编者按:在新一年的开端,小鹿首先要祝愿所有的科研工作者新年快乐,愿在这一年中心想事成,科研文章都上榜SCI~~本期,小鹿推出时下热点技术DIA技术,通过热门技术与前沿科技相结合,用3篇影响因子总计66分的文章告诉您DIA技术的应用。DIA技术用于永久定量数字保存对科研研究者来说,科研样本对研究起着决定性的因素。微量样本、独特样本、珍贵样本、甚至有些样本是难以获取的,针对这些样本可能由于研究时间局限性,样本收集不全面,样本失效等损失会带来课题延期、重制样、甚至错失发文先机。本篇由苏黎世联邦理工学院Ruedi Aebersold教授团队在Nature Medicine杂志(IF=30.641)发表题为“Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps”的研究论文,该研究提出了一个方法,可以快速稳定地将组织样本转化为一份数据文档,永久地存贮这个样本经质谱分析得到的蛋白质组结果。影响因子:30.641材料:组织活检样品 发表期刊:Nat.Med.主要技术:PCT-SWATH/DIA中文标题:将组织活检样品快速质谱转换为永久定量数字蛋白质组图谱这篇文章中,作者用PCT-DIA技术方法将来自9个肾癌病人的18个组织切片分别转化为(DIA)SWATH-MS多肽离子碎片谱图,并从这些谱图中对2000个蛋白样本进行定性和定量分析。作者发现肾组织切片的蛋白质组测序结果具有很好的可重复性,而且能完全将肾癌病人和健康人,以及不同组织形态的肾癌亚型区分开来。该方法特别适合大队列(几十上百甚至上千个样品)、少量样品(比如组织活检样品)蛋白组批量分析。2DIA技术在定量准确性和重现性上的优势严格说来:人体各系统器官的疾病都可以在血液当中有一定的呈现,通过测定血液中的蛋白可反映病人的生理病理状态。因此,运用质谱技术来测定蛋白定量的准确性和重现性成了研究的焦点。本文发表在《Theranostics》上由国家蛋白质科学中心的于晓波教授、广东省中医院卢传坚教授、西湖大学郭天南研究员等合作发表的In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicin,详细的总结了运用DIA技术对血液标志物进行探索,进一步的验证DIA 技术在定量的准确性和重现性的优势;材料:血清影响因子:8.063发表期刊:Theranostics主要运用技术:DIA技术、抗体微阵列中文标题:血清蛋白质组学鉴定银屑病及其中药疗效的生物标志物英文标题:In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicin本文通过DIA技术和抗体微阵列技术,以银屑病为疾病模型,对银屑病治疗前、银屑病中药(银屑灵)治疗后、健康对照共50例血清样本建立蛋白质表达谱。鉴定到了106种参与血液凝固、炎症、细胞凋亡和血管生成等银屑病相关生物过程的差异蛋白。聚类和主成分分析发现58种蛋白可区分健康组和银屑病患者,12种蛋白可预测中药治疗效果,相关性分析发现三个血清蛋白(PI3,CCL22,IL-12B)与银屑病面积和严重程度指数(psoriasis area and severity index, PASI)评分呈正相关。质谱DIA技术适合大规模临床样本的检测,抗体微阵列技术可补充质谱无法鉴定到的血清低丰度蛋白,本文结合DIA技术和抗体微阵列技术研究血液生物标志物的思路值得借鉴。3DIA技术与人工智能相结合2019年11月,英国剑桥大学生物化学系和米尔纳治疗学研究所(Department of Biochemistry and The Milner Therapeutics Institute, University of Cambridge)等多家机构在一区期刊Nature Methods(IF=28.467)发表题为“DIA-NN:通过神经网络和干扰校正实现高通量蛋白质组的深度覆盖”的文章,该文章作者提出了一种方便的集成软件包DIA-NN,它利用深层神经网络和新的量化及信号校正策略来处理DIA蛋白质组学的实验结果。DIA-NN提高了传统DIA蛋白质组定性和定量的能力,特别在高通量应用方面具有快捷的优势,与快速色谱方法结合使用时能够对蛋白质实现准确的深度覆盖。影响因子:28.467发表期刊:Nature Methods运用技术:DIA蛋白质组学中文标题:DIA-NN:通过神经网络和干扰校正实现高通量蛋白质组的深度覆盖软件版本:DIA-NN(1.6.0)、OpenSWATH18、Spectronaut、Specter、Skyline平台:QExactiveTM HF(Thermo Fisher Scientific )、TripleTOF 6600 (SCIEX)材料:酵母蛋白提取物、人脐带血血浆、酶解的人K562细胞裂解物、Hela细胞蛋白提取物、大肠杆菌蛋白提取物在DIA-NN中引入的计算方法稳定且显著地增加了不同复杂度样品及不同质谱平台上获得定性和准确定量的肽和蛋白质的数量。DIA-NN首次通过使用短色谱梯度实现了蛋白质组的全面覆盖,从而显著缩短了质谱仪的运行时间,为以前无法实现的对高通量蛋白质组进行快速而精确的测量打开了大门。鹿明生物自2017年初建立了DIA、PRM等蛋白组学技术平台,是国内早期开展DIA/PRM技术服务的领跑者;近2余年来,鹿明生物积累了丰富的DIA、PRM蛋白组学等组学项目经验,公司采用高端精密的仪器设备Thermo QE-HF等,迄今为止,鹿明生物已处理DIA+PRM项目样品3000+例,拥有丰富完善的项目经验;目前鹿明生物也已经自主研发了大容量水稻DIA数据库及深度水稻磷酸化DIA数据库、PCT-DIA技术等希望能够为您的科研助力添彩;目前鹿明生物也推出蛋白组学检测+验证一体化--1+1>2的蛋白组学黄金组合服务:DIA +PRM技术,具体可扫码添加技术交流群哦~~鹿明生物上海鹿明生物科技有限公司,一直专注于生命科学和生命技术领域,是国内早期开展以蛋白组和代谢组为基础的多层组学整合实验与分析的团队。经过近数年的发展沉淀,公司建立起了iTRAQ/TMT、DIA、PRM、修饰蛋白组等蛋白组学技术平台和全谱代谢组、靶向代谢组、拟靶向代谢组、脂质组等代谢组学技术平台以及相应的数据整合分析平台,并建立了科学完整的服务流程和精细规范的操作标准。公司拥有:SCIEX-QTRAP-6500,SCIEX-QTRAP-6500 plus,SCIEX-QTRAP-4000,Waters Xevo G2-XS,Thermo-TSQ-Altis,Thermo-Obritrap-QE,Thermo-Obritrap-QE-HF,Aglient-GCMS-7890B/5977A,AglientGCMS7890B/5977A(带顶空进样装置)及云计算分析平台等大型检测设备以及完整的样品前处理系统和数据分析系统(拥有各类分析软件及数据库)。公司荣获国家高新技术企业,通过ISO9001认证,获得代谢组学专利及软件著作等近20余项知识产权专利;同时也取得上海市公共技术服务平台资质认证,获得上海市创新创业计划大赛支持。迄今为止,鹿明完成服务项目上万个,涉及医学、农业、生态学及工业应用等多个研究领域,发表SCI论文数百篇。2017年6月,公司与上海欧易生物医学科技有限公司实现战略整合,实现中心法则上中下游多层组学的串联,整合后的鹿明力求打造优质技术平台,争做优质蛋白代谢服务企业,助力生命科学领域的科学家快出成果,出好成果,从而推动科技创新。鹿明生物,多层组学定制服务专家,为您的科研助力!END
