)分析蛋白质-蛋白质相互作用时,肽和蛋白质的定量方法。这些方法也适用于涵盖需要量化的不同应用领域的各种其他类型样本,不过最终使用哪种方法还是由样本复杂性来决定。下期文章中,我们将切入主题,详细介绍几种目前常用的几种研究相互作用蛋白质组学的定量蛋白质组学非标记定量LabelFree法。本文由百泰派克生物科技整理编辑。百泰派克生物科技专注于基于质谱的蛋白质组学服务,结合亲和纯化与定量蛋白质组学非标记定量LabelFree、SILAC或SWATH定量技术,提供一系列定量蛋白质组研究策略,灵敏度高、重复性好,非常适合蛋白质相互作用的研究。文献参考:Stephen Tate, Brett Larsen, Ron Bonner, Anne-Claude Gingras, Label-free quantitative proteomics trends for protein-protein interactions. Journal of Proteomics, 2013.

圣人怀之

Anal Chem杂志发表PRM技术通过靶向蛋白质组学对热休克蛋白研究

编者按热休克蛋白是一类分子伴侣蛋白,在应激过程中参与蛋白质折叠、细胞周期调控、细胞保护等功能。通过对热休克蛋白的综合分析将有助于药物的研发和癌症的治疗。随着质谱技术在蛋白质组学分析中的广泛应用,却未能解决目前热休克蛋白主要依赖于低通量WB分析的问题。本期文章利用MRM/PRM模式的靶向蛋白质组学分析方法为复杂样品定量分析提供了更好的准确性和特异性。前言本篇为来自加州大学河滨分校化学系Yinsheng Wang教授团队在Analytical chemistry 上发表的题为"靶向蛋白质组学方法分析热休克蛋白揭示DNAJB4为黑色素瘤转移的抑制剂"研究文章。该文章基于PRM靶向定量蛋白质组学方法对热休克蛋白研究,并进一步应用该方法来评估黑色素瘤转移过程中HSPs的变化。材料:黑色素瘤细胞系影响因子:6.35发表期刊:Analytical Chemistry主要技术:PRM技术 靶向蛋白质组学中文标题:靶向蛋白质组学方法分析热休克蛋白揭示DNAJB4为黑色素瘤转移的抑制剂英文标题:A Targeted Proteomic Approach for Heat Shock Proteins Reveals DNAJB4 as a Suppressor for Melanoma Metastasis研究背景热休克蛋白是参与蛋白质折叠的分子伴侣蛋白。本研究通过PRM技术靶向定量人体热休克蛋白质组。该方法覆盖约70%的人体热休克蛋白质组,并展示出比鸟枪法蛋白质组学更高的通量和灵敏度。随后通过PRM技术评估三对原发性/转移性黑色素瘤细胞系中热休克蛋白的差异表达。在每对细胞系中可定量约45个热休克蛋白,定量结果显示DNAJB4在三个转移性黑色素瘤细胞系中下调。TCGA数据表明DNAJB4的低表达预示着黑色素瘤患者不良预后。而且发现DNAJB4通过减少基质金属蛋白酶2和9(MMP-2和MMP-9)的表达和活性从而抑制培养的黑色素瘤细胞的侵袭。本研究首次通过靶向蛋白质组学建立了人类热休克蛋白质组,并发现DNAJB4是黑色素瘤转移的抑制剂。研究方法1)细胞培养2)siRNAs测序3)LC-PRM分析4)TCGA数据分析研究结果 1.热休克蛋白高通量PRM定量分析方法的建立作者通过建立一种基于平行反应监测(PRM)的高通量分析方法,定量分析人类热休克蛋白组。作者首先构建了PRM数据库,利用shotgun蛋白质组学对来自人类组织中的不同细胞系被消化的胰蛋白酶混合物分析,获得热休克蛋白肽的保留时间、MS和MS/MS数据。通过200多次的LC-MS/MS鉴定到11879个蛋白。通过筛选确定了可定量热休克蛋白数目及覆盖率(图1)。图1 |可定量热休克蛋白数目及覆盖率2.LC-PRM分析显示黑色素瘤转移过程中热休克蛋白的差异表达为了评估黑色素瘤转移过程中热休克蛋白组的重新编程,作者在PRM模式下运用靶向蛋白组学方法来评估三对的原发性/转移性黑色素瘤细胞((即WM-115/WM-266-4、IGR-39/IGR-37和WM-793/1205Lu)中HSPs的差异表达。图2)图2 | 靶向蛋白质组方法的实验策略在WM-115/WM-266-4对黑色素瘤细胞系中量化了48个独特的HSP(图3a)。热休克蛋白的所有定量肽在库中观察到的保留时间和iRT之间表现出良好的线性拟合。此外,对比鸟枪蛋白质组分析获得的MS/MS中发现的相同片段离子,表明此方法对于肽具有高度的识别。图3 | WM-115/WM-266-4对黑色素瘤细胞热休克蛋白的差异表达同时,所有量化的热休克蛋白都出现在正向和反向硅烷标记实验中(图4b)。从正向和反向硅烷标记实验获得的定量肽的比率显示出良好的线性拟合(图4c)。在IGR-39/IGR-37和WM793/1205Lu配对黑色素瘤细胞中分别检测到43个和44个独特的热休克蛋白。定量结果的可靠性和重复性与从WM-115/WM-266-4配对黑色素瘤细胞获得的结果相似。对于作者的量化结果显示,相对于相应的转移性(WM-266-4、IGR-37和1205Lu)黑色素瘤细胞(图3a),7、10和20个热休克蛋白在原代细胞(分别为WM-115、IGR-39和WM-793细胞)中上调,18、8和5个热休克蛋白下调。作者也应用Western blot技术检测DNAJB4、DNAJC3和DNAJB1(HSP40)在配对的WM115/WM-266-4黑色素瘤细胞中的差异表达。从Western blot获得的比率与从PRM分析获得的比率一致(图5a),表明PRM方法能够准确地分析热休克蛋白的差异表达。同时,我们发现HSPB1 (HSP27)在A375恶性黑色素瘤细胞中具有抑制侵袭能力和分泌基质金属蛋白酶(MMPs)活性的作用,而在WM-115和IGR-39这两个黑色素瘤原代细胞中,HSPB1 (HSP27)表达上调(图4d)。