近日,中国科学院武汉病毒研究所/病毒学国家重点实验室胡志红、王曼丽研究团队在蛋白质相互作用的研究方法方面取得新进展,相关研究成果以Mito-docking: A novel in vivo method to detect protein-protein interactions(《线粒体锚定:一种研究活细胞内蛋白间相互作用的新方法》)为题发表在国际学术期刊Small Methods上。蛋白质之间的相互作用对生命活动至关重要。尽管已有不少体内研究蛋白互作的方法,但由于许多蛋白互作是高度动态的,因此用传统的方法难以捕获。该研究基于“招募”和“聚集”的原理,即将“诱饵”蛋白A锚定在线粒体的外膜上,如B蛋白能与A蛋白互作,则将被“捕获”到线粒体外膜,发生富集;如C蛋白不与A蛋白互作,则不会发生定位变化(图1)。文章首先用线粒体锚定(Mito-docking)的方法有效验证了G蛋白亚基γ2和β1间的互作,并进一步运用该方法研究了核转运受体(importin α isoforms)与货物蛋白(经典的核定位信号cNLS)之间的互作,揭示了核转运受体-货物蛋白的识别特异性(图2)。研究发现,该方法不仅能有效检测如核运输过程中的短暂蛋白间互作,还能对蛋白互作的强度进行相对定量分析,是一种高效、直观、简单的研究活细胞中蛋白质互作的新方法。武汉病毒所博士生邵伟为该论文的第一作者,副研究员王曼丽和研究员胡志红是该论文的共同通讯作者。该研究得到中科院前沿科学重点研究项目(QYZDJ-SSW-SMC021)、国家自然科学基金创新研究群体项目(31621061)和病毒学国家重点实验室病毒学前沿科学重点研究项目(klv-2016-03)的资助。图1. Mito-docking研究蛋白间相互作用的原理示意图 图2. 利用Mito-docking研究importin α异构体对SV40 NLS的识别特异性。A. 将含有线粒体锚定信号的野生型NLS(NLSwt)与不同的importin α异构体共转染细胞。发现除α6外,其余几个importin α异构体均被招募到线粒体外膜,从而产生明显的荧光共定位现象。B. NLS突变后(NLSm)不能与任何importin α异构体互作。中国生物技术网诚邀生物领域科学家在我们的平台上,发表和介绍国内外原创的科研成果。注:国内为原创研究成果或评论、综述,国际为在线发表一个月内的最新成果或综述,字数500字以上,并请提供至少一张图片。投稿者,请将文章发送至weixin@im.ac.cn。本公众号由中国科学院微生物研究所信息中心承办近期热文直接点击文字即可浏览!1、补牙或将成为历史?2、科学你慢慢学,中医我先治病去了3、科学告诉你应该多久洗一次澡4、新证据:喝咖啡能延长寿命!5、据说,这是生物医学硕士博士生的真实的生活写照6、一顿早餐到底有多重要?7、情商也是把双刃剑!高情商或让你更脆弱8、施一公:压死骆驼的最后一根稻草,是鼓励科学家创业!9、“科学禁食法”真能降低重大疾病风险10、睡眠科学家揭示出8种睡好觉的秘诀11、有志者事竟成!2型糖尿病成功被逆转12、每周两半小时,任何形式的锻炼都可以使你更长寿13、喝醉以后,你以为睡一觉就没事儿了?!14、仰卧起坐等或将成为延寿运动?15、冥想、瑜伽、太极等不仅能够改善身心健康...
蛋白互作的研究背景内容比较丰富,我们分成两期定量蛋白质组学非标记定LabelFree定量蛋白质组学技术研究蛋白互作的背景进行介绍。本期我们接着说蛋白-蛋白互作方法的研究背景。蛋白互作方法的研究背景免疫印迹或免疫沉淀逐渐转向使用质谱法进行样本中的蛋白质定量,同时,也可使用该方法进行蛋白质鉴定。质谱法为高度复合的定量分析创造了条件,为它们的快速发展提供了条件,无需考虑费时的基于抗体的方法。LC-MS/MS还促进了研究人员对蛋白质异构体和翻译后修饰(PTMs)如何控制和调节多个细胞的了解。在蛋白质互作分析中,亲和纯化与多种定量质谱方法相结合非常常见。在本文中,我们将质谱采集策略分为“数据相关采集(DDA)”和“数据独立采集(DIA)”。目前为止,DDA最常见的用途是通过“鸟枪”技术鉴定化合物。在这些实验中,根据一组简单的启发式规则(通常是母离子强度)选择一个母离子进行碎片化,利用从所选母离子导出的MS/MS图谱进行蛋白质鉴定(图1)。相比之下,DIA并不是根据前体离子扫描中的信息来选择要进行碎片化的离子,而是在质谱仪可见范围内使整组前体离子碎片化,选择离子进行碎片化的方式区别对量化结果有重要影响。图1. QqTOF仪器中典型“鸟枪”实验的示意图。仪器在两种不同的扫描模式之间循环。(A) 在第一模式(MS1)中,所有离子都通过仪器传输,并在检测器处检测,随后可用于母离子测定。利用简单的规则(强度、电荷状态和离子是否已经碎裂)分析导出的质谱图。通过这些规则的离子随后被分离和碎片化。(B) 在MS/MS模式下,特定质量在第一个四极体中分离,在第二个四极体中碎片化。所有的碎片离子都被记录在分析仪中,并产生MS/MS图谱,用于鉴定化合物。质谱仪的不断创新使得检测灵敏度得到显著提高,可以检测样品中成分较少的物质。除了能够更深入地观察样品外,灵敏度的提高还可以提高仪器的扫描速度,这使得用不同的工作流程和方法进行定量和鉴定成为可能。本文我们讨论的是利用亲和纯化联合质谱技术(AP-MS)分析蛋白质-蛋白质相互作用时,肽和蛋白质的定量方法。这些方法也适用于涵盖需要量化的不同应用领域的各种其他类型样本,不过最终使用哪种方法还是由样本复杂性来决定。下期文章中,我们将切入主题,详细介绍几种目前常用的几种研究相互作用蛋白质组学的定量蛋白质组学非标记定量LabelFree法。本文由百泰派克生物科技整理编辑。百泰派克生物科技专注于基于质谱的蛋白质组学服务,结合亲和纯化与定量蛋白质组学非标记定量LabelFree、SILAC或SWATH定量技术,提供一系列定量蛋白质组研究策略,灵敏度高、重复性好,非常适合蛋白质相互作用的研究。文献参考:Stephen Tate, Brett Larsen, Ron Bonner, Anne-Claude Gingras, Label-free quantitative proteomics trends for protein-protein interactions. Journal of Proteomics, 2013.