1,Nature Medicine重磅突破,报道迄今为止最大规模的阿尔兹海默症蛋白组学研究来源:精准医学与蛋白组学蛋白组学揭示衰老与AD的关联4月13日, Allan I. Levey教授及其合作者再次在国际专业学术期刊Nature Medicine (IF =30.641)发表了最新研究成果,报道了迄今为止最大的阿兹海默症相关蛋白质组学研究。研究人员运用蛋白质组学技术、共表达网络分析、和靶向蛋白质组技术(PRM)对健康人和患有阿兹海默症患者的2,000多个人脑组织样本和近400个脑脊液样本进行系统分析,研究确定了反映大脑生物过程的关键蛋白质共表达网络,为阿尔兹海默症的临床诊治提供了新的治疗靶标和生物标志物。2,Nat Neurosci | 渐冻症和额颞叶痴呆患者中C9ORF72蛋白功能缺失和获得性毒性的协同致病机制来源:BioArt肌萎缩性侧索硬化症(ALS)也称渐冻症,是进程迅速、致死率高的运动神经元疾病。额颞叶痴呆(FTD)属于第二大家族遗传性认知障碍,主要影响人格、社会行为和语言功能。研究表明,在许多ALS和FTD患者中都存在六碱基(GGGGCC)重复序列扩增变异。这个独特的重复序列扩增发生于一个之前未被详细研究过的9号染色体ORF72位点基因(C9orf72)的非编码区,是迄今为止最常见的家族性ALS和FTD的致病因素。根据病人的临床病理数据,可能的C9orf72基因突变的致病机制主要包括C9ORF72蛋白功能缺失 (loss of function)和获得性毒性(gain of toxicity),后者来源于包含重复序列的C9orf72 RNA及其二肽重复蛋白(dipeptide repeat proteins, DPRs)。4月13日,加州大学圣地亚哥分校路德维格研究所Don Cleveland团队在Nature Neuroscience杂志上发表题为“Reced C9ORF72 function exacerbates gain-of-toxicity from ALS/FTD-causing repeat expansion in C9orf72” 的研究论文,证明了在ALS和FTD中,C9ORF72蛋白功能缺失会进一步加剧C9orf72重复序列的毒性。3,AI追踪心脏血流 |《自然-机器智能》来源:Nature自然科研《自然-机器智能》发表的一篇论文Deep variational network for rapid 4D flow MRI reconstruction 介绍了一种人工智能(AI)系统可以加速对心血管血流的扫描。这个深度学习模型有望让临床医师在患者接受核磁共振扫描的同时,实时观察血流变化,从而优化诊断工作流。这个AI系统还能在20秒左右的时间里重建一次扫描,比目前尖端的传统方法快30倍,比之前的深度学习方法快4.2倍。4,抑郁症研究重大进展——关键蛋白质的鉴定可能带来更有效的抗抑郁药物来源:大话精神最近发表在《自然通讯》(Nature Communication)杂志上的一篇论文强烈建议,一种特殊的蛋白质——GPR56——与抑郁症的生物学和抗抑郁药物的作用有关。研究小组相信,这种蛋白质可以为新的抗抑郁药物提供一个新的靶点。这项研究由麦吉尔大学的Gustavo Turecki教授和道格拉斯精神健康大学研究牵头。在小鼠试验中,结果显示了慢性应激诱导的GPR56在血液和前额叶皮层(PFC)中下调,伴随着抑郁样行为,并且可以通过抗抑郁药逆转。小鼠PFC中GPR56的下调与抑郁样行为,执行功能障碍和对抗抑郁药治疗无应答有关。GPR56肽激动剂具有抗抑郁样作用,可上调AKT/GSK3/EIF4通路。该发现揭示了GPR56在抗抑郁反应中的潜在作用。5,超1/3新冠患者有神经系统症状,武汉协和医院团队JAMA子刊发文提醒来源:医学新视点除了对眼部感染和胃肠道症状的发现讨论,华中科技大学同济医学院附属协和医院团队近日报告了新冠病毒相关的三大类神经系统表现,常见表现有头晕、头痛、味觉障碍、嗅觉障碍、肌肉损伤等,重症患者甚至会出现中风和意识障碍。而且,部分患者没有其他典型首发症状。研究发表于《美国医学会杂志-神经病学》。在同期发表的社论中,加州大学旧金山分校神经科学教授Sam Pleasure博士和该期刊的两位编辑称赞,“虽然全面了解COVID-19的神经系统疾病谱还需要大量知识和数据,但这项研究打开了一扇窗户,提醒新冠大流行的一线诊治需要关注神经系统。”6,Nature Biotechnology: EEG特征预测重度抑郁症的抗抑郁药反应来源:思影科技华南理工大学和斯坦福大学研究人员在Nature Biotechnology杂志发表文章,试图识别抗抑郁药治疗反应的神经生物学特征(与安慰剂相比)。本研究开发了一个适用于静息态EEG(rsEEG)的潜在空间机器学习算法(latent-space machine-learning algorithm),并将其应用到安慰剂-对照抗抑郁药研究的数据中(n=309)。抗抑郁药舍曲林rsEEG模型(与安慰剂相比)可以稳健预测症状改善,并且应用于不同的研究地点和EEG设备上。这种舍曲林-预测的EEG特征可推广到另外两个抑郁样本,它反映了普遍的抗抑郁药物反应,并与rTMS治疗结果有相关。此外,通过同步TMS和EEG测量,研究者发现舍曲林rsEEG特征表征前额叶的神经反应。该研究通过EEG计算模型促进了对抗抑郁药治疗的神经生物学理解,并为抑郁症的个性化治疗提供了临床手段。7,Neurocase:冥想竟然可以延缓衰老!来源:转化医学来自威斯康星大学麦迪逊分校(University of Wisconsin-Madison)和哈佛医学院(Harvard Medical School)的一组研究人员发现,有证据表明,每天冥想可能会延缓大脑衰老。在他们发表在《Neurocase》杂志上的论文中,该小组描述了他们对一名每天冥想的佛教僧侣的研究,以及他们从他身上学到了什么。前文阅读1,脑科学日报|多动症孩子为何睡不好?针灸可以缓解偏头痛2,脑科学日报|超声波助力老年痴呆治疗;5-羟色胺平衡大脑内部交流
酿酒酵母是功能强大的模型物种,可用于系统性的生物学筛选和大规模蛋白质组学方法开发。随着质谱技术的进步,酵母的全蛋白质组覆盖几乎完成。然而,对酵母蛋白质组进行快速高通量分析仍然具有挑战性。2020年11月著名蛋白质组学领军人物德国马普生物化学研究所Matthias Mann教授联合Brenda A. Schulman教授和Christine R. Langlois教授共同在PNAS(IF 9.412)杂志上发表题目为 《DIA-based systems biology approach unveils E3 ubiquitin ligase-dependent responses to a metabolic shift》的研究成果,介绍了一种快速高深度DIA蛋白质组检测技术,实现酵母全蛋白质组的超高覆盖度。利用此技术既可以全面表征酵母蛋白质组响应环境扰动的变化,又可以精确识别单个缺失或点突变对整个蛋白质组的影响。研究材料:酿酒酵母细胞(Saccharomyces cerevisiae)技术方法:快速高深度DIA蛋白质组+转录组实验路线图:研究结果:1、快速高深度DIA检测技术方法开发研究者在Orbitrap质谱仪上对DIA整体流程进行了探索。为了生成酵母的综合图谱库,研究者在各种生长和胁迫条件下培养酵母细胞,经提取消化后,通过反相(RP)色谱法将每种条件下获得的肽段分为8个馏分。使用DDA方法以23min的液相梯度检测64个馏分(8个馏分×8个条件),通过Spectronaut软件建立酵母DIA library(74,103条肽段,4712个蛋白,覆盖酵母全蛋白组的87%;中值序列覆盖率为27%,每个蛋白质平均检测到12个肽)。基于此library,23min DIA检测(六次重复)平均可鉴定到33,909个肽段,3,413个蛋白,这与180min DDA检测结果相近(33,425个肽段和3,435个蛋白)。2、技术能力测评一:不同处理条件下酵母大规模蛋白组学分析研究者对不同处理条件下(不同培养基,热胁迫,渗透压胁迫,碳饥饿,氨基酸饥饿和氮饥饿等)的酵母进行大规模蛋白组学分析,共定量到3,506种蛋白质;数量统计发现在所有组别中检测到的蛋白超过90%的定量一致。功能分析发现每种处理都会引发不同的响应,造成不同蛋白的合成与降解,这些变化结果与预期调控变化一致。这也证明研究者开发的这种快速高深度DIA方法可以准确定量已知差异蛋白,为酵母研究人员提供了近乎全面的数据资源。3、技术能力测评二:挖掘GID E3连接酶的调控新机制研究者进一步探索葡萄糖饥饿及恢复过程中酵母蛋白组学变化,检测结果共定量到3,602种蛋白质。通过与转录组学数据比较,发现在转变过程中酵母细胞首先通过基因快速转录,产生新蛋白质,然后降解不再需要的蛋白。深入分析后发现GID E3连接酶的Gid4亚基受到碳源调控,后续通过对Gid4突变体和Gid2K365A突变体酵母的葡萄糖饥饿前后蛋白组学检测证实GID E3连接酶具有碳源依赖性的调节功能。研究者最后通过蛋白组学联合启动子参考技术(promoter reference technique)发现了GID E3连接酶新的调控靶标:Acs1和Aro10。小编小结:本研究建立了一套简单易行的蛋白质组学分析流程:快速高深度酵母蛋白质组DIA分析技术。它为酵母研究人员提供了近乎全面的数据资源,既可以准确定量已知蛋白差异,又能够揭示调控新机制。尽管此方法是在酵母中开发的,但该技术的快速,简便及可扩展性使其适合于任何细胞系统中的检测,尤其在是缺失或突变体或其他干扰的机制研究方面,可以获得更加全面的生物系统响应信息。