图4 | 基于prm的靶向蛋白组学方法研究热休克蛋白在黑色素瘤转移过程中表达的干扰3.DNAJB4在转移性黑色素瘤细胞中普遍下调,并调节培养黑色素瘤细胞的侵袭能力如上所述,作者利用PRM方法揭示了已知的黑色素瘤转移抑制因子—即HSPB1的差异表达。作者接下来研究是否有其他差异表达的热休克蛋白可能作为黑色素瘤转移的驱动或抑制因子。作者发现DNAJP4在所有三个转移性黑色素瘤细胞中相对于相应的原发性黑色素瘤细胞均下调,作者通过Western blot分析证实了这一点(图5a-c)。此外,癌症基因组图谱(TCGA)数据的Kaplan-Meier生存分析显示,DNAJP4基因mRNA表达水平较低的黑色素瘤患者预后较差(图5d),表明DNAJP4可能抑制黑色素瘤转移。图5 | DNAJB4在转移性黑色素瘤细胞中下调在此基础上,DNAJB4先前被证明是肺癌转移的抑制因子。为了探讨DNAJB4在黑色素瘤转移中的潜在作用,作者接下来研究了DNAJB4的表达水平如何调节WM-115和WM-266-4细胞的迁移和侵袭能力。作者的研究结果显示,使用siRNA研究DNAJB4的表达后,WM-115细胞的侵袭能力显著增强(图6a)。相反,DNAJB4异位过表达导致WM-266-4细胞侵袭能力降低(图6a)。然而,通过基因调控DNAJB4的表达水平,WM-115和WM-266-4细胞的迁移能力未见明显改变(图6b)。同样,我们发现DNAJP4的异位过表达尽管没有观察到迁移能力的明显改变(图6b),却导致了其他两个转移性黑色素瘤细胞系(即IGR-37和1205Lu细胞,图6a)侵袭能力的显著降低。此外,siRNA介导的DNAJB4在其他两种原发性黑色素瘤细胞系(即IGR-39和WM-793)中的敲除导致迁移和侵袭能力显著提高(图6a、图6b)。以上结果提示,DNAJB4可抑制培养细胞的黑色素瘤转移。图6 | DNAJB4调节黑色素瘤细胞的侵袭能力4.DNAJP4通过调节基质金属蛋白酶抑制黑色素瘤细胞侵袭证明了DNAJB4在抑制黑色素瘤细胞侵袭能力方面的作用后,作者接下来探讨了DNAJB4调控黑色素瘤细胞侵袭能力的机制。基质金属蛋白酶(MMPs)是一种与癌症相关的的内肽酶,在降解细胞外基质(ECM)蛋白和促进肿瘤转移方面发挥着重要作用。此外,转移癌细胞的MMPs水平往往比原发癌细胞高。在人类MMPs中,MMP-2(明胶酶A)和MMP-9(明胶酶B)是两种主要的蛋白酶,它们负责重塑ECM环境和促进肿瘤转移。为了研究MMP-2和MMP-9在DNAJB4介导的黑色素瘤细胞侵袭能力改变中的潜在作用,我们用明胶酶谱分析法评估了DNAJB4表达水平对黑色素瘤细胞分泌MMP活性的影响。作者的结果表明,在DNAJB4异位高表达的转移性黑色素瘤细胞系(WM-266-4、IGR-37和1205Lu)中,分泌MMP-2和MMP-9的活性降低(图7)。另一方面,sirna介导的DNAJB4基因敲除导致三种原发性黑色素瘤细胞(WM-115、IGR-39和WM-793)MMP-2和MMP-9活性显著升高。图7),表明DNAJB4抑制分泌MMPs的活性。图7 | DNAJB4调节MMP-2和MMP-9的酶活性作者还通过qRT-PCR评估了黑色素瘤细胞中MMP2和MMP9基因的mRNA表达水平是如何被DNAJB4的表达水平调节的。作者的结果表明,在转移性黑色素瘤细胞系(WM-266-4、IGR-37和1205Lu)中,DNAJP4的异位过表达抑制了MMP2和MMP9基因的表达。siRNA介导的DNAJB4在原发性黑色素瘤细胞(WM-115、IGR39和WM-793)中的敲除诱导MMP2和MMP9的mRNA表达水平升高。DNAJB4可能通过抑制MMP-2和MMP-9基因的转录和抑制分泌MMP的活性来抑制黑色素瘤的转移。研究结论在这项研究中,作者首次开发了一种基于PRM的靶向定量蛋白质组学方法,用于人类细胞热休克蛋白质组的综合分析。PRM文库包含57个热休克蛋白,约占人类热休克蛋白组的70%。结果表明,该方法比鸟枪蛋白质组法具有更高的高通量和更高的灵敏度。靶向蛋白质组学方法发现了新的潜在黑色素瘤转移抑制剂,这为了解黑色素瘤进展的病因提供了重要依据。小鹿推荐本文为PRM技术的又一典型应用。研究者关注某一家族蛋白,或者某一类蛋白在实验组中的整体变化,可通过PRM技术靶向定量这些蛋白质。相对于LC-MS/MS,PRM靶向定量有着更高的灵敏度、更高的目标蛋白鉴定率,以及更准确的定量结果。本文通过PRM技术靶向定量原发性及转移性黑色素瘤细胞系中热休克蛋白,发现并验证了DNAJB4可作为黑色素瘤转移的抑制剂。部分文献参考(1) Feder, M. E.; Hofmann, G. E. Annu. Rev. Physiol. 1999, 61, 243-282.(2) Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Trends Pharmacol. Sci. 2016, 38, 226-256.(3) Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Nat. Rev. Cancer 2010, 10, 537-549.(4) Pick, E.; Kluger, Y.; Giltnane, J. M.; Moeder, C.; Camp, R. L.; Rimm, D. L.; Kluger, H. M. CancerRes. 2007, 67, 2932.(5) Koga, F.; Kihara, K.; Neckers, L. E. N. Anticancer Res. 2009, 29, 797-807.END