为什么要研究蛋白质相互作用?蛋白质是细胞的功能分子,控制了细胞中所有生物系统。但是,通常它们不是“孤军奋战”,绝大多数蛋白质会与其他的蛋白质相互作用,一起参与生命的过程。因此了解未知或已知蛋白质的生物学功能和从细胞水平上确定细胞机制,已成为蛋白质组学研究的主要目标。 而当前研究蛋白质相互作用的主要技术方法,包括免疫共沉淀,荧光共定位,荧光双分子互补,荧光双分子互补,荧光能量共振转移等研究方法,通过了解各种研究方法的原理和特点,在实验中可根据不同的要求和目的选择合适的方法。免疫共沉淀(co-IP)原理是以抗原和抗体的特异性结合以及来自细菌的两种蛋白—Protein A/G—特异性结合抗体分子的现象为基础的研究蛋白质相互作用的经典方法,是确定两种蛋白质在细胞内相互作用的有效方法。 人们将抗体和大质量的琼脂糖颗粒或者磁珠进行进行交联或者亲和,然后用这个带有抗体的大颗粒物去识别溶液中的目标蛋白,此时如果目标蛋白已经与其他蛋白相互作用形成复合体,那么含有目标蛋白的蛋白复合体就会被这些大质量的颗粒物所亲和,由于抗体锚定在了这些大质量的颗粒物上。 人们通过各种缓冲液的清洗除去非特异性的结合后的颗粒物可以通过离心或者磁力架吸引进行收集,此时结合在这些颗粒物上的蛋白质理论上就是可以和目标蛋白直接或者间接相互作用的蛋白了。 通常情况下,做实验前你对于这些可能的互作蛋白已经有了猜测,那么可以将大颗粒物拖拽下来的蛋白复合体跑 SDS-PAGE。 然后用 western-blot 的方法,可以用这些可能的互作蛋白的抗体去进行检测,就能验证这种蛋白质之间的相互作用了。根据实验目的的不同,免疫共沉淀的方法可以有很多可以修改的地方。 比如,如果你希望验证蛋白之间直接的相互作用,那么你可以选择体外翻译系统,在试管中合成需要验证互作的一对蛋白,然后混合孵育,并进行检测,也可以通过原核表达系统纯化这对蛋白,然后进行混合孵育并检测等等。免疫沉淀的方法运用合理,可以玩出很多有意思的实验,回答很多问题。 荧光共定位,Fluorescenceco-localization,在过去,这个技术一般用于细胞内辅助证明蛋白相互作用,前些年,如果是其他物种的蛋白质,你应用酵母双杂交系统验证了它们的相互作用,reviewer 可能会说你这个并不能反映原物种中的真实情况,可能是假阳性。 这个时候,一些研究者就将这两个蛋白分别与不同颜色的荧光蛋白融合表达于原物种细胞当中,在高分辨显微镜下,如果两种荧光出现在同一位置,那么就证明它们空间上较为接近,很有可能产生了相互作用。然而,就如上一句话里所说的,只是很有可能,并不能作为直接证据证明它们真的相互作用了。这个技术一般都是没办法时候的办法,就不举例子啦。 荧光双分子互补, bi-molecular fluorescence complementation(BiFC), 人们把绿色荧光蛋白 GFP 分子分割成两段,分别与接受测试的两个蛋白融合表达。如果两个蛋白相互作用,那么在细胞中 GFP 的两个片段就可以在空间上相互接近,并最终能够在激光的激发下发出绿色的荧光。 这里的 GFP 也可以换成萤火虫荧光素酶 Luciferase,原理相同,不同的是荧光素酶需要有底物的存在,发出的是自发荧光而非激发光 。这类技术的好处是可以再活细胞里进行观测,可以进行实时监控,定量等实验。 但是该技术的空间分辨率大概是 250nm,可以说对于蛋白质相互作用来说,依然是相当远的一个距离,因此也有很大可能是假阳性,同时融合蛋白也可能对受试蛋白的空间构象造成影响造成假阳性假阴性的结果。总的来说,这类技术还是要优于前两个的。 荧光能量共振转移,fluorescence resonance energy transfer(FRET),这个技术与第三条又有所不同。 人们将目标蛋白 A 与青色荧光蛋白 CFP 融合表达,将 A 的可能的互作蛋白 B 与黄色荧光蛋白 YFP 融合表达,CFP 的激发光是波长是 414nm 紫外光区域,而荧光波长是 475nm 蓝光区域,恰好 YFP 的激发光是 475nm 附近蓝光区域,而荧光则是 525nm 附近黄色光区域。如果 AB 两蛋白相互作用,空间上相互接近,导致 CFP 和 YFP 分子也在空间上相互接近,那么当仅用紫外光激发 CFP 时,CFP 接收能量放出的蓝光将直接被 YFP 吸收,从而发出黄色的光,如果能够定量 CFP 的蓝光被转化成为 YFP 的黄光效率的变化,那么就可以检测出两个蛋白间的距离的变化 。 因此,这项技术不仅能验证蛋白质的相互作用,还能够表征这种相互作用距离的动态变化,比如蛋白质分子直接相对运动的方向速度等。比如在这篇文章里 ,作者们就用 FRET 测定了细胞运动时的受力情况。 