2020年1月欧易/鹿明生物合作客户中国航天员中心李勇枝教授课题组在BMC Genomics发表了题为 “Integrated proteomic and metabolomic analysis to study the effects of spaceflight on Candida albicans”的研究成果,通过蛋白质组学和代谢组学研究方法,探究了航天过程对白色念珠菌的影响机理,数据为评估白色念珠菌对宇航员的危害、阐明相关机制及预防相关疾病提供了理论依据。中文标题:整合蛋白质组学和代谢组学分析研究航天对白色念珠菌的影响研究对象:白色念珠菌发表期刊:BMC Genomics影响因子:3.594发表时间:2020年1月合作单位:中国航天员中心运用生物技术:蛋白质组学(由鹿明生物提供技术支持)、代谢组学研究背景近年来,随着空间技术的发展,微生物空间安全已成为研究热点。白色念珠菌是一种常见的条件病原体,通常寄生在人的皮肤、口腔、泌尿道和生殖系统上。白色念珠菌的致病性可能会随着外部环境的变化而改变。据报道,包括白色念珠菌在内的微生物在国际空间站中的增殖速度更快,从而增加了感染的风险。并且太空环境可能会改变微生物的生理和毒力。此外,对宇航员的免疫学调查还发现了包括淋巴细胞增殖、细胞因子产生和白细胞亚群的重新分布等失调。综合来讲,白色念珠菌的存在对宇航员的健康构成了潜在威胁。然而,关于空间环境下白色念珠菌的分子机制变化知之甚少。此项研究中,作者采用了蛋白质组学和代谢组学相结合的方法来研究实践十号卫星携带的白色念珠菌,这是首次探索航天环境对白色念珠菌影响的多组学研究。研究思路研究结果1.航天环境对白色念珠菌的影响实验组白色念珠菌暴露于太空环境后,于SDB培养基中复苏,并通过测量OD600评估其存活率。对照组为地面上培养的白色念珠菌。与对照组相比,实验组白色念珠菌增殖能力变强(图1A)、生物膜量变大(图1C)、形态发生变化(丝状形态变多,图1D)、抗氧化能力增强(图1E)。但是,两组白色念珠菌在耐酸、耐碱、耐酒精和耐盐方面没有发现显著差异。而毒力实验的结果显示,与对照组相比,实验组具有更强的细胞毒性。总而言之,暴露于航天环境后,白色念珠菌的增殖率、生物膜形成量、抗氧化能力和细胞毒性都增加了。图1 | 航天环境对白色念珠菌的影响(A)白色念珠菌生长曲线(B)白色念珠菌菌落皱褶形成实验(C)生物膜相对形成量(D)白色念珠菌细胞形态的扫描电镜实验结果(E)抗氧化能力比较(0.0003 % 过氧化氢)*P<0.052.白色念珠菌的蛋白质组学分析TMT蛋白质组学共鉴定出3670种蛋白质,并定量了3499种蛋白质。与对照组相比,实验组中有548种蛋白上调和332种蛋白下调(adjusted P < 0.05; fold change ≥1.2; 图2A)。聚类分析(图2B)和主成分分析(图2C)发现实验组和对照组区分显著,这反映了暴露于航天环境后白色念珠菌中蛋白质表达的显著变化。为了确定航天环境下白色念珠菌的生物学功能变化,作者用差异表达蛋白进行了KEGG富集分析(图2D)。在实验组的548种上调蛋白中,富集到了核糖体和DNA复制通路,这说明实验组白色念珠菌的增殖速率增加。此外,碱基切除修复通路也被富集,该通路与DNA损伤修复有关,这可以解释实验组抗氧化能力的增强。在实验组下调蛋白中,富集到了多个代谢通路(例如碳代谢,次生代谢物的生物合成,乙醛酸酯和二羧酸酯代谢,丙酸酯代谢,苯丙氨酸代谢,酪氨酸代谢和脂肪酸降解),而硫代谢通路相关蛋白却在实验组上调,这反映了实验组白色念珠菌中复杂的代谢变化。图2 | 白色念珠菌蛋白质组学分析(A)差异蛋白火山图(B)白色念珠菌蛋白质表达谱聚类分析(C)白色念珠菌蛋白质表达谱PCA分析(D)KEGG富集分析3.白色念珠菌的代谢组学分析为了研究航天对代谢的影响,作者使用UPLC/MS的代谢组学方法对白色念珠菌中的代谢物进行了非靶向代谢组学分析。在白色念珠菌的实验组和对照组中共鉴定出257个峰。OPLS-DA分析鉴定出五个显著差异特征峰(P <0.05,VIP> 1)。其中实验组有2个上调的代谢物,3个下调的代谢物(图3A和B)。整合分析蛋白质组学和代谢组学结果,发现嘌呤代谢、半胱氨酸和蛋氨酸代谢以及丙氨酸,天冬氨酸谷氨酸代谢这三个通路中的蛋白质和代谢物在实验组中发生变化。图3 | 白色念珠菌差异代谢物(A)实验组上调代谢物散点图(B)实验组下调代谢物散点图相关讨论白色念珠菌是一种机会致病性酵母菌,通常以共生生物的形式存在,但在多种条件下对免疫功能低下的个体可能具有致病性。长期太空飞行可能会对宇航员的免疫系统产生不利影响。先前报道[参考文献1-2]模拟微重力可极大地促进了白色念珠菌的生长速度,且其生长导致生物体的丝状形式增加,与致病性增强相一致。这些研究表明,空间环境中存在白色念珠菌可能会威胁宇航员的健康。本文作者探索了暴露于太空环境后白色念珠菌的表型变化。研究观察到实验组中白色念珠菌的增殖速率和丝状形态增加,这与以前的报道一致。此外,文章发现实验组白色念珠菌的生物膜相对形成、抗氧化能力和细胞毒性都增加了。对白色念珠菌的蛋白质组学和代谢组学结果综合分析表明,半胱氨酸和蛋氨酸在实验组中被积累(包括合成酶的上调、消耗酶的下调、蛋氨酸挽救途径的上调等)。有趣的是,许多研究报道[参考文献3-4]蛋氨酸和半胱氨酸生物合成途径中的大多数基因在白色念珠菌生物膜形成过程中均上调。蛋白质组学和代谢组学整合分析结果与观察到白色念珠菌表型变化相一致。研究结论本文结合蛋白质组学和代谢组学技术探索了航天环境对白色念珠菌的影响。与对照组相比,航天组的白色念珠菌中增殖速率、生物膜形成、抗氧化能力、细胞毒性和丝状形态增加。蛋白质组学分析鉴定出3670种蛋白质,且实验组和对照组的蛋白质表达谱可显著区分。差异蛋白富集分析表明,核糖体、DNA复制、碱基切除修复和硫代谢通路相关蛋白在实验组中显著上调,而许多代谢过程中的蛋白质则在实验组中显著下调。蛋白质组学和代谢组学的结合分析显示,实验组白色念珠菌中半胱氨酸和蛋氨酸被积累。本文首次应用蛋白质组学和代谢组学研究航天环境下白色念珠菌的分子变化,结果发现分子变化与表型变化相互印证,该数据有助于评估白色念珠菌对宇航员的危害、阐明相关机制及预防相关疾病。小鹿推荐随着载人航天技术的不断发展,空间微生物安全问题已成为相关领域的研究热点。以往研究方向多集中于航天环境对微生物的表型影响,而基于多层组学的机制研究较少。本文是中国航天员中心李勇枝团队在实践十号卫星中微生物研究系列中的一篇,作者通过蛋白质组学和代谢组学技术对航天环境影响白色念珠菌的机制进行了深入研究,并与表型实验结果相互印证,其严谨的实验思路和深入地研究结果,值得借鉴和参考。部分参考文献:[1] Jiang W, Xu B, Yi Y, et al. Effects of simulated microgravity by RCCS on the biological features of C. albicans[J]. Int J Clin Exp Pathol, 2014, 7(7): 3781-90.[2] Altenburg S D, Nielsen-Preiss S M, Hyman L E. Increased filamentous growth of C. albicans in simulated microgravity[J]. Genomics Proteomics Bioinformatics, 2008, 6(1): 42-50.[3]Li D D, Wang Y, Dai B D, et al. ECM17-dependent methionine/cysteine biosynthesis contributes to biofilm formation in C. albicans[J]. Fungal Genet Biol, 2013, 51: 50-9.[4] Garcia-Sanchez S, Aubert S, Iraqui I, et al. C. albicans biofilms: a developmental state associated with specific and stable gene expression patterns[J]. Eukaryot Cell, 2004, 3(2): 536-45.猜你还想看◆蛋白组学+代谢组学:项目文章mSystems | 蛋白组学+代谢组学分析指导生产应用:人工窖泥培养技术及白酒质量优化◆蛋白组学+代谢组学:项目文章 |蛋白组学+代谢组学汕头大学医学院对急性心肌缺血(AMI)诱导的致死性心室快速心律失常(LVTA)的潜在生物标志物研究◆蛋白组学+代谢组学:项目文章 | 中国药科大学运用非标记蛋白组学和非靶向代谢组学对不同地域生姜特性研究◆蛋白组学+代谢组学:Gut. |浙大医学院附属第一医院梁廷波教授课题组白雪莉博士运用蛋白组学+代谢组学分析肝细胞癌异质性及免疫表型分类END文章来源于鹿明生物