越冢

Cell|高精度蛋白质组学方法,揭示黑色素瘤抵抗免疫治疗机制

前言特拉维夫大学Tamar Geiger(Tamar Geiger课题组一直致力于使用高精度质谱的方法鉴定肿瘤治疗的潜在靶点)教授团队和Sheba医疗中心的Gal Markel团队合作在Cell发表的题为“Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence”的研究成果,通过蛋白质组学技术和功能验证,发现了黑色素瘤细胞的代谢状态通过抗原呈递机制的内在变化和肿瘤微环境的外在变化影响了T细胞杀伤,揭示了黑色素瘤代谢状态与免疫治疗响应之间的关联,这可能有助于将来改善免疫治疗响应。中文标题:黑色素瘤对免疫治疗响应的蛋白质组学研究揭示线粒体依赖性研究对象:黑色素瘤发表期刊:Cell影响因子:38.637运用生物技术:蛋白质组学研究背景免疫疗法彻底改变了转移性黑色素瘤患者的治疗方法,极大地提高了患者的生存率。迄今为止,这种成功很大程度上归因于黑色素瘤的高突变负荷。目前,免疫检查点抑制剂(ICIs)被认为是黑色素瘤免疫治疗的主要手段,尤其是针对CTLA-4或PD1免疫检查点的抗体,但约有50%患者对治疗无反应。肿瘤浸润淋巴细胞(TIL)的过继细胞疗法(ACT)是一种不同的免疫治疗策略,在黑色素瘤治疗中显示出很高的疗效。当前人们已投入大量精力来确定预测性反应指标和揭示耐药机制,但主要是使用组织学、基因组学和转录组学方法,尚还缺少对黑色素瘤进行深入的蛋白质组学分析。研究思路研究结果1.黑色素瘤对TIL和抗PD1响应的蛋白质组学分析为了鉴定与免疫治疗响应相关的蛋白质网络,作者收集了116个IV期黑色素瘤样本,包括42例接受TIL治疗的患者和74例接受抗PD1治疗的患者,并进行了蛋白质组分析。作者将每个队列分为响应组(包括部分响应者和完全响应者;n = 61)和无响应组(进行性疾病;n = 48)。PD1队列包括其他疾病稳定的患者(n = 7)(图1A)。对患者临床参数的检查表明,响应者和无响应者在总体生存率上存在显著差异(图1B)。年龄和BRAF突变状态在两组之间均无显著差异。此外,先前的靶向治疗(n = 16)或抗CTLA-4(n = 29)治疗均未显示出与响应相关。在TIL队列中发现性别之间存在显著相关性,并且在响应者中血浆LDH水平低于两个队列中的非响应者(p值<0.005;卡方检验)。对于蛋白质组学分析,作者解剖了>80%肿瘤细胞的黑色素瘤区域。为了获得准确的蛋白质组定量,作者设计了一种super-SILAC混合物,该混合物由5种SILAC标记的黑色素瘤细胞系组成,可作为标准化的参考。然后将混合物以1:1的蛋白质比例掺入每个黑色素瘤样品中,以用作定量参考。混合的蛋白裂解液经酶切和分馏后,用Q-Exactive Plus或HF质谱仪进行检测(图1C)。结果共定量到10,376种蛋白质,响应者和非响应者之间的覆盖范围没有明显差异(图1D-1E)。进一步过滤保留至少70%的样品中鉴定出的蛋白质,这些蛋白中包括800多种与信号转导相关的蛋白以及数十种受体和转录因子相关的蛋白,表明它们足以覆盖细胞内过程的分析。图1 | 黑色素瘤对免疫治疗响应的蛋白质组学2.免疫疗法响应者和无响应者的功能分析作者通过Student t检验在TIL治疗和抗PD1治疗人群中分别鉴定了414和636个响应者和无响应者间的差异表达蛋白。通路Proteomaps基于KEGG注释对两组差异蛋白进行聚类,发现两种治疗方法的图谱有惊人的相似之处(图2A)。在这两种治疗方法下,响应组均以较高水平的代谢蛋白为主,而非响应组则为剪接体和RNA代谢相关蛋白为主。除代谢类别外,两种治疗方法的响应组均具有更高比例的抗原呈递以及信号传导相关蛋白。与两种疗法之间的通路高度相似性相一致,二维注释富集分析结果表明两种疗法富集类别有着高相关性(R = 0.76)。在这两种治疗中,响应组的线粒体代谢通路都显著富集(图2B)。鉴于两种疗法的响应组谱图在功能上相似,作者使用所有116例样本的数据集,进行了WGCNA分析。结果中得到了一组与患者无进展生存期,完全或部分响应以及血浆LDH水平呈正相关的模块。与之前的结果一致,这些模块富集到了抗原呈递,IFNG信号以及线粒体代谢通路(图2C)。总而言之,这些分析强调了线粒体代谢的差异通常与免疫治疗反应相关。图2 | 免疫疗法响应者和无响应者间的功能差异3.鉴定免疫治疗响应的蛋白质标志物为了鉴定与响应有关的特征蛋白,作者使用基于SVM的分类方法(基于ANOVA的特征排序),在TIL治疗队列筛选出8个特征蛋白,其中6个在响应组中上调,2个下调(图3A)。在抗PD1治疗队列中筛选出15种特征蛋白,所有特征蛋白均在响应组上调(图3B)。两组特征蛋白没有重叠,TIL治疗队列包括与脂肪酸和酮体代谢有关的蛋白质,抗PD1治疗特征蛋白由多种抗原呈递相关蛋白组成。统计分析表明抗PD1队列的15种特征蛋白质中,有12种具有统计学意义(图3C)。总体而言,作者在抗PD1治疗队列中发现了95种显著变化的蛋白质,其中83种在响应组中上调。由于TIL队列较小,因此没有显著变化的蛋白质。为了提高分析的统计能力,作者合并了两个队列,发现响应者和非响应者之间有160种显著变化的蛋白质(图3D)。图3 | 响应于免疫治疗的特征蛋白构建响应蛋白的相互作用网络得到两个高度连接的蛋白簇。第一个蛋白簇富集了IFN,抗原加工和呈递机制蛋白。第二个蛋白簇富集了参与脂质代谢和TCA循环的线粒体代谢酶(图4A–4C)。因此,尽管蛋白不一定在两种治疗情况下都能预测反应,但线粒体-IFN网络与两种治疗都相关。TIL队列中六个上调的特征蛋白在抗PD1队列中也上调(图4D)。类似地,抗PD1队列的15种特征蛋白中的10种在TIL队列中也显示出相似的趋势。重要的是,TIL响应组中MHC相关蛋白和抗原呈递机制蛋白均高于无响应组(图4E)。接下来,作者分析了特征蛋白与无进展生存期(PFS)的关系。Kaplan Meier分析显示在TIL队列中,ACAT1,SUPV3L1和HTATIP2的高表达与更长的PFS正相关(图4F)。在抗PD1队列中,大多数特征蛋白与更长的PFS显著相关。