亲和纯化 - 质谱,affinity purification-mass spectrometry(AP-MS),刚才说了,如果你在实验之前已经对目标蛋白有推测的互作蛋白,那么你可以做 western-blot 对它进行检测。 可是,如果你想找一些以前未被报道,你自己也无法猜测的新互作蛋白呢?这个时候,你可以把免疫共沉淀后得到的样品,送去做蛋白组学质谱的实验室,通过质谱对这个复合体中的所有成员进行鉴定,理论上你就获得了整个目标蛋白复合体的成员信息。 如果说,之前的实验都是用一把枪,瞄准对面山头的敌人然后各个击破,那么质谱的方法就是拿了一门炮,将对面山头的敌人一网打尽。AP-MS 的方法还有很多变种。 比如利用一些可以对周围蛋白进行生物素标记的酶,我们可以将目标蛋白与这些酶融合表达,那么,在细胞内,这些融合蛋白就可以对目标蛋白附近的所有蛋白打上亲和素的标记,然后通过生物素与亲和素超强的亲和性,我们可以大幅提高 AP-MS 鉴定的灵敏度,在冲洗非特异性结合的时候,我们就不用担心弱相互作用被我们丢失,这类方法叫做邻近标记(proximity labeling)- 质谱法。 酵母双杂交,Yeasttwo hybrid(Y2H), 这是一个古老的技术,Stanley Fields 和 Ok-KyuSong 在 1989 年的时候利用大肠杆菌中 GAL4 乳糖操纵子的原理,开发出这个方法用于检测蛋白质之间的相互作用 。 GAL4 操纵子有两个结构域,BD(binding domain)结构域和 AD(activation domain),其中 BD 结构域可以结合在 UAS(upstreamactivating sequence)DNA 区域,在 AD 结构域可以激活 UAS 下游的基因表达。 因此,他们把 GAL4 的两个结构域切分开,这样,BD 可以与目标蛋白结合,并且先行结合在报告基因 lacZ 上游的 UAS 区域,接着,把需要检验是否与目标蛋白相互作用的蛋白与 AD 结构域融合表达,如果目标蛋白和被检测蛋白可以相互作用,它们必定会在空间上相互接近彼此,这种相互作用可以使得 AD 和 BD 结构域也在空间上相互接近,这样就可以激活报告基因 lacZ 的表达,使得人们可以检测到 。 这个方法的优势在于廉价且易操作,这个方法一度非常流行,既可以用于筛选目标基因的相互作用蛋白,也可以用于验证相互作用,以及定量检测相互作用的强度。 但是缺点在于受试蛋白都需要和 AD/BD 结构域形成融合蛋白,空间构象可能改变,其次,许多蛋白质的相互作用可能同时需要其他蛋白的协助,而这个系统并无法把这些辅助蛋白也拉进来检测,因此经常漏掉很多的蛋白相互作用,第三,由于反应发生在真菌细胞内,如果你的目标蛋白来自其他物种,这个实验可能并不能反应蛋白在原物种细胞里的真实状态,最后,有的蛋白质可能自身就能够激活报告基因表达,比如转录因子,这样,这类蛋白就没办法通过酵母双杂交进行筛选和验证相互作用了(当然也可以将该蛋白换至 AD 载体上,但是依然有其局限性)。文章来源:每日生物评论欢迎关注微信公众号:每日生物评论,或Bio-review用最专业的精神,开放性的思维,与你一起探索行业走向,快速了解这个领域!
近日,中国科学院大连化学物理研究所研究员王方军团队在蛋白质复合物形成和干预机制分析新方法研究方面取得进展,通过溶液状态蛋白质赖氨酸两步稳定同位素标记和定量蛋白质组学分析,实现对蛋白—蛋白识别关键位点区域的精确探测,并可评估小分子对蛋白质复合物的构象识别干预情况。蛋白质的结构和相互作用决定了其生物学功能,目前对溶液状态蛋白—蛋白识别和结构动态变化研究仍然缺乏高灵敏度的分析方法。此前,研究团队发现蛋白质上赖氨酸的原位标记反应性与其所处微观结构中的氢键、静电相互作用强度密切相关;提出以蛋白质上所有赖氨酸位点为内源性反应探针,通过定量赖氨酸在蛋白—蛋白,蛋白—小分子结合前后的标记反应性变化,精确探测蛋白质识别过程中的关键区域。为进一步提高赖氨酸反应性定量分析的通量和灵敏度,该团队进一步发展了溶液状态蛋白质“活性—变性”赖氨酸两步稳定同位素标记定量策略(TILLRP),系统研究了重组SARS-CoV-2 S1蛋白质和人体ACE2受体之间的相互作用情况;发现S1蛋白质RBD Lys386-Lys462区域的赖氨酸位点在S1-ACE2复合物形成前后标记反应性发生了显著改变;提出可以利用该区域赖氨酸的标记反应性调控水平评估小分子活性物质对S1-ACE2识别的干预情况,可能有助于相关治疗药物分子的研发。该研究结果发表在《化学科学》(Chemical Science)上。上述研究工作得到国家自然科学基金、大连化物所创新基金等项目的资助。大连化物所提出蛋白质相互作用识别和干预机制分析新方法【来源:大连化学物理研究所】声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 邮箱地址:newmedia@xxcb.cn