编者按:俗话说“业精于勤而荒于嬉,行成于思而毁于随”。对于科研者来说,一个成功地研究一定是经历了反复的实验,其中肯定是付出许多艰辛和努力的。可是科研光是勤劳如果没有好的方法可是会走很多弯路的...继上期小鹿盘点了蛋白组学的热门方法【大热点】3篇文章总计IF:66分,带您get时下热点技术后。本期小鹿帮助各位科研老师总结了蛋白质组学常用技术ITRAQ蛋白质组学、TMT蛋白质组学、PRM技术、LC-MS/MS...8篇文章,平均IF:10.6带您看尽蛋白质组学研究方法。1长链非编码RNA-LINC00673中的一个胰腺癌风险变异为miR-1231构建了结合位点使得PTPN11降解受到干扰在胰腺癌的研究中,全基因组关联研究已经确定了几个与胰腺癌风险相关的基因位点,然而遗传因素影响散发性胰腺癌发展的机制仍然很大程度上未知。本篇文章由鹿明生物合作客户北京协和医院肿瘤研究所林东昕教授研究组发表在《Nature genetics》(IF:31.616)的题为“Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation”的研究论文,该研究揭示了LINC00673在维持细胞稳态中的重要作用以及其变异如何赋予胰腺癌易感性。本文中用蛋白质组学技术发现了与LINC00673相互作用的蛋白PTPN11,从而阐明了LINC00673的功能机理。材料:细胞系、小鼠、人胰腺组织、血发表期刊:Nature genetics影响因子:31.616(发表时期影响因子)主要技术:GWAS、qRT–PCR、immunoprecipitation、LC-MS/MS(鹿明生物提供服务支持)2解析潮间带大型绿藻光系统I-捕光天线I复合物结构PSI 是一个极高效率的光能吸收和转化系统,几乎每一个吸收的光子都能产生一个电子,其量子转化效率超过90%。PSI 高效吸能、传能和转能的结构基础是科学研究的前沿问题。2019年3月8日,济南大学、中科院植物所与清华大学合作在Nature Plants发表了题为 Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits的研究长文,(其中:质谱测序由上海鹿明生物科技有限公司协助完成。)报道了一种潮间带大型绿藻(假根羽藻,Bryopsis Corticulans)PSI-LHCI 超分子复合物的3.49 分辨率的冷冻电镜结构,这是继高等植物之后,在 PSI 结构与功能研究领域取得的又一重大突破。本文进一步完善了对光合生物进化过程中 PSI 结构变化趋势的理解;从进化与光环境适应的角度揭示了捕光天线复合物的捕光设计机理;为揭示绿藻光合膜蛋白 PSI-LHCI 高效吸能与传能的机理奠定了坚实的结构基础;为人工模拟光合作用机理,为指导设计作物与提高植物的光能利用效率提供了新的理论依据和新思路。3运用IncRNA、iTRAQ研究诱导自噬抑制葡萄膜黑色素瘤的发生机理葡萄膜恶性黑色素瘤是成年人中最多见的一种恶性眼内肿瘤,在国外其发病率占眼内肿瘤的首位,在国内则仅次于视网膜母细胞瘤,居眼内肿瘤的第二位。此瘤的恶性程度高,眼后是好发部位。易经血流转移,85%转移至肝脏。本篇由欧易/鹿明生物合作客户上海交通大学医学院范先群教授课题组发表在《Autophagy》的”ZNNT1 long noncoding RNA inces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression“运用lncRNA 芯片、iTRAQ 蛋白质定量技术探究lncRNA 在 UM 肿瘤发生中的作用报道。发表期刊:Autophagy影响因子:11.059运用技术:文章中iTRAQ 蛋白质定量技术由鹿明生物提供服务本研究表明,在葡萄膜黑色素瘤中,lncRNA ZNNT1 起到了抑癌基因作用。ZNNT1 可以通过上调 ATG12 表达,调控 ATG12-ATG5 结合,促进细胞自噬,进而抑制了肿瘤的发生。本研究通过运用lncRNA 芯片、iTRAQ 蛋白质定量技术为葡萄膜黑色素瘤的临床治疗提供了新的思路。4LncRNA SNHG10通过正反馈环调节其同源物SCARNA13促进肝癌发生和转移的研究肝细胞癌(HCC)是最常见的恶性肿瘤之一,全球发病率位居第六,死亡率位居第三。极易复发和转移导致了肝癌患者的高死亡率,因此针对肝细胞癌的发生和转移机制的研究迫在眉睫。本文为鹿明生物客户--四川大学肝胆外科研究室的科研者们于2019年5月发布在Cancer Res的研究文章:LncRNA SNHG10通过正反馈环调节其同源物SCARNA13促进肝癌发生和转移的研究,为肝细胞癌的发生和转移机制又进行了深入的研究。发表期刊:Cancer Res影响因子:8.378主要运用鹿明生物技术:TMT标记定量、RNA测序((RNA-seq)、qPCR5在模拟生理环境中通过蛋白冠装饰的超顺磁性纳米粒子靶向电荷介导的癌细胞纳米技术在癌症诊断和治疗中以及生物医学功效各方面起着关键作用,本文由鹿明生物合作单位同济大学、青岛大学等多家科研院校共同合作发表在《ACS APPLIED MATERIALS & INTERFACES 》上的Electrical-Charge-Mediated Cancer Cell Targeting via Protein Corona-Decorated Superparamagnetic Nanoparticles in a Simulated Physiological Environment ,通过在模拟生理液体中对粒子表面蛋白冠对癌细胞靶向的影响进行了研究,为临床灵敏检测血液循环肿瘤细胞开辟了新途径,其中蛋白质组学技术在鉴定蛋白冠成分时发挥了重要作用,该技术已在各个研究领域中得到广泛应用。本文研究为临床灵敏检测血液循环肿瘤细胞开辟了新途径,其中蛋白质组学技术在鉴定蛋白冠成分时发挥了重要作用,该技术已在各个研究领域中得到广泛应用。发表期刊:ACS APPLIED MATERIALS & INTERFACES 影响因子:8.456 鹿明生物提供服务:LC-MSMS(MPI技术)6运用LC-MS/MS鉴定GRP78是鸭Tembusu病毒感染BHK-21细胞的受体研究Tembusu病毒(TMUV)是一大群具有包膜的单正链RNA病毒。该类病毒通过吸血的节肢动物(蚊、蜱、白蛉等)传播而引起感染。在我国,Tembusu病毒(TMUV)的爆发和传播给中国水禽养殖业带来了巨大损失。本篇文章由鹿明生物合作客户江苏省农业科学院兽医研究所赵冬敏博士为第一作者,发表在Frontiers in Microbiology杂志发表题为“Identification of Glucose-Regulated Protein 78 (GRP78) as a Receptor in BHK-21 Cells for Duck Tembusu Virus Infection”的研究论文,该研究报道了BHK-21细胞中TMUV结合分子的探究。发表期刊:Frontiers in Microbiology影响因子:4.259运用鹿明生物技术:LC-MS/MS7垂丝海棠应对盐碱胁迫适应性的生理、蛋白质组学和代谢组学的整合分析由于土壤盐碱化逐年增加造成可耕作面积逐年减少,使盐碱等非生物胁迫已成为严重影响我国粮食生产的重要因素。同时针对抗盐碱功能机理的研究也是选育耐盐碱新品种的关键。在2019年,欧易/鹿明生物合作客户甘肃农业大学王延秀课题组在Horticulture Research杂志发表题为“垂丝海棠应对盐碱胁迫适应性的生理、蛋白质组学和代谢组学的整合分析”的文章。该文章作者通过蛋白质组学、代谢组学以及生理学数据,对可耐受盐碱的垂丝海棠中参与植物胁迫反应的植物途径及其调控机制进行深入研究,为使用基因工程提高该植物的耐盐碱性提供了重要依据。发表期刊:Horticulture Research影响因子:3.64运用技术:蛋白质组学、代谢组学8定量蛋白质组学鉴定鸡脾脏中细胞外基质降解与基因型VII新城疫病毒的免疫病理相关新城疫(newcastle disease,ND)是由新城疫病毒引起禽的一种急性、热性、败血性和高度接触性传染病。以高热、呼吸困难、下痢、神经紊乱、黏膜和浆膜出血为特征。具有很高的发病率和病死率,是危害养禽业的一种主要传染病。