对每个特征蛋白在另一个队列中的分析表明,它们几乎与存活率无关(图4F)。图4 | 免疫治疗响应的综合分析蛋白质组学结果将黑色素瘤的代谢状态与抗原呈递和IFN信号传导相关联。鉴于这些分析可能已平均了来自不同细胞群体的信号,作者通过连续切片的免疫组化检查了关键特征蛋白在组织水平上的空间表达。免疫组化结果与蛋白质组学数据一致,这些蛋白在响应组和非响应组间的表达有着显著差异,并且这些蛋白是在黑色素瘤细胞中特异性染色(图5A和5B)。线粒体标志物和电子传输链(ETC)组分SDHA的染色在响应组的线粒体中显著增加(图5C)。作者接着检查了代谢蛋白表达与T细胞浸润之间的关联(图5C和5D)。与这些患者中更高的疗效相一致,作者发现CD8或CD3 T细胞染色与特征蛋白ACOT1,ACAT1和HADHA之间具有高度相关性(图5C)。总而言之,这些结果证明肿瘤线粒体代谢与细胞免疫原性之间存在明确的联系,这值得进行下游功能研究。图5 | 代谢蛋白和T细胞浸润的组织水平验证4. 黑色素瘤细胞免疫原性代谢调控的功能验证除了代谢特征和免疫响应之间的相关性之外,作者考虑线粒体代谢是否在增加肿瘤免疫原性方面具有功能性作用。为了诱导增加培养细胞的线粒体呼吸,作者用丙酮酸脱氢酶激酶的抑制剂二氯乙酸(DCA)处理了四种黑色素瘤细胞系,这增加了进入线粒体的碳通量。经DCA处理的细胞蛋白质组学分析显示,涉及抗原呈递的多种蛋白质表达增加(图6A)。在MHC I类蛋白中,大多数DCA处理后的黑色素瘤细胞系中HLA-A表达略有降低,而HLA-B和HLA-C显著升高,并且主要的抗原呈递因子TAP1,TAP2和B2M在不同的细胞系中显示出不同的行为。根据蛋白质组学结果,作者发现DCA处理可增加细胞表面HLA的表达,并增加mRNA表达水平(图6B-6D)。这些结果表明代谢状态不仅与治疗的响应相关,而且在增加总体抗原呈递方面具有调节作用。为了直接在特征蛋白和抗原呈递之间建立联系,作者使用了CRISPR-Cas9系统在WM266-4和Mel526黑色素瘤细胞系中敲除了两个TIL特征基因ACAT1和HADHA。此外,在同种细胞中敲除了脂肪酸氧化的主要调节剂CPT1A。蛋白质组学分析显示,与敲除细胞相比,对照组中的抗原呈递和IFN信号以及氧化磷酸化和电子传递链过程显著富集(图6E)。对基因扰动的下游影响的研究表明,在Mel526细胞中敲除ACAT1,HADHA或CPT1A后,MHC I类强度降低,HLA II类呈递细胞百分比降低(图6F,6G)。蛋白质组学分析进一步验证了这些结果,并显示了其他关键抗原呈递机制蛋白在两组间具有更高的比值(图6H)。这些结果表明,即使是TIL特征蛋白中的单个线粒体蛋白也可以影响抗原呈递机制和MHC I类表达。图6 | 抗原呈递的代谢控制代谢对抗原呈递的作用说明这些可能影响T细胞识别和肿瘤细胞杀伤。为了检验这一假设,作者将敲除组或对照组黑色素瘤细胞与匹配的T细胞共培养,并通过LDH分泌监测细胞死亡。与抗原呈递机制蛋白下调相一致,在ACAT1,HADHA和CPT1A敲除后,特异性T细胞的杀伤力明显降低(图7A)。为了通过体内小鼠模型检查这些效应,作者敲除了小鼠黑色素瘤细胞系YUMMER1.7中的Acat1,并监测其对免疫活性小鼠的肿瘤生长和免疫浸润的影响。结果表明敲除Acat1后肿瘤生长显著增加(图7B)。基于体外观察结果,作者假设敲除Acat1减少了T细胞识别,从而促进了肿瘤的进展。实际上,敲除Acat1的肿瘤细胞在RNA和蛋白质水平上均显示MHC I类和PD1配体(Pdl1)表达的显著降低(图7C–7F)。此外,与IFNG一起孵育24小时后,敲除细胞显示出对MHC I类,Pdl1和B2m的诱导作用降低(图7G)。免疫细胞谱分析显示,与对照相比,敲除Acat1的肿瘤中细胞因子产生的T细胞(cytokine-procing T cells)水平较低(图7H和7I),而浸润CD4 +和CD8 + T细胞的总百分比没有变化(图7I-7L)。此外,敲除Acat1的肿瘤中单核细胞髓样细胞(monocytic myeloid cells)的比例显著低于对照(图7M),而巨噬细胞的比例显著上升(图7N)。总的来说,这些结果说明了这些蛋白质作为影响黑色素瘤和免疫细胞调节剂的重要性。图7 | CRISPR敲除对肿瘤免疫原性和T细胞活性的影响研究结论免疫疗法彻底改变了癌症的治疗方法,但是大多数患者没有响应。本文通过蛋白质组学研究来自肿瘤浸润淋巴细胞(TIL)治疗或抗PD1免疫治疗的晚期黑色素瘤患者的临床样品。统计分析表明在两种治疗中,响应组的氧化磷酸化和脂质代谢均高于非响应组。为了阐明代谢状态对免疫响应的影响,作者在代谢扰动或CRISPR-Cas9敲除后检查了黑色素瘤细胞。这些实验结果表明脂质代谢是通过提高抗原呈递而增加黑素瘤免疫原性,从而增加了对T细胞杀伤的敏感性。总的来说,蛋白质组学分析揭示了黑色素瘤代谢状态与免疫治疗响应之间的关联,这可能有助于将来改善治疗响应。小鹿推荐本文作者通过对两种免疫疗法患者组织样本的蛋白质组学分析,提出黑色素瘤细胞的代谢状态通过抗原呈递机制的内在变化和肿瘤微环境的外在变化来影响T细胞杀伤。这些结果为复杂的免疫代谢网络增加了新的认知,这可能具有重要的治疗意义。蛋白质组学在肿瘤研究领域进展迅猛,已有多种肿瘤的研究成果发表于顶级学术期刊。本文也又一次证明了蛋白质组学在生命科研领域研究中的重要作用。鹿明生物上海鹿明生物科技有限公司,一直专注于生命科学和生命技术领域,是国内早期开展以蛋白组和代谢组为基础的多层组学整合实验与分析的团队。经过近数年的发展沉淀,公司建立起了iTRAQ/TMT、4D-DIA、4D-PRM、修饰蛋白组学等蛋白组学技术平台,同时为加强学术交流,鹿明生物公众号也会一直为各位老师分享更多科研干货,欢迎关注鹿明生物官微哦~~猜你还想看◆蛋白质组学前处理方法大揭秘!学会了这几招之后“包治百病”~◆盘点 | 医学方向2020年度最佳项目文章TOP5,总影响因子:61.414◆跨年项目文章 | 两篇连发~转录组+蛋白组学对水生生物中纳米塑料毒性机理研究◆项目文章 | iTRAQ定量蛋白组学助力南京农大茶树抗寒机制研究END文章来源于鹿明生物