近日,中国科学院大连化学物理研究所研究员王方军团队在蛋白质复合物形成和干预机制分析新方法研究方面取得新进展。研究人员通过溶液状态蛋白质赖氨酸两步稳定同位素标记和定量蛋白质组学分析,实现对蛋白—蛋白识别关键位点区域的精确探测,并可评估小分子对蛋白质复合物的构象识别干预情况。相关研究结果发表于《化学科学》。蛋白质的结构和相互作用决定了其生物学功能,目前对溶液状态蛋白—蛋白识别和结构动态变化研究仍然缺乏高灵敏度的分析方法。此前,王方军等人发现蛋白质上赖氨酸的原位标记反应性与其所处微观结构中的氢键、静电相互作用强度密切相关。受此启发,研究团队又提出以蛋白质上所有赖氨酸位点为内源性反应探针,通过定量赖氨酸侧链氨基在蛋白—蛋白、蛋白—小分子结合前后的标记反应性变化,精确探测蛋白质识别过程中的关键区域和相关构象变化。为进一步提高赖氨酸反应性定量分析的通量和灵敏度,该研究进一步发展了溶液状态蛋白质 " 活性—变性 " 赖氨酸两步稳定同位素标记定量策略(TILLRP),系统研究了重组 SARS-CoV-2 S1 蛋白质和人体 ACE2 受体之间的相互作用情况;发现 S1 蛋白质 RBD Lys386-Lys462 区域的赖氨酸位点在 S1-ACE2 复合物形成前后标记反应性发生了显著改变,并由此提出可以利用该区域赖氨酸的标记反应性调控水平评估小分子活性物质对 S1-ACE2 识别的干预情况。该研究成果可能有助于相关治疗药物分子的研发。相关论文信息:https://doi.org/10.1039/D0SC05330A【来源:科普中国网】声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 邮箱地址:newmedia@xxcb.cn
近日,中国科学院上海药物研究所陈小华课题组和中国科学院成都生物研究所唐卓课题组合作,基于开发新的非天然氨基酸,发展了一种能够在活细胞中捕捉蛋白质相互作用的新技术,该方法兼具时空可分辨和交联位点选择性的优势。研究成果“Genetically Encoded Resie-Selective Photo-Crosslinker to Capture Protein-Protein Interactions in Living Cells”在线发表于Cell出版社子刊Chem 杂志。蛋白质相互作用在生命活动中扮演非常重要的角色,发现蛋白质新的相互作用或功能将有助于阐明特定生命过程,为相关疾病的治疗提供理论基础。然而蛋白质相互作用网络十分复杂,在活体条件下开展蛋白质相互作用研究非常具有挑战性。基于基因密码子拓展技术,在活体细胞的目标蛋白质中定点引入具有共价交联活性的非天然氨基酸,已经成为活细胞内研究蛋白质-蛋白质相互作用的有力工具。研究团队针对现有非选择性的蛋白质交联技术产生的交联肽段结构复杂、质谱数据难以解析、假阳性高等关键问题,发展了一种时空可分辨的残基选择性(resie-selective)共价交联新方法,成功实现了在活细胞中对相互作用的蛋白质复合物的有效捕捉及后续质谱的分析。通过对多种相互作用蛋白质(如乙酰化酶与底物)的研究,该技术可以捕捉活细胞中微弱的蛋白质相互作用;其获得蛋白质的交联肽段可以很大程度上简化质谱的分析、作为确定蛋白质相互作用的直接证据、确定相互作用的界面以及验证酶与特定底物的相互作用。该方法在一定程度上突破了传统蛋白质相互作用分析、发现方法的瓶颈,有望被广泛用于传统方法难以发现的活细胞中微弱的、瞬间的或呈动态作用方式的蛋白相互作用的研究。陈小华、唐卓为论文的共同通讯作者,陈小华课题组胡伟为该论文第一作者;上海药物所谭敏佳课题组参与此项工作。该研究得到上海药物所质谱技术服务部的支持,该项目得到国家自然科学基金委、中科院、上海市科委项目的资助。具有时空可分辨的捕捉活细胞中蛋白质相互作用技术示意图中国生物技术网诚邀生物领域科学家在我们的平台上,发表和介绍国内外原创的科研成果。注:国内为原创研究成果或评论、综述,国际为在线发表一个月内的最新成果或综述,字数500字以上,并请提供至少一张图片。投稿者,请将文章发送至weixin@im.ac.cn。近期热文直接点击文字即可浏览!1、补牙或将成为历史?2、科学你慢慢学,中医我先治病去了3、科学告诉你应该多久洗一次澡4、新证据:喝咖啡能延长寿命!5、据说,这是生物医学硕士博士生的真实的生活写照6、一顿早餐到底有多重要?7、情商也是把双刃剑!高情商或让你更脆弱8、施一公:压死骆驼的最后一根稻草,是鼓励科学家创业!9、“科学禁食法”真能降低重大疾病风险10、睡眠科学家揭示出8种睡好觉的秘诀11、有志者事竟成!2型糖尿病成功被逆转12、每周两半小时,任何形式的锻炼都可以使你更长寿13、喝醉以后,你以为睡一觉就没事儿了?!14、仰卧起坐等或将成为延寿运动?15、冥想、瑜伽、太极等不仅能够改善身心健康...