OIE将其列为A类疫病。本篇由上海鹿明生物科技有限公司合作客户扬州大学农业部畜禽传染病学重点开放实验室刘秀梵院士课题组发表在《Journal of Proteomics》的文章“Quantitative proteomics identify an association between extracellular matrix degradation and immunopathology of genotype VII Newcastle disease virus in the spleen in chickens”运用TMT定量蛋白质组学技术首次提供了NDV对ECM调节的证据,并将ECM重塑作为NDV病理的新表现形式,加深了对NDV发病机制的了解。发表期刊:Journal of Proteomics影响因子:3.537运用技术:、qRT-PCR、Western blot、ELISA、TMT蛋白质组学(鹿明生物提供技术支持)目前,蛋白质组学研究以其高通量、高灵敏度、高效的蛋白质分离鉴定方法在医学、农学、微生物等方面都有着广泛地应用,并且蛋白质组学研究也为寻找各种疾病的关键蛋白和标志蛋白、对于疾病的诊断、病理的研究和药物的筛选都具有重要的意义。鹿明生物以其多年的蛋白组学研究经验也在蛋白质组学道路上不断地探索~~鹿明生物上海鹿明生物科技有限公司,一直专注于生命科学和生命技术领域,是国内早期开展以蛋白组和代谢组为基础的多层组学整合实验与分析的团队。经过近数年的发展沉淀,公司建立起了iTRAQ/TMT、DIA、PRM、修饰蛋白组等蛋白组学技术平台和全谱代谢组、靶向代谢组、拟靶向代谢组、脂质组等代谢组学技术平台以及相应的数据整合分析平台,并建立了科学完整的服务流程和精细规范的操作标准。公司拥有:SCIEX-QTRAP-6500,SCIEX-QTRAP-6500 plus,SCIEX-QTRAP-4000,Waters Xevo G2-XS,Thermo-TSQ-Altis,Thermo-Obritrap-QE,Thermo-Obritrap-QE-HF,Aglient-GCMS-7890B/5977A,AglientGCMS7890B/5977A(带顶空进样装置)及云计算分析平台等大型检测设备以及完整的样品前处理系统和数据分析系统(拥有各类分析软件及数据库)。公司荣获国家高新技术企业,通过ISO9001认证,获得代谢组学专利及软件著作等近20余项知识产权专利;同时也取得上海市公共技术服务平台资质认证,获得上海市创新创业计划大赛支持。迄今为止,鹿明完成服务项目上万个,涉及医学、农业、生态学及工业应用等多个研究领域,发表SCI论文数百篇。2017年6月,公司与上海欧易生物医学科技有限公司实现战略整合,实现中心法则上中下游多层组学的串联,整合后的鹿明力求打造优质技术平台,争做优质蛋白代谢服务企业,助力生命科学领域的科学家快出成果,出好成果,从而推动科技创新。鹿明生物,多层组学定制服务专家,为您的科研助力!END
011 蛋白质组学概念的提出早在18世纪,人类就发现了蛋白质这一类型的生物分子,然而直到1938年,瑞典化学家Jons Jakob Berzelius才明确提出了蛋白质的概念,指出蛋白质是由氨基酸组成的一类生物大分子。1949年,英国科学家Frederick Sanger首次测得了蛋白质牛胰岛素的氨基酸序列,并验证了蛋白质由氨基酸组成,他也凭借此项研究成果获得了1958年的诺贝尔化学奖。就在同一年,英国科学家Francis Crick首次提出分子生物学中心法则,这是20世纪生命科学领域最重要的发现之一 :脱氧核糖核酸(deoxyribonucleic acid,DNA)是生物体内遗传信息的载体,DNA以自身为复制模板,通过转录作用将遗传信息传递给核糖核酸(ribonucleic acid,RNA),成熟的信使RNA(messenger RNA,mRNA)在核糖体上被翻译成一条长肽,然后经折叠加工形成具有生理活性的成熟蛋白。蛋白质是生命的物质基础,作为生物体活动功能的最终直接执行者,对生命活动的实现具有十分重要的作用,参与了生物体内几乎所有的生命活动过程。随着分子生物学技术的发展,蛋白质的诸多功能不断被研究和报道,如蛋白质可以作为离子通道参与信号转导等,人们愈发重视对蛋白质的研究。21世纪初,生命科学领域迎来了一个重要的里程碑——人类基因组草图的绘制完成。2001年由美国、英国、法国、德国、日本和中国科学家共同参与的人类基因组计划(Human Genome Project,HGP)与Celera基因公司共同公布了人类基因组DNA序列草图,这也代表着人类在生命科学领域迈上了新台阶。2003年该计划的完成可以说是近半个世纪以来最激动人心的一项生命科学成就,它第一次揭示了人类的DNA序列信息,并提供了人类生命信息的蓝图。该研究成果分别发表在Nature、Science两大国际著名期刊上(Lander et al.,2001;Venter et al.,2001)。人类基因组计划因其破解人类遗传密码的里程碑式意义及对于遗传性疾病预防的潜在应用价值,与阿波罗登月计划、曼哈顿原子弹计划一起,并称为自然科学史上的三大计划。随着人类全基因组序列的破译和功能基因组学研究的展开,生命科学家越来越关注如何用基因组研究的模式开展蛋白质组学的研究。因此,Nature、Science在公布人类基因组草图的同时,分别发表了“And now for the proteome”和“Proteomics ingenomeland”的述评与展望(Abbott,2001;Fields,2001)。文中认为蛋白质组学将成为21世纪最大的战略资源,并将成为人类基因争夺战的战略制高点之一,这将蛋白质组学的地位提高到了前所未有的高度。事实上早在1994年,澳大利亚科学家Marc Wilkins便提出了蛋白质组(proteome)这一概念——表征基因组所能表达的全部蛋白。1997年,蛋白质组学(proteomics)的概念产生,其研究的主要内容是细胞、组织或器官内的全部蛋白质。此后该学科迅速发展,并得到了生命科学研究领域的重视。2001年,国际人类蛋白质组组织(Human Proteome Organization,HUPO)正式宣告成立,推动了蛋白质组学研究领域的发展。在2002年国际蛋白质组研讨会上,科学家明确提出了开展 “人类肝脏蛋白质组计划(Human Liver Proteome Project,HLPP)”的建议,并于2003年正式启动,至此人类蛋白质组计划的帷幕正式拉开。该项目也是我国科学家在生命科学领域领导的一次重大国际合作项目。蛋白质组学在细胞的增殖、分化、肿瘤形成等方面的研究中已经取得了不少成果和进展。尤其在癌症研究方面,已经鉴定到了一批肿瘤相关蛋白,这为相关疾病的早期诊断、蛋白质药物靶标的发现、治疗和预后提供了重要依据和线索。022 蛋白质组学的特点人类基因组序列的测定,标志着基因的研究迈上新台阶。随着基因测序技术的改进和成熟,人们对基因的研究更加便捷,对基因的认识也逐渐深入。目前认为可编码蛋白质的基因约20 000个。然而同一个基因可以表达出不同的信使RNA片段,而信使RNA在成熟过程中可能会出现剪切重组等,这显著增加了可表达蛋白的数目。同时,信使RNA翻译出的蛋白质会经历翻译后修饰(Berget,1995;Witze et al.,2007),实现对自身功能的调控,这进一步使蛋白质组的研究复杂化。此外,细胞内表达的蛋白质在时间和空间尺度上具有动态变化的性质,因此细胞内蛋白质的分析远比基因组的分析复杂和具有挑战性。基因组学的研究对象是DNA,DNA的性质较为稳定,且微量的目标样品可以通过PCR技术将其扩增,从而便于研究。目前DNA测序技术已较为成熟,且基因组学的数据库已相对完善,对于基因的研究已经进入了相对成熟的阶段。然而作为基因组后时代,蛋白质组目前尚处于探索和发展阶段。蛋白质组学研究的对象——蛋白质,其本身的性质不够稳定,可能同时存在多种不同的翻译后修饰类型,且其在不同细胞、组织内的表达丰度的动态范围较大。随着高分辨生物质谱技术的迅速发展及基于基因序列的蛋白质数据库的逐步完善,目前已可以实现对蛋白质氨基酸序列的测定,但是仍有大量的内容是未知的,包括蛋白质的定位、蛋白质与小分子的相互作用、蛋白质与蛋白质的相互作用、蛋白质的生命周期等。蛋白质组学的研究,可以从时间和空间角度对细胞、组织的蛋白质进行全面深入的研究,从而深入理解细胞如何利用蛋白质实现各种生理功能的调控。蛋白质组学亟待发展,研究技术也有待进一步发展和提升。033 生物质谱技术科学的进步往往带来技术的革新,而技术的革新会加速科学的发展。