爱之训

独创方法提升蛋白质结构预测精度 腾讯AI Lab联合研究登上Nature子刊

本文转自【中国科技网】;11月17日,腾讯公布了一项人工智能助力药物发现的新进展。通过自研的提升蛋白质结构预测精度的新方法,联合研究团队首次解析了II型5a还原酶(SRD5A2)的三维结构,揭示了治疗脱发和前列腺增生的药物分子“非那雄胺”对于该酶的抑制机制,这将有助于深化研究相关疾病的病理学机制及药物优化。此次,采用“从头折叠”的蛋白质结构预测方法帮助解析了SRD5A2晶体结构,并通过自研AI工具“ tFold”有效提升了蛋白质结构预测精度,在科研突破中发挥了核心作用。除了在SRD5A2结构中的应用,这套方法还可以拓展应用于蛋白质分子和病理学机制的相关研究中。该项联合研究成果于近日登上了国际顶级期刊 Nature 子刊《 Nature Communications》。论文题为《人体类固醇II型5a还原酶与抗雄激素药物非那雄胺的结构研究》,由南科大生物系魏志毅副教授课题组与匹兹堡大学张诚教授、新加坡 A*STAR 研究所范昊研究员、腾讯 AI Lab 黄俊洲博士带领的研究小组合作完成。本次得到权威学术期刊发表及评审的高度评价,也验证了该成果对药物研发的创新价值。据了解,tFold工具还在CAMEO(全球唯一的蛋白质结构预测自动评估平台)的国际测评中连续半年保持周度冠军。目前,tFold公测版本已通过腾讯「云深智药(iDrug)」平台官网对外开放。“从头折叠”新方法破解晶体学难题在人体内,性激素有促进性器官成熟、副性征发育及维持性功能等作用。二氢睾酮是人体中已知最强的雄激素,对于人体的发育和生理活动至关重要,但同时也需要保持合理的平衡。一方面,二氢睾酮控制着男性性器官的发育,水平过低将导致男性性征缺陷。另一方面,水平过高又是导致前列腺增生和脱发的罪魁祸首。合成性激素依赖类固醇还原酶,二氢睾酮即由 SRD5A2 催化合成。因此,当患者因为二氢睾酮水平过高而出现前列腺增生和脱发问题时,可以通过抑制 SRD5A2 来降低患者二氢睾酮水平。作为SRD5A2 的高效抑制剂,非那雄胺(finasteride)被广泛用于治疗这类疾病。尽管 SRD5A2 具有重要生理作用,其高分辨率结构信息却十分缺乏,导致 SRD5A2 催化二氢睾酮合成的机理以及非那雄胺抑制 SRD5A2 酶活的机制并不清晰。这是由于 SRD5A2 具有独特的七次跨膜结构,其与人类全部已知结构的蛋白在结构上存在较大差异,难以通过“模板建模”(template-based modeling)方法获得初始构型来解析晶体数据。同时又因为 SRD5A2 是一类多次跨膜蛋白,使得传统的用于获取蛋白质晶体相位信息的“重原子替代”(Heavy-atom derivatization)方法亦难以奏效。为了解决这一难题,腾讯 AI Lab 科研团队采用了难度更高的“从头折叠”(de novo folding)方法来预测 SRD5A2 蛋白的三维结构,并将其用于“分子置换”(molecular replacement, MR)的初始构型来解析晶体数据。所谓“从头折叠”,是相对于“模板建模”的一种蛋白质结构预测方法。“模板建模”是目前最普遍的蛋白结构预测手段,但有一个使用前提——人类已知的蛋白结构数据库(即PDB)当中,必须存在和预测的蛋白相似的结构,否则就无法使用。而腾讯AI Lab采用的“从头折叠”方法则跳出了这个限制,可以不依赖于模板来预测蛋白结构。但此前,通过“从头折叠”方法预测的蛋白质结构精度不高,难以满足晶体数据解析的精度需要。而在腾讯 tFold 工具加持下得到的高精度“从头折叠”的结构模型,为分子置换方法提供相位,继而解析确定2.8 原子级别精度的SRD5A2晶体结构。这一结果能直接推进我们对体内 SRD5A2 活性失调引发的各类疾病的理解,进而为基于 SRD5A2 结构的药物开发提供更多有价值的参考信息。《Nature Communications》的一位评审对此创新方法给予了高度评价:“作者能用预测的分子置换(MR)模型来确定晶体结构,这一点非常有趣。本评审认为该技术确实非常出色,整个X射线晶体学界将从该方法中受益匪浅。”自研tFold 具突破蛋白质结构预测精度tFold工具是破解 SRD5A2 蛋白结构这一重要难题的关键。为了提升“从头折叠”方法(又称“自由建模”)的精度,tFold 工具通过三项技术创新,实现了蛋白结构预测精度的大幅提升。首先,实验室研发了“多数据来源融合”(multi-source fusion)技术,来挖掘多组多序列联配(multiplesequence alignment, MSA)中的共进化信息。然后,借助 “深度交叉注意力残差网络” (deep cross-attention resial network,DCARN),能极大提高一些重要的蛋白2D结构信息(如:残基对距离矩阵)的预测精度。最后,通过一种新颖的“模板辅助自由建模“(Template-based Free Modeling, TBFM)方法,将自由建模(Free Modeling, FM)和模板建模(Template-based Modeling, TBM)生成的3D模型中的结构信息加以有效融合,从而大大提高了最终3D建模的准确性。在研究方面,tFold 平台已在国际公认最权威的测试平台CAMEO上证明其创新价值及有效性。腾讯 AI Lab 于2020年初在CAMEO平台注册了自动化蛋白结构预测服务器 tFold server,并自2020年6月起至今一直保持周度(图1)、月度、季度、半年度冠军。tFold server在一般案例上领先业内权威方法6%以上,在困难案例上则领先12%以上。用AI持续助力药物发现依托大数据挖掘与机器学习等先进技术优势,腾讯正致力于推动AI与医疗产业的深度结合,助力社会整体医疗水平提升。据了解,「云深智药」是腾讯发布的首个AI驱动的药物发现平台,整合了腾讯 AI Lab和腾讯云在前沿算法、优化数据库以及计算资源上的优势,致力于帮助用户大幅度减少寻找潜在活性化合物的时间和成本。此外,平台的逆合成算法也已取得了一定进展,计划于明年上线。其它小分子和大分子药物发现功能模块也将逐步上线。除药物研发以外,在影像筛查、病理诊断等多个医疗领域持续探索,不断拓展和深化研究与应用。在AI助力医疗技术方面,实验室联合多家合作单位研发了中国首款智能显微镜,帮助医生提高工作效率。2020年10月,在免疫组化样本(IHC)分析的基础上,智能显微镜新增了针对宫颈液基细胞(TCT)标本进行临床样本的显微图像进行观察、筛选、标记功能,并已获得国家药监局审批证书。在病理研究领域,研发出了世界领先的前沿算法,比如斩获MICCAI 2020 CPM-RadPath 挑战赛第一名的算法,能够准确区分神经胶质瘤(大脑最常见肿瘤)的不同亚型并进行分级,有望弥补人工诊断效率低、主观因素影响较大等问题。