一、前言酵母双杂交由Fields和Song在1989年提出. 他的产生是基于对真核细胞转录因子特别是酵母转录因子GAL4性质的研究。酵母双杂交就是基因转录所需的转录因子的两个结构域在两个互作蛋白的吸引下位置靠近,诱导了基因的表达。酵母双杂交系统的最主要的应用是快速、直接分析已知蛋白之间的相互作用,及分离新的与已知蛋白作用的配体及其编码基因。酵母双杂交系统检测蛋白之间的相互作用具有以下优点:⑴ 作用信号是在融合基因表达后, 在细胞内重建转录因子的作用而给出的, 省去了纯化蛋白质的繁琐步骤。⑵ 检测在活细胞内进行, 可以在一定程度上代表细胞内的真实情况。⑶ 检测的结果可以是基因表达产物的积累效应, 因而可检测存在于蛋白质之间的微弱的或暂时的相互作用。⑷ 酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA文库, 能分析细胞浆、细胞核及膜结合蛋白等多种不同亚细胞部位及功能的蛋白。二、酵母单/双杂交简介1、酵母单杂交 酵母单杂交技术是在酵母双杂基础上发展而来的一种研究核酸-蛋白相互作用的工具,被广泛用于研究真核细胞内基因的表达调控,如鉴别DNA结合位点发现潜在的结合蛋白基因、分析DNA结合结构域信息等。2、酵母双杂交酵母双杂交及系统是一种鉴定和检测蛋白质相互作用的研究方法,因其具有灵敏性高、功能强大、适用范围广等特点,现已被应用于多个研究领域。①核蛋白酵母双杂交: 核蛋白酵母双杂交技术最初由Fields等人在研究酵母转录因子GAL4性质时建立,后续经过不断改进已发展成为一种成熟的蛋白-蛋白互作研究工具,具有简便、灵敏、可反映蛋白在活细胞内互作真实情况的特点,被广泛应用于互作蛋白的筛选、蛋白相互作用的鉴定/验证、蛋白互作机理的探究、蛋白连锁图谱绘制等工作。②膜蛋白酵母双杂交:DUALmembrane技术在传统的酵母双杂交系统的基础上,巧妙地利用分离的泛素系统(split-ubiquitin)进行蛋白质相互作用的筛选;泛素作为降解信号分子,人为分成两部分:N端(Nub),C端(Cub),互补重构的完整泛素分子可被泛素专一性蛋白酶(UBPs)识别,从而导致与泛素相连的蛋白被酶解。三、核酵母单/双杂交点对点验证流程简介及图片分析A为诱饵,B为猎物。筛选涉及到的报告基因:(1)HIS3。(2)ADE2。(3)MEL1。诱饵质粒PGBKT7携带trp基因, , 猎物质粒PGADT7携带Leu基因。筛选涉及到的平板:DDO[SD/-Leu/-Trp],DDO/X[SD/-Leu/-Trp/X-α-gal],TDO /X [SD/-Leu/-Trp/HIS3/X-α-gal],QDO /X[SD/-Leu/-Trp/HIS3/Ade2/X-α-gal]1、诱饵自激活验证分析:诱饵质粒重组质粒PGBKT7-A和猎物空载PGADT7共转化Y2Hgold酵母菌株。(1)涂布DDO平板能够生长,说明诱饵PGBKT7-A+ PGADT7已成功转入宿主菌中且对宿主菌无毒性;(2)涂布TDO平板,不能生长,说明诱饵PGBKT7-A+ PGADT7无自激活现象,不能激活宿主菌报告基因his的表达;(3)涂布QDO平板没长,说明诱饵PGBKT7-A+ PGADT7无自激活现象,没有激活报告基因ADE2。2、共转验证——阴阳性对照3、共转验证——实验组分析:诱饵重组质粒PGBKT7-A和猎物重组PGADT7-B共转化Y2Hgold酵母菌株。(1)涂布DDO平板能够生长,说明诱饵PGBKT7-A+ PGADT7-B已成功转入宿主菌中且对宿主菌无毒性;(2)涂布TDO平板能生长,说明诱饵PGBKT7-A+ PGADT7-B能够互作,激活了宿主菌报告基因HIS3的表达;(3)涂布QDO平板能长,说明诱饵PGBKT7-A+ PGADT7-B能够互作,同时激活了报告基因HIS3和ADE2的表达。4、双杂点种图1自激活: Y2H[PGBKT7-A+ PGADT7]2实验组: Y2H[PGBKT7-A+ PGADT7-B]3阳性对照: Y2H[pGBKT7-53+pGADT7-T]4阴性对照: Y2H[pGBKT7-lam+pGADT7-T]5、酵母单杂点对点验证示意图P为诱饵启动子,B为猎物。单杂筛选报告和抗性基因:AbAr/ AUR-C,AUR1基因的一个显性突变版本,编码肌醇磷酸化神经酰胺syn- thase酶。AUR1-C在Y2HGold/ Y1HGold酵母株中表达,是由于蛋白质与蛋白质的相互作用,使GAL4转录激活和DNA结合域接近。可以添加ABA进行背景抑制。,诱饵质粒PABAI携带Ura基因,猎物质粒PGADT7携带Leu基因。筛选所用到的平板:SD/- Leu,SD/- Leu/+AbA自激活结果分析:PGADT7空载转化含诱饵启动子PAbAi-PY1Hgold酵母菌株。