在蛋白质组学概念提出后的几年,由于受到研究技术的限制,发展十分缓慢。近些年,高分辨质谱技术(mass spectrometry,MS)的迅速发展,成为了蛋白质组学领域的核心技术。质谱技术是化学领域中研究化合物的一个重要手段。然而,直到软电离离子化技术的出现,才使得用质谱研究生物大分子成为了可能。2002年的诺贝尔化学奖授予美国科学家John Fenn和日本科学家Koichi Tanaka(“The Nobel Prize in Chemistry 2002”。Nobelprize.org. Nobel Media AB 2014. Web. 30 Apr 2015),以表彰他们在将软电离离子化方法用于生物大分子质谱分析方面所作出的贡献。John Fenn发明了电喷雾离子化方法(electrospray ionization,ESI)(Fenn et al.,1989)。样品在毛细管色谱柱中分离,经毛细管柱柱头流出时,在高压电场的作用下形成带电的小液滴。随着液滴的溶剂蒸发,液滴表面离子密度逐渐增大,当达到瑞利(Rayleigh)极限时,液滴发生破裂,形成更小的带电液滴。而后在电场作用下重复蒸发、分裂的过程,直至形成气相离子进入质谱,并被检测。该方法的优点在于可以实现从液态到气态分子的转变,产生的离子可以带有一个或多个电荷。Koichi Tanaka发明的基质辅助激光解析离子化技术(matrix-assisted laser desorption ionization,MALDI)利用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,从而使生物分子电离(Tanaka et al.,1988)。由于电喷雾离子化可形成单电荷离子及多电荷离子而有别于其他的MS离子化技术,并能实现高效液相与质谱的串联。特别是在1994年,Wilm和Mann发展了纳升级喷雾离子源(nano-electrospray ionization source,nanoESI source),与传统的ESI源(流速1~100 L/min)相比,该离子源可以采用更小的溶剂流速(10~500 nL/min),并且电喷雾更稳定,生成的带电液滴更小,能在室温条件下更好地实现去溶剂化(Wilm and Mann,1996),所以在目前的生物质谱中尤其是蛋白质组学研究领域,nanoESI离子化技术应用较为广泛。此外,对于质谱仪而言,质量分析器是其核心部件。随着分辨率和检测速率的提高,质谱仪在蛋白质组学研究中的优势逐渐凸显。目前已有的质量分析器的类型有 :磁质谱、双聚焦质谱、离子回旋共振质谱、四极杆、四极杆离子阱质谱、时间飞行质谱、傅里叶变换质谱、三重四极杆质谱、线性离子阱质谱、静电轨道场离子回旋加速质谱(Orbitrap)等。其中,Orbitrap无疑是近20年质谱技术中最重要的发明。它极大地缩小了高分辨质量分析器的体积,维护更方便,使得高分辨质谱的台式化和易用化成为了可能,从而便于应用和推广。Thermo公司于2005年推出了第一台商业化的Orbitrap型质谱仪,其分辨率达到了100 000 (m/z 400),最大扫描速度为1.0 Hz。目前高效液相串联质谱在蛋白质和蛋白质的翻译后修饰的鉴定分析方面起着重要的作用,其原理是待测样品经高效液相色谱分离之后,经离子源的离子化,进入质谱。在质谱内通过特定的方式,将母离子碎裂产生碎片离子 ;进一步对碎片离子进行检测,得到该分析物的质谱检测图谱。随后对该图谱进行分析,通过与蛋白质数据库中的理论图谱比对,从而将其氨基酸序列信息和含有的修饰解析出来。质谱技术在生物大分子领域中的应用越来越广,包括定性和定量的高通量蛋白质分析,高通量的蛋白质翻译后修饰分析,鉴定蛋白质-蛋白质相互作用和调控网络,鉴定蛋白质和小分子的相互作用,生物标志物的鉴定和研究等。044 蛋白质组学的研究进展近20年来,蛋白质组学领域的研究技术在不断地革新和提高。1989年,电喷雾离子化技术发明,使得用质谱分析生物大分子成为可能;1993年,肽指纹图谱技术发明,推动了蛋白质鉴定技术的发展 ;1996年,利用二维凝胶电泳技术,实现了对酵母全蛋白的分析 ;2002年,细胞培养稳定同位素标记(stable isotope labeling by amino acids in cell culture,SILAC)技术发明,使得定量蛋白质组学研究迈上新台阶。1998年,中国启动了“人类肝脏蛋白质组计划”。2010年,中国团队完成肝脏蛋白质组的检测,共鉴定到6788个蛋白质,至此第一个人类器官的全蛋白质组检测工作得以完成(He,2005)。但由于当时的技术局限,所鉴定的蛋白质的数目还远远没有达到理论上肝脏全蛋白质组的蛋白数。近几年来,生物质谱技术进一步发展,其检测灵敏度和分辨率明显提高,扫描速度也有了显著提升,已经具备了高通量深度蛋白质组学研究的条件。因而,关于全蛋白质表达谱研究工作的报道越来越多。基于质谱的飞速发展,科研工作者目前已经对细胞内的不同细胞器做了组学研究,包括线粒体、高尔基体、细胞核等。蛋白质组学领域的知名科学家Matthias Mann在2008年报道了用一个月的时间鉴定了接近8000个蛋白质的成果(Hubner et al.,2008)。2011年,经过样品制备方法的创新、色谱分离方法的优化和质谱仪器的升级,Mann团队通过利用样品处理新方法FASP(flter-aided sample preparation)对小鼠的肝脏组织进行蛋白质组学研究,最终在21 d质谱数据采集时间内鉴定了高于10 000个蛋白质(Wisniewski et al.,2011),这是目前最具深度的蛋白质组学研究之一。随着质谱仪准确度、分辨率和扫描速度的不断提高,Mann实验室在2014年利用Q Exactive超高分辨率质谱仪,在4 d时间内定量分析了小鼠肝脏组织样本中的11 520个蛋白质(Azimifar et al.,2014)。因此随着样品制备方法、色谱分离方法及质谱仪器的不断优化和创新,科学家可以对生物体内的蛋白质进行更具深度的鉴定,从而更加深入地研究生命活动中的生理生化过程。2014年,国际著名杂志Nature子刊Nature Methods评述了近10年内的自然科学研究领域方法,基于质谱的蛋白质组学技术便是其中之一(Ten years of Methods,2014),可见质谱的发展对自然科学研究领域产生了极为重要的影响。当然,组学的研究并非仅仅是蛋白质测序,还包括了组学定量、靶向蛋白质组的研究等。其中靶向蛋白质组的研究被列入了Nature Methods 2012年度生命科学研究的方法学进展。2014年对于蛋白质组学的研究来说是具有里程碑意义的一年。4月,国际顶级期刊Nature首次报道了两篇关于接近完整的人类蛋白质组表达谱草图的文章。其中一篇文章收集了30种人类正常组织和细胞样本,包括成人和胎儿的组织及血液细胞,最终共鉴定到17 294个基因编码的蛋白,占总编码蛋白基因数的84%(Kim et al.,2014)。另外一篇文章,则综合了已发表的公共数据集及其实验室已有的数据,包括数十种人类组织、体液样本及细胞株等的鉴定分析结果,共鉴定到18 097个基因编码蛋白,占总编码蛋白基因数的92%(Wilhelm et al.,2014)。以上两篇文章共同绘制出了第一张人类蛋白质草图。近些年,中国蛋白质组学研究领域也在快速发展。2014年,“中国人蛋白质组草图计划”(CNHPP)这一科技部的重点项目正式展开,计划绘制包括心脏、肝脏、肺、肾脏等在内的10个最重要人体器官的蛋白质组生理和病理图谱,旨在以中国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,构建中国人类蛋白质组的“百科全书”。055 蛋白质组学的应用通过基因组测序和分析,可以发现多种诱发癌症的驱动基因。2013年在Science杂志上发表了题为“Cancer genome landscape”的综述(Vogelstein et al.,2013),提出大部分癌症的发生是由于2~8个驱动基因突变,人体内目前认知到的癌症驱动基因共有约140个。尽管如此,驱动基因突变并不能解释所有癌症发生发展的现象。例如,2014年Nature杂志上发表的对230例肺腺癌临床样本的研究结果称,部分样本的基因组测序结果未能解释信号通路被激活的现象(The Cancer Genome Atlas Research Network,2014)。为了加深对癌症发生发展机制的认识,迫切需要对癌症进行深入的蛋白质组学研究,从而从蛋白质水平阐释癌症可能的发生发展机制。