大盛魁

军事科学院军事医学研究院在生命科学基础研究领域取得重要突破

央广网北京2月22日消息 (胡晶 向鹏程 记者周宇婷 李永平)病毒感染因其变异性强、传播迅速等特点成为重大疫情防控的主要挑战,对机体抗病毒机理的深刻认识是应对病毒感染的关键所在,日前,我国科学家在该领域取得重要突破。军事科学院军事医学研究院李涛博士和张学敏院士团队经过近5年潜心研究,成功发现细胞“门神”——环鸟腺苷酸合成酶(cGAS)抵抗病毒感染关键调控机理。这也是新的军事科学院调整组建后,在生命科学基础研究领域取得的重要科研突破之一。科研团队成员共同观测分子影像并交流发现。岳恒冰 摄北京时间2月22日凌晨,国际顶级学术期刊《Cell》(《细胞》)在线发表了相关研究论文。该院戴江博士、博士生黄怡娇以及何新华博士是文章的共同第一作者。据了解,当病毒入侵机体时,其自身遗传物质(如DNA等)会不可避免地被带入到宿主细胞中,继而导致机体针对这些外源DNA迅速做出强烈的免疫应答以清除病毒感染,甚至不惜以伤及自身为代价,这是病毒感染导致致死性炎症的主要原因。其中,DNA感受器cGAS蛋白质在DNA从细胞内部触发免疫和自身免疫反应中起到了关键作用。此外,除感受病毒入侵,cGAS的异常激活也是系统性红斑狼疮、AGS综合征等一类自身免疫疾病的关键致病因素。“寻找有效控制cGAS活性的手段并探究其调控机制,对抵抗病毒感染、重大传染病防控及自身免疫疾病的治疗都至关重要。”李涛博士介绍说。李涛博士与团队科研人员在实验室。岳恒冰 摄围绕这个关键科学问题,李涛博士团队和张学敏院士团队展开了联合科研攻关,旨在从cGAS的调控机理研究入手,寻找控制cGAS激活的手段,以期为抗病毒感染和相关疾病的治疗寻找新的突破。经过近5年的深入研究,该团队发现乙酰化修饰是控制cGAS活性的关键分子事件,并揭示了其背后的调控规律。在药物设计专家何新华博士的具体参与下,研究人员综合利用生物质谱及色谱分析等技术,并通过特异位点乙酰化抗体等进行生物化学验证,最终发现乙酰水杨酸(阿司匹林)可以强制cGAS发生乙酰化并抑制cGAS的活性。随后,研究人员利用实验动物和AGS病人的细胞进一步验证了他们的发现。论文通讯作者:中国科学院张学敏院士。军事医学研究院供图军事医学研究院院长张士涛介绍说,由于cGAS在疾病发生和治疗中的重要作用,其干预手段一直是国际前沿领域的热点竞争方向,许多国际制药集团和科研团队都在试图寻找cGAS的干预手段。李涛博士和张学敏院士团队从机理研究入手,聚焦前沿、独辟蹊径,挖掘出百年老药阿司匹林可以通过乙酰化作用抑制cGAS激活。该工作不仅揭示了阿司匹林作用于人体的全新靶点和分子机制,还可能为一类目前无药可治的自身免疫疾病提供治疗方法。张学敏院士组织科研团队交流最新科研进展。阚少龙 摄在这一国际竞争激烈的前沿领域取得重要科研成果是军事科学院坚持从实验抓起大力推动科研创新的一个缩影。军事科学院领导告诉记者,该院把抓好科学实验作为打造高水平军事科研机构的关键举措之一,他们系统梳理技术清单,调整资源投向投量,科学确定重点加强科研方向和重点培育科研方向,自主设计重大科研工程,重点抓好科研实验环境建设。目前,仅军事医学研究院就有3个国际组织指定实验室,1个国家重大科技基础设施,3个国家重点实验室。张学敏院士领衔的团队是“国家自然科学基金创新研究群体”,也是蛋白质组学国家重点实验室、抗毒药物与毒理学国家重点实验室的组成部分。长久以来,这个团队在张院士培育的独特科学文化熏陶下,以十年磨一剑的定力潜心研究,矢志追求标志性创新。在刚刚过去的2018年岁末和2019年新年伊始,这个创新研究群体围绕抗病毒感染、机体能量应激供给和细胞对极端环境感应等领域取得了系列突破性进展,除《Cell》外,还先后发表在《Nature Immunology》(《自然·免疫学》)和《Nature Cell Biology》(《自然·细胞生物学》)等国际权威学术期刊上。从左至右依次为:论文第一作者何新华、戴江、黄怡娇,论文通讯作者李涛。陈显利 摄今天,人类仍然面临着病毒感染的严重威胁。据悉,人类迄今已经认识的病毒可能仅占自然界病毒种类的1%。因此,如何在源头上掌握应对病毒感染及其所致重大疫情的主动权,是摆在科研人员面前的一项重要而艰巨的任务。张学敏院士说,该工作通过对抗病毒感染本质规律的揭示,使我们未来在应对重大疫情时,不仅对控制已知病毒感染具有手段,还有望对未知病毒感染具备应对能力。