(1)涂布SD/-Leu平板能够生长,说明诱饵PAbAi-P已成功转入宿主菌中且对宿主菌无毒性;(2)涂布SD/-Leu/AbA(100ng/ml), SD/-Leu/AbA(200ng/ml) 平板能生长,说明200ng/ml的AbA不能抑制报告基因AbAr/ AUR-C ;(3)涂布SD/-Leu/AbA(500ng/ml) ,SD/-Leu/AbA(800ng/ml),SD/-Leu/AbA(1000ng/ml)平板没长,说明能够抑制报告基因AUR1-C的最低AbA浓度为500ng/ml,后续可用AbA(500ng/ml)进行共转验证。如果AbA最高抑制浓度1000ng/ml仍然能够生长,则只能考虑截短诱饵启动子。6、共转验证——阴阳性对照7、共转验证——实验组分析:诱饵启动子重组质粒PAbAi-P转化Y1Hgold酵母菌株涂布SD/-Ura平板,挑取单克隆菌制备成感受态,将猎物重组质粒PGADT7-B转化到Y1Hgold【 PAbAi-P 】中。(1)涂布SD/- Leu平板能够生长,说明猎物重组质粒PGADT7-B已成功转入宿主菌中且对宿主菌无毒性;(2)涂布SD/- Leu /+AbA (500ng/ml)平板能生长,说明诱饵PAbAi-P + PGADT7-B能够互作,激活了宿主菌报告基因AbAr/ AUR-C的表达。8、单杂稀释点种图更多参考案例:1、Construction and characterization of a high-quality cDNA library of Cymbidium faberi suitable for yeast one- and twohybrid assays.2、SlAREB1 transcriptional activation of NOR is involved in abscisic acid-molated ethylene biosynthesis ring tomato fruit ripening.四、核蛋白酵母杂交点对点验证简介五、酵母单/双杂点对点技术优势:1. 转化效率高,较少假阴性;2. 设置严格的对照实验,排除假阳性和假阴性;3. 酵母双杂系统采用多个报告基因,且每个报告基因上游调控区各不相同,可大幅度减少假阳性;4. 报告基因整合到染色体上,使基因表达水平稳定,消除了由于质粒拷贝数变化引起基因表达水平波动而造成的假阳性;5. 严格设置点种验证实验菌体生长状态,进一步验证是否互作及互作强弱;6. 严格保存原始实验数据便于溯源。
1 蛋白质与水的相互作用:蛋白质的水溶性蛋白质与水之间的作用力主要是蛋白质中的肽键(偶极-偶极相互作用或氢键),或氨基酸的侧链(解离的、极性甚至非极性基团)同水分子之间发生了相互作用。影响蛋白质水溶性的应素很多:(1)pH>pI 时,蛋白质带负电荷,pH=pI 时,蛋白质不带电荷,pH 时,蛋白质带正电荷。溶液的pH 低于或高于蛋白质的pI 都有利于蛋白质水溶性的增加,一方面是加强了蛋白质与水分子的相互作用,另一方面蛋白质链之间的相互排斥作用。等电沉淀。(2)离子强度:μ=0.5ΣCiZi2,Ci 表示离子强度,Zi 表示离子价数。盐溶:当溶液中的中性盐浓度在0.5mol/L 时,可增加蛋白质的溶解性,盐作用减弱蛋白质分子之间的相互作用。盐析:当溶液中的中性盐的浓度大于1mol/L 时,蛋白质会沉淀析出,这是盐与蛋白质竞争水分的结果。不同盐类对蛋白质的盐析作用强弱不同。将这种强弱顺序称为感胶离子序:(3)非水溶剂:有些有机溶剂可引起蛋白质变性沉淀,主要是有机溶剂降低了水的介电常数,蛋白质之间的静电斥力降低。(4)温度:温度低于40-50℃时,随温度的增大水溶性增大,当温度大于50℃,随温度的增大,水溶性降低。根据蛋白质的溶解性对蛋白质分类:(1)清蛋白:可溶于pH6.6 的水中,血清清蛋白,卵清蛋白,α-乳清蛋白;(2)球蛋白:能溶于pH7 的稀碱溶液,β-乳球蛋白;(3)醇溶蛋白:能溶于70%的乙醇,玉米醇溶蛋白;(4)谷蛋白:在上述溶剂中都不溶解,但可溶于酸(pH2)或碱(pH12)。2 织构化在许多食品体系中,蛋白质是构成食品结构和质地的基础,无论是生物组织(鱼和肉的肌原纤维蛋白),还是配制食品(如面团、香肠、肉糜等)。还可以通过织构化加工植物蛋白使其具有咀嚼性及持水性的纤维状产品。一般蛋白质织构化的方法有:(1)热凝固和薄膜形成:豆浆在95℃保持几小时,表面会形成一层薄膜,如腐竹的生产。一般工业化蛋白质织构化是在光滑的金属表面进行的;(2)纤维形成:纤维纺丝。大豆蛋白纺丝:在pH10 时制备高浓度10-40%的纺丝溶液→脱气→澄清→通过管蕊板,每平方厘米1000 孔,孔径为50-150μm→酸性氯化钠溶液(等电沉淀或盐析)→压缩→成品。(3)热塑挤压:使蛋白质中的含水量为10-30%,在高压下10000-20000kPa,使其在20-150s 内温度升高到150-200℃。挤压通过蕊板,一般在蛋白质中加入淀粉可改善其质地。3 凝胶形成:蛋白质形成凝胶的机制和相互作用至今还没有完全研究清楚,但有研究表明蛋白质形成凝胶有两个过程,首先是蛋白质变性而伸展,而后是伸展的蛋白质之间相互作用而积聚形成有序的蛋白质网络结构。影响蛋白质凝胶形成的因素有:(1)蛋白质的浓度:蛋白质溶液的浓度越大越有利于蛋白质凝胶的形成,高浓度蛋白质可在不加热、与等电点相差很大的pH 条件下形成凝胶。