2006年年初,美国国立癌症研究院(National Cancer Institute,NCI)开始了一项为期5年,耗资1.04亿美元的临床蛋白质组肿瘤分析联盟(Clinical Proteomic Tumor Analysis Consortium,CPTAC)(Ellis et al.,2013),其目的在于建立应用于癌症诊断、治疗和预防的蛋白质组学技术,建立数据分析标准流程及试剂、参考物质的应用等系统,从而达到拓宽蛋白质组学技术在临床癌症诊断中的应用。目前该项目已经取得了非常出色的进展,其中一项工作为对被TCGA项目(The Cancer Genome Atlas)表征的95个结肠和直肠癌样本进行了深入的蛋白质组学及生物信息学分析,从蛋白质组学层面对结肠、直肠癌进行分型。在所得的5种蛋白质分型中,其中的两种与TCGA的一种转录本亚型——“微卫星不稳定亚型/CpG岛甲基化表型亚型”有重叠部分,但也发现了与之明显不同的基因突变、DNA甲基化和蛋白质表达图谱,这些都具有不同的临床表现,为临床疾病的研究提供了新的思路和检测指标(Zhang et al.,2014)。蛋白质组学在人类疾病中的研究应用已经在一些疾病中开展,如癌症、皮肤病、心脏病等。研究包括寻找与疾病相关的单个蛋白,整体研究某种疾病引起的蛋白质表达或修饰水平的变化,利用蛋白质组寻找一些致病微生物引起的疾病的诊断标记和疫苗等。随着精准医疗时代的到来,蛋白质组学在药物研究、临床诊断和个性化治疗等方面将具有更为广阔的应用前景。
前言阿尔茨海默病(Alzheimer’s disease,AD)是一种以进行性记忆力减退、认知功能下降和人格改变为主要临床表现的中枢神经系统退行性疾病,是老龄人口中发病率最高的疾病之一。2020年4月13日, 美国埃默里大学Allan I. Levey教授及其合作团队再次在国际专业学术期刊《Nature Medicine》(IF =30.641)发表了最新研究成果,报道了迄今为止最大的阿兹海默症相关蛋白质组学研究。研究人员运用定量蛋白质组学技术、加权共表达网络分析、靶向蛋白质组技术(PRM)对健康人和阿兹海默症患者的2,000多个人脑组织样本和近400个脑脊液样本进行系统分析,研究确定了反映大脑生物过程的关键蛋白质共表达网络,为阿尔兹海默症的临床诊治提供了新的治疗靶标和生物标志物。标题:Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation研究对象:认知健康、正常衰老的个体、AD患者的脑组织和脑脊液期刊:Nature Medicine影响因子:30.641发表时间:2020年4月13日研究背景阿尔茨海默病(Alzheimer’s Disease, AD)以β-淀粉样蛋白(amyloid-β, Aβ)过度沉积和Tau蛋白异常磷酸化为主要发病机理的神经变性疾病。然而对于AD病理生理学机制还不完全了解。研究思路文章亮点1、样本珍贵:尸检脑组织样本;2、大样本量:约2000个组织样本和400个脑脊液样本;3、多种技术:LFQ、TMT定量蛋白质组学、PRM和SRM蛋白验证等;4、多个中心:至少7个采样中心,BLSA,Banner,MSSB,ACT,Mayo,ROS/MAP,UPenn等;5、多种组织类型:3种组织样本:FLPFC背外侧前额叶皮质、temporal cortex颞叶皮质、precuneus楔前叶,以及脑脊液CSF;6、多种疾病类型:主要是AD的,还检测了其他神经退行性疾病,比如:肌萎缩侧索硬化症(ALS)、额颞叶变性伴TDP-43病理(FTLD-TDP)、进行性核上性瘫痪(PSP)、皮质基底部变性(CBD)、帕金森病和帕金森病痴呆(PD/PDD)和多系统萎缩(MSA)等。寻找AD致病最相关、以及最特异的区域/细胞/蛋白;7、采用WGCNA分析,将几千个蛋白与临床相关指标进行关联分析,得到不同功能的蛋白模块集;8、将大脑中不同细胞类型的marker基因跟不同模块集进行比对,从而形成细胞类型-蛋白模块-功能这样的关联集。(类似于单细胞测序的将marker基因跟细胞亚类和功能与疾病做关联);9、实验设计逻辑严密、故事性强。研究内容本研究使用定量蛋白质组和加权共表达网络分析对AD进行了迄今为止最大的蛋白质组学研究。从4个研究中心收集了44例巴尔的摩衰老纵向研究(BLSA)、178例版纳太阳卫生研究所(BANNA)、166例西奈山医学院(MSSB)和65例成人思维变化研究(ACT)非北侧前额叶皮质(DLPFC)组织,总共453例对照、无症状AD (AsymAD)和AD。采用无标记定量(LFQ)对组织进行定量蛋白质组学分析,共鉴定到5688个蛋白。通过回归分析消除了年龄、性别和死后间隔(PMI)对蛋白质定量数据的影响,最终确定3334个蛋白利用加权相关网络分析算法构建蛋白共表达网络。加权基因共表达网络分析(Weighted Gene Co-Expression Network Analysis,WGCNA)是一种适合进行多样本复杂数据分析的工具,通过计算基因/蛋白间表达关系,鉴定表达模式相似的基因/蛋白集合(mole),解析mole与样品表型之间的联系,绘制集合中基因/蛋白之间的调控网络并鉴定关键调控基因/蛋白。对鉴定到的3334个蛋白进行WGCNA共表达分析,将其分为13个模块。研究结果① 构建AD共表达网络模块为了评估这些共表达模块是否与AD相关,将模块蛋白表达水平与AD、淀粉样β斑块和神经纤维缠结的神经病理学特征相关联。观察到六个模块与所有病理、认知和功能测量显著相关:模块M1突触、模块M3线粒体、模块M4糖代谢、模块M5细胞外基质、模块M6细胞骨架和模块M10 RNA结合/剪接。M4糖代谢模块显示出最强的AD性状相关性(认知r=-0.67,P=8.5×10-23;神经纤维缠结r=0.49,P=4.7×10-27;淀粉样β斑块r=0.46,P=1.3×10-23;功能r=0.52,P=2.6×10-12)。因为大脑中许多蛋白质共表达的改变可以由细胞类型的改变驱动,因此分析了每个共表达模块是否富含在特定的细胞类型中。同时为了将每个模块的细胞类型特性纳入其描述中,随后将那些细胞类型丰富的模块称为“M1突触/神经元”模块、“M2髓鞘/少突胶质细胞”模块、“M4星形胶质细胞/小胶质细胞代谢”模块和“M5内皮/微细胞外基质”模块。进一步研究表明在AD临床前期的病理过程中,M3线粒体和M4星形胶质细胞/小胶质细胞代谢模块的病例状态差异最大。图1 | 无症状和有症状AD脑的蛋白质网络分析(a)用WGCNA和差异丰度对对照组和AD患者(N=453)脑组织蛋白水平分析;(b)从四个独立的队列中测量的3334个蛋白质中产生了由13个蛋白质模块组成的蛋白质相关网络。② AD network与脑区、年龄、其他神经退行性疾病的关联性分析进一步分析了这些共表达模块与不同脑区、年龄、其他神经退行性疾病的相关性,发现所有的模块都与颞叶皮层相关,12个模块与楔前叶相关。M1突触/神经元模块蛋白随着年龄增加其表达水平显著降低,M4星形胶质细胞/小胶质细胞代谢模块蛋白随着年龄增加其表达水平显著升高。在FTLD-TDP和CBD病例中,M1突触/神经元和M4星形胶质细胞/小胶质细胞代谢模块蛋白表现出显著变化。图2 | 分析AD患者年龄与网络模块蛋白的相关性(a)在不同年龄死亡的认知健康人群中测定DLPFC中的蛋白质水平,并用于分析AD蛋白质网络模块随年龄的变化;(b)为每个AD网络模块创建一个合成的特征蛋白,并按年龄组测量,以及与老化脑队列中的年龄相关。显示了模块M1、M3、M4和M10的合成特征蛋白分析。③ 采用PRM验证共表达网络模块蛋白的表达为了进一步验证上述研究发现,采用PRM蛋白验证对324个蛋白进行靶向验证,分析表明组学结果和PRM靶向验证结果具有很好的一致性。采用GWASs分析AD模块蛋白是否为AD疾病相关的风险因子,分析发现模块M2和M4星形胶质细胞/小胶质细胞代谢模块与AD疾病风险显著相关,表明这些蛋白共表达模块所反映的生物功能或过程可能在AD中起致病作用。鉴于M4星形胶质细胞/小胶质细胞代谢模块与AD有很强的相关性,对该模块进行了更深入的研究。小胶质蛋白markers通过表达上调来响应淀粉样β斑块,表达下调来发挥抗炎症作用。图3 | M4星形胶质细胞/小胶质细胞代谢模块富含AD遗传危险因素和抗炎症相关小胶质细胞标志物(a)采用GWASs分析AD模块蛋白是否为AD疾病相关的风险因子;(b)AD蛋白网络模块中星形胶质细胞(顶部)和小胶质细胞(底部)表型标记的富集;(c)模块M4中按模块特征蛋白相关值(kME)排列的前100位蛋白的互作网络分析;(d)AD小鼠模型中与M4模块中的蛋白质重叠的前30个差异最大的小胶质细胞的转录表达情况;④ M4星形胶质细胞/小胶质细胞代谢模块蛋白的表达水平在脑脊液中显著增加为探讨M4星形胶质细胞/小胶质细胞代谢模块中的蛋白质是否可以作为AD体液样本的生物标记物,作者分析了两个队列的脑脊液(CSF)样本的TMT标记定量蛋白质组学。