十花

军事科学院军事医学研究院在生命科学研究领域取得重要突破

病毒感染因其变异性强、传播迅速等特点成为重大疫情防控的主要挑战,对机体抗病毒机理的深刻认识是应对病毒感染的关键所在。日前,我国科学家在该领域取得重要突破。澎湃新闻(www.thepaper.cn)记者从军事科学院军事医学研究院获悉,军事科学院军事医学研究院李涛博士和张学敏院士团队经过近5年潜心研究,成功发现细胞“门神”——环鸟腺苷酸合成酶(cGAS)抵抗病毒感染关键调控机理。这也是新的军事科学院调整组建后,在生命科学基础研究领域取得的重要科研突破之一。北京时间2月22日凌晨,国际顶级学术期刊《Cell》(《细胞》)在线发表了相关研究论文。该院助理研究员戴江博士、博士生黄怡娇以及何新华博士是文章的共同第一作者,李涛和张学敏都是论文通讯作者。当病毒入侵机体时,其自身遗传物质(如DNA等)会不可避免地被带入到宿主细胞中,继而导致机体针对这些外源DNA迅速做出强烈的免疫应答以清除病毒感染,甚至不惜以伤及自身为代价,这是病毒感染导致致死性炎症的主要原因。其中,DNA感受器cGAS蛋白质在DNA从细胞内部触发免疫和自身免疫反应中起到了关键作用。此外,除感受病毒入侵,cGAS的异常激活也是系统性红斑狼疮、AGS综合征等一类自身免疫疾病的关键致病因素。“寻找有效控制cGAS活性的手段并探究其调控机制,对抵抗病毒感染、重大传染病防控及自身免疫疾病的治疗都至关重要。”李涛博士介绍说。围绕这个关键科学问题,李涛博士团队和张学敏院士团队展开了联合科研攻关,旨在从cGAS的调控机理研究入手,寻找控制cGAS激活的手段,以期为抗病毒感染和相关疾病的治疗寻找新的突破。经过近5年的深入研究,该团队发现乙酰化修饰是控制cGAS活性的关键分子事件,并揭示了其背后的调控规律。在药物设计专家何新华博士的具体参与下,研究人员综合利用生物质谱及色谱分析等技术,并通过特异位点乙酰化抗体等进行生物化学验证,最终发现乙酰水杨酸(阿司匹林)可以强制cGAS发生乙酰化并抑制cGAS的活性。随后,研究人员利用实验动物和AGS病人的细胞进一步验证了他们的发现。军事医学研究院院长张士涛介绍说,由于cGAS在疾病发生和治疗中的重要作用,其干预手段一直是国际前沿领域的热点竞争方向,许多国际制药集团和科研团队都在试图寻找cGAS的干预手段。李涛博士和张学敏院士团队从机理研究入手,聚焦前沿、独辟蹊径,挖掘出百年老药阿司匹林可以通过乙酰化作用抑制cGAS激活。该工作不仅揭示了阿司匹林作用于人体的全新靶点和分子机制,还可能为一类目前无药可治的自身免疫疾病提供治疗方法。在这一国际竞争激烈的前沿领域取得重要科研成果是军事科学院坚持从实验抓起大力推动科研创新的一个缩影。军事科学院领导告诉澎湃新闻记者,该院把抓好科学实验作为打造高水平军事科研机构的关键举措之一,他们系统梳理技术清单,调整资源投向投量,科学确定重点加强科研方向和重点培育科研方向,自主设计重大科研工程,重点抓好科研实验环境建设。目前,仅军事医学研究院就有3个国际组织指定实验室,1个国家重大科技基础设施,3个国家重点实验室。张学敏院士领衔的团队是“国家自然科学基金创新研究群体”,也是蛋白质组学国家重点实验室、抗毒药物与毒理学国家重点实验室的组成部分。长久以来,这个团队在张学敏院士培育的独特科学文化熏陶下,以十年磨一剑的定力潜心研究,矢志追求标志性创新。在刚刚过去的2018年岁末和2019年新年伊始,这个创新研究群体围绕抗病毒感染、机体能量应激供给和细胞对极端环境感应等领域取得了系列突破性进展。除《Cell》外,这些研究成果还先后发表在《Nature Immunology》(《自然·免疫学》)和《Nature Cell Biology》(《自然·细胞生物学》)等国际权威学术期刊上。人类迄今已经认识的病毒可能仅占自然界病毒种类的1%。因此,如何在源头上掌握应对病毒感染及其所致重大疫情的主动权,是摆在科研人员面前的一项重要而艰巨的任务。张学敏院士说,该工作通过对抗病毒感染本质规律的揭示,使我们未来在应对重大疫情时,不仅对控制已知病毒感染具有手段,还有望对未知病毒感染具备应对能力。