(2)蛋白质的结构:蛋白质中二硫键含量越高,形成的凝胶的强度也越高,甚至可以形成不可逆凝胶,如卵清蛋白,β-乳球蛋白。相反含二硫键少的蛋白质可形成可逆凝胶,如白明胶等。(3)添加物:不同的蛋白质相互混合,可促进凝胶的形成,将这种现象称为蛋白质的共凝胶作用。在蛋白质溶液中添加多糖,如在带正电荷的明胶与带负电荷的褐藻酸盐或果胶酸盐之间通过离子相互作用形成高熔点凝胶。(4)pH:pH 在pI 附近时易形成凝胶。4 面团形成小麦胚乳中的面筋蛋白质在当有水分存在时在室温下混合和揉搓能够形成强内聚力和粘弹性糊状物的过程。水合的面粉在混合揉搓时,面筋蛋白质开始取向,排列成行或部分伸展,这样将增强蛋白质的疏水相互作用并通过二硫交换反应形成二硫键。最初的面筋颗粒形成薄膜,形成三维空间上具有粘弹性的蛋白质网络。影响蛋白质面团形成的因素有很多:(1)氧化还原剂:还原剂可引起二硫键的断裂,不利于面团的形成,如半胱氨酸;相反氧化剂可增强面团的韧性和弹性,如溴酸盐;(2)面筋含量:面筋含量高的面粉需要长时间揉搓才能形成性能良好的面团,对低面筋含量的面粉揉搓时间不能太长,否则会破坏形成的面团的网络结构而不利于面团的形成;(3)面筋蛋白质的种类:利用不同比例的麦醇溶蛋白和麦谷蛋白进行实验,发现麦谷蛋白决定面团的弹性、粘结性、混合耐受性等,而麦醇溶蛋白决定面团的延伸性和膨胀性。5 乳化性质蛋白质在许多乳胶体食品体系中起着重要的作用,如牛奶、冰淇淋、肉馅等。蛋白质对水/油体系的稳定性差,而对油/水体系的稳定性好。影响蛋白质乳化的因素:(1)盐:0.5-1.0mol/L 的氯化钠有利于肉馅中蛋白质的乳化;(2)蛋白质的溶解性:蛋白质的溶解性越好,其乳化性也越好,但蛋白质的乳化性主要与蛋白质的亲水-亲油平衡性有关;(3)pH:有些蛋白质在pI 时乳化性最好,而有些蛋白质在pI 乳化性最差;(4)热作用:热不利于蛋白质乳化性的发挥。6 起泡性质在食品体系中蛋白质起泡的现象非常常见,如蛋糕、棉花糖、蛋奶酥、啤酒泡沫、面包等。蛋白质泡沫其实质蛋白质在一定条件下与水分、空气形成的一种特殊形态的混合物。影响蛋白质起泡的因素有:(1)盐类:氯化钠一般能提高蛋白质的发泡性能,但会使泡沫的稳定性降低,Ca2+则能提高蛋白质泡沫的稳定性。(2)糖类:糖类会抑制蛋白质起泡,但可以提高蛋白质泡沫的稳定性。(3)脂类:脂类对蛋白质的起泡和泡沫的稳定性都不利。(4)其他:蛋白质浓度为2-8%时,起泡效果最好,除此之外还与搅拌时间,强度、方向等有关。有时由于蛋白质的起泡而影响加工工艺的操作,要对蛋白质泡沫进行消除,常用的方法就是加入消泡剂——硅油。7 风味结合作用蛋白质可以使食品中的挥发性风味化合物在贮藏及加工过程中不发生变化,并在进入口腔时完全不失真的释放出来。影响蛋白质风味结合作用的因素有:(1)水:水可以提高蛋白质对极性风味化合物的结合作用,但对非极性风味化合物的结合没有影响;(2)盐:凡能使蛋白质解离或二硫键断裂的盐类,都能提高蛋白质的风味结合能力;(3)水解作用:蛋白质水解后其风味结合作用严重被破坏;(4)热变性:热变性一般会使蛋白质的风味结合作用有所加强;(5)其他:脱水,脂类存在。
本期介绍东北农业大学食品学院隋晓楠教授发表在《中国食品学报》第19卷第7期青年论坛栏目上的文章《大豆蛋白质-植物多酚互作的研究进展》。该文章获“中国科协青年人才托举工程项目(2018QNRC001)”资助。大豆蛋白质与植物多酚是食品基质中两种重要的组成成分,常因其相互作用而被广泛研究。大豆蛋白质与植物多酚的相互作用能够影响两者的结构、功能特性以及生物利用度。文章总结了近几年来植物多酚与大豆蛋白质的相互作用对大豆蛋白的结构、功能特性和生物利用度的研究进展,同时着重总结了相互作用对多酚的影响,以期为大豆蛋白质和植物多酚的高值化利用、产品开发以及在食品领域的应用提供理论基础。酚类与蛋白质的相互作用会影响食物基质中的食物成分,这主要是集中于动物性蛋白质中,对于植源蛋白质鲜有报道,这与大豆蛋白质大量的工业化生产与应用的现状是不相符的。对此,结合现有的研究现状,提出以下尚待研究与改进的方面:1)大豆蛋白质与植物多酚在食品体系中的互作规律解析。以往研究对大豆蛋白质与植物多酚的互作进行了积极的探索,然而鉴于大豆蛋白质与植物多酚的种类、结构及组成成分的复杂性,大豆蛋白质单一组分与单体/多聚体多酚化合物相互作用的研究缺乏,检测的技术手段与方法的限制,使两者的互作机制不够明确,互作规律仍需深入挖掘。2)大豆蛋白质与植物多酚的交互作用机制以及对蛋白质和多酚的结构、功能特性构效关系的研究。大豆蛋白质与不同植物多酚之间的亲和力具有一定的差异性,两者构成的复合物的结构差异是决定它们发挥生理活性功能的关键因素。然而,在大豆蛋白质与植物多酚的互作影响蛋白、多酚的结构改变与功能特性的差异的内在关联尚未明晰,特别是对于两者复合物的营养安全,蛋白和多酚在肠道中的生物利用度的研究与评价以及肠道菌群功能的开发尚待研究。3)加工条件对大豆蛋白质与植物多酚的相互作用的差异及结构、功能特性的调控研究。加工环境的改变,如热处理及新加工技术的应用(亚临界、超高静水压、超声技术等),都会在很大程度上影响大豆蛋白质与植物多酚之间的相互作用、作用强度及作用类型,进而造成两者结构、功能特性上的差异。了解不同加工条件对两者的互作机制,可能有助于改善含蛋白质和酚类化合物食品的加工工艺。然而,现有的食品加工技术对蛋白质与多酚互作的影响研究较少,未来关于多种新型技术应用两者互作的影响也需要更深入的研究与探讨。(点击左下角“阅读原文”查看全文)关注我们中国食品科学技术学会官方微信《中国食品学报》投稿平台
责编 | 兮G 蛋白偶联受体(GPCRs)是最大的一类膜蛋白家族受体,通过偶联下游异源三聚体G蛋白将信号从胞外传递至胞内。GPCR是人类基因组编码最大的膜蛋白超家族,也是最大的药物靶点。异源三聚体G蛋白主要有四个家族: Gi/o, Gs, Gq/11, G12/13, 它们所介导和调控的细胞质信号级联反应在哺乳动物细胞功能的各个方面都起着非常关键的作用【1-3】。研究发现,单个GPCR可以同时激活一个以上的G蛋白家族,并且具有不同的效率。表现出最高的效率和最快的动力学特性的称为“初级偶联”,而表现出较低的效率或较慢的动力学特性的则称为“次级偶联”。这一现象使得GPCR介导的细胞信号转导更加复杂。近年来,随着冷冻电镜技术的发展,许多GPCRs及其下游G蛋白复合物的结构得以解析,为人们在分子水平理解GPCRs与G蛋白的互作提供了重要的结构信息,揭示了G蛋白主要是通过Gα亚基的C-末端与受体跨膜核心区域结合【4-6】。然而,这些结构未能清楚地阐明初级和次级偶联观察到的不同偶联效率的结构机理。2020年6月22日,香港中文大学(深圳)杜洋与韩国成均馆大学KaYoung Chung在Nature Communications上发表了题为“Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family”的研究成果。研究发现,G蛋白α亚基 C-末端与受体的结合对于区分初级和次级Gi/o偶联起到关键作用;此外,研究还发现受体第二个胞内环上的一个保守疏水残基对初级Gi/o-偶联并不是至关重要的; 然而,它可能对于次级Gi/o偶联非常重要。本研究中,作者分别利用M2 毒蕈碱受体(M2R)和β2肾上腺素受体(β2AR)作为研究初级Gi/o偶联和次级Gi/o偶联的模式受体,通过氢氘交换质谱(hydrogen deuterium exchange mass spectrometry, HDX-MS)的方法,研究两种模式受体与下游Gi/o蛋白的动态组装过程。研究者首先分析了Gi/o蛋白的氢氘交换变化,发现当Gi/o蛋白与初级偶联受体M2R反应时,可以检测到在G蛋白C-末端的氢氘交换水平会明显降低,表明Gi/o蛋白C-末端与M2R发生稳定的结合。然而,当Gi/o蛋白与次级偶联受体β2AR反应时,Gi/o 大部分区域的氢氘交换变化与M2R 反应类似,但是其C-末端的氢氘交换没有发生明显变化,这一现象表明Gi/o蛋白与β2AR相互作用时,其C-末端可能没有形成稳定的α螺旋或者没有深入的插到受体的跨膜核心区域(图1)。进一步的脉冲氢氘交换质谱(pulsed HDX-MS)实验 (即在不同的时间尺度上观察Gi/o蛋白与受体互作时各个区域的氢氘交换变)也验证了这一结果。图1 G 蛋白与分别与M2R和β2AR结合时Gα 的氢氘交换水平变化随后作者截短了 Gi/o蛋白C-末端的最后5个与受体互作的5个氨基酸,功能实验发现这些截短可以显著降低Gi/o蛋白与初级偶联受体M2R偶联的效率,然而并没有使其完全丧失功能,而是使其效率和次级偶联受体相当。有意思的是,这些截短对于Gi/o蛋白与次级偶联受体β2AR偶联的效率并没有显著影响。这些结果表明Gi/o蛋白C-末端的5个氨基酸对于区分G初级偶联和次级偶联发挥了重要作用。之前的结构和功能研究揭示GPCRs 第二个胞内环上的一个保守氨基酸在与G蛋白互作过程中发挥关键作用。研究者进一步分析了这一保守氨基酸对于初级偶联和次级偶联是否有发挥不同作用。通过突变和功能实验以及一系列的序列分析,研究者发现该保守氨基酸在次级Gi/o 偶联中发挥关键作用,然而对于初级Gi/o偶联的作用并不是至关重要。图2 GPCRs 与Gs、Gi/o初级偶联以及Gi/o 次级偶联机制示意图这项工作利用氢氘交换质谱等方法,在已有的结构基础上对GPCRs与Gi/o蛋白的初级和次级偶联进行了深入的分析,揭示了受体偶联Gi/o蛋白产生不同效率可能的分子机制。同时,对比先前β2AR与Gs蛋白的氢氘交换实验数据7,该研究还发现GPCR与Gi/o的偶联可能遵循某种与Gs蛋白不同的机制,这种差异可能为理解GPCR-G蛋白选择性提供更多线索,还需要进一步深入的研究。这是继两人在2019年在Cell期刊(详见BioArt报道:专家点评| Brian Kobilka等两篇Cell揭示GPCR-G蛋白的时序组装),利用氢氘交换质谱等生物物理技术研究GPCR偶联构象动态性又取得的重要进展,进一步的合作研究正在顺利进行中。