杜鹃

CNS精彩不断:2020外泌体组学研究进展大盘点

外泌体是大多数细胞能分泌的微小膜泡,具有脂质双层膜结构,直径大约40-150nm。发现之初,仅以为外泌体能清理细胞内部的“垃圾”。然而,深入研究发现,这种微小膜泡包裹多种细胞特异的蛋白、脂质和核酸等物质,并将携带的信号分子传递给靶细胞,影响和改变了远端细胞功能。目前在肿瘤免疫,肿瘤转移,组织修复多个领域均发现了外泌体的重要功能,并且可以作为一种很好靶向给药系统。作为当下热门研究方向,以外泌体为主题的研究进展非常迅猛,下面我们就一起回顾下2020年度近期外泌体相关研究进展吧!01. The biology, function, and biomedical applications of exosomes Science. 2020.02 IF=41.037外泌体领域大牛Raghu Kalluri教授在《Science》杂志发表外泌体的综述性文章。该篇文章首先介绍了细胞外囊泡(EV)的发生起源,细胞外囊泡(EV)异质性等背景信息。在细胞外囊泡(EV)的生物学功能方面,分别阐述了在细胞间通信、哺乳动物的繁殖和发育、免疫反应和感染、代谢和心血管疾病、神经退行性疾病、癌症等领域中的重要作用。最后,在外泌体的未来发展中,指出细胞外囊泡(EV)是一个非常活跃的研究领域,并且随着技术的进步,会发掘出更多外泌体的生物学功能,在疾病诊断及治疗方面有将会有更多的应用潜力和价值。02. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers Cell. 2020.08 IF=38.6来自美国康奈尔医学中心等多个研究团队,对来自426个人的组织、血浆、体液来源的外囊泡及颗粒(Extracellular Vesicle and Particle,EVP)进行labelfree和PRM蛋白质组学分析,发现了新EVP标记物。利用机器学习算法,找到了组织来源的外囊泡肿瘤分类标志物;以及血液来源的外囊泡肿瘤诊断标志物。该研究证明外囊泡及颗粒(EVP)蛋白能够作为肿瘤检测和分类的可靠标志物。03. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation.J Extracell Vesicles 2020.02 IF=14瑞典哥德堡大学医学院于2020年发表的该项研究成果,建立了一种直接从肿瘤组织中分离并分类出EVs亚群的方法,并进一步通过TMT定量蛋白质组学鉴定EVs亚群。蛋白质组学的结果可明显区分不同EVs亚群蛋白质表达特点,并获得了用来区分不同EVs亚群的蛋白标志物。04. Omics-Driven Systems Interrogation of Metabolic Dysregulation in COVID-19 Pathogenesi.Cell Metabolism 2020.06 IF=21.567中国科学院遗传与发育研究所的研究团队利用代谢组+脂质组技术分析了轻、中、重症COVID-19患者及健康对照的血浆及外泌体极性代谢物和脂质组成,揭示了新冠COVID-19发病机制中的代谢失调。发现了与COVID-19病理学相关的代谢产物簇,同时也为富含GM3的外泌体参与COVID-19的发病机制提供了证据。05. Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage.Cell Metabolism 2020.07 IF=21.567英国伦敦玛丽皇后大学Ana O’Loghlen 团队通过Label free蛋白组分析iRAS衰老细胞系、etoposide诱导的衰老细胞系与对照组iC细胞系的外泌体蛋白水平差异。结果发现iC细胞的外泌体较衰老细胞的外泌体富含更多抗氧化相关的蛋白,谷胱甘肽代谢通路富集尤为显著,其中谷胱甘肽转移酶GSTM2在非衰老细胞的外泌体中含量最高。