在队列1中,观察到22个蛋白映射到M4星形胶质细胞/小胶质细胞代谢模块。其中CD44、PRDX1、DDAH2、LDHB和PKM蛋白显著差异性表达。在队列2中,27个蛋白映射到M4星形胶质细胞/小胶质细胞代谢模块。其中17个蛋白与队列1中重合,且在AD-CSF中表现出相同的表达趋势,在AsymAD患者的CD44、LDHB和PKM也出现显著或趋势性升高,并与认知功能相关。总之,M4节点蛋白CD44、PRDX1和DDAH2在AsymAD和AD患者中的表达显著升高。这些蛋白质也可能作为液体中的生物标志物,在疾病早期提示疾病存在。基于这些数据和分析,研究人员可以从中找出能够治疗和预防AD的新靶点,或是开发液体检测可用的生物标记物。图4 | M4星形胶质细胞/小胶质细胞代谢模块蛋白水平在AsymAD和AD-CSF中升高(a)两组脑脊液M4蛋白的分析方法;(b)测定相对蛋白水平;研究结论作者通过基于MS的蛋白质组学对2000多个大脑和近400个脑脊液样本的综合研究,提供了阿兹海默症的蛋白质网络变化和与疾病无症状和症状阶段相关的生物学变化,并强调了蛋白组学在疾病发病机理研究中的重要作用。针对这一生物学特性的项目有望用于阿兹海默症药物治疗和生物标记物开发,特别是针对促炎和抗炎星形胶质细胞和小胶质细胞的项目。作者简介Allan I. Levey博士,Emory University神经学系教授Allan I. Levey博士是埃默里大学(Emory University)神经学系教授和系主任,也是埃默里老年痴呆症研究中心(Emory Alzheimer 's Disease Research Center)主任。Levey博士是国际公认的神经生物学专家,在神经退行性疾病方面做出了诸多原创性工作。他发表了270多篇研究论文。他的工作有助于理解包括阿尔茨海默病和帕金森病在内的神经退行性疾病的大脑系统和机制,并为新的治疗策略确定分子靶点。他获得多个奖项,包括Derek Denny-Brown Neurological Scholar Award, Heikkila Research Scholar Award及 Health Advancement Research Award。Levey博士还被评为ISI神经科学领域的高引用研究员,并一直被列为美国最好的医生之一。参考文献Johnson ECB et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine. 2020 Apr 13. doi:10.1038/s41591-020-0815-6END
随着生物科技的迅速发展,每天都会有海量的生物学数据产生,如何有效的分析这些“生物学大数据”?生物信息学的应用变得尤为重要,在生物领域从基因测序,到基因编辑,再到基因疗法的精准医疗,由生物科技引发的又一场变革正悄然而至。试问大家做好准备迎接它到来了吗?本次分享的主题为:如何快速获取海量数据?我们就从物种的DNA或蛋白质序列说起,在我们的科学研究中下载序列是一件简单不过的事情,无非就是联网NCBI等主页上,选择数据库后输入AC号或GI号后直接下载。如果是少量的序列数据,我们可以通过一个个ID去查找,复制,粘贴方式保存到本地文件中。但是如何大批量下载数据呢?再通过复制、粘贴方法虽然很精确但是对于大批量的数据下载效率实在是太低了。是否可以直接下载数据库准备好的序列文件?或者编写程序脚本进行批量下载?本次小鹿分享的是2种热门物种(人和鼠)的无编程基础的下载方式。(我们后面会分享“如何使用代码批量下载生物学序列数据”) 物种 人 1.NCBI的GenBank数据库基因:MYH9物种:人Homo sapiens(1)用浏览器登录NCBI数据库官网:https://www.ncbi.nlm.nih.gov/(2)数据库选择框:选择Gene;在搜索框输入:MYH9,可以添加Homo sapiens或者Human,这样匹配更准确;(3)点击MYH9 - myosin heavy chain 9,选择FASTA格式;(4)点击下载MYH9基因序列NCBI Reference Sequence: NC_000022.11,起个合适的文件名,推荐使用基因名或者数据库登录号;(5)物种基因组和蛋白组序列的下载选择Genome子数据库,同样在搜索框输入物种英文名或拉丁学名,例如,输入human,我们查找人的基因组数据,如下所示:点击下载基因组或蛋白组FASTA序列,直接会弹出下载链接,选择保存文件的位置即可开始下载;还可以下载NCBI上的基因组注释GFF文件(Ensembl数据库也可以下载物种的GFF文件,后面会给大家讲到)物种 人和小鼠 2.Uniprot数据库样例蛋白:P35579物种:人Homo sapiens和小鼠Mus musculus(1)用浏览器登录Uniprot数据库官网:https://www.uniprot.org/(2)搜索框输入:P35579,点击Search;(3)查看P35579蛋白的生物学信息:肌球蛋白9(Myosin-9);可以看到该蛋白主要分布在细胞基质中,是细胞的动力蛋白;(4)下载序列数据,点击FASTA;(5)下载物种蛋白质组序列文件(例如下载物种:小鼠mus musculus);在Uniprot数据库官网选择Proteomes子库,然后在搜索框输入:mus musculus,选择Organism ID为10090的小鼠;点击Protein Count: 55462,显示小鼠蛋白Entry,可以根据需要定制自己需要的数据:例如,我们需要GeneID,点击Columns进行个性化的定制;如下所示:点击Download下载所需要的数据,选择文件格式。如果我们需要的是表格数据,我们通常下载为Tab分割符(Tab-separated)的txt文件,因为Excel表格有最大行数的限制,如果超出最大行数会导致数据丢失;如果是序列文件,我们选择下载FASTA格式的文件;物种 人 3.Ensembl(Ensembl Genome Browser)数据库物种:人Homo sapiens(1)使用浏览器登录数据数据库:https://asia.ensembl.org/index.html(2)选择Human数据库,如下所示:(3)选择下载基因组序列,见下图:(4)在Ensembl数据库下载物种的GFF文件前面我们讲到了在NCBI数据库中下载物种基因组注释GFF文件,其实我们还可以在Ensembl数据库中下载物种的注释文件,而且在Ensembl中下载的GFF文件更加标准,使用起来更方便。(5)直接连接到ensembl的FTP服务器,网址:ftp://ftp.ensembl.org/pub/release-100/fasta/homo_sapiens/dna/选择toplevel标签的序列文件进行下载,如下所示:小鹿后面还会分享“如何使用代码批量下载生物学序列数据”哦,请关注鹿明生物,get最新分享热文。 猜你还想看◆生信分析:你可以更美一些:SnapGene Viewer软件序列可视化操作◆云平台:震惊!他花了3分钟就完成了我三个周的工作!◆云平台:欧易/鹿明云 | 免费的聚类热图不试试吗?◆生信分析:这个R包不太冷系列——GOplot(功能富集绘图)◆生信分析:10行代码让你的相关性图貌美如花◆生信分析:对话百年名画--文章绘图配色高级又简单!◆生信分析:只需3分钟Get“代谢通路分析神器”◆生信分析:玩转生信—火山图中“亿点细节”,你会打造吗?◆生信分析:【指南】Cytoscape之stringAPP蛋白互作分析详解◆生信分析:【教程】组学研究,用python快速实现PCA分析和绘图◆生信分析:组学研究,R语言实用技巧—热图,运用pheatmap包简单易懂快速汇图方法来袭~◆生信分析:【情人节】R语言—小提琴图的浪漫邂逅END文章来源于鹿明生物
关注我们,更多干货和惊喜好礼周岳 黄敏引言Orbitrap Exploris 240新产品的到来,进一步拓展了超高分辨质谱在蛋白质组学领域的产品线,同时也为我们带来全新的蛋白质组学体验。一. Exploris 240在蛋白质组学应用概览Exploris 240是四极杆和超高场Orbitrap的串联质谱,分辨率最高可达240,000,扫描速度高达22Hz,在蛋白质分析的功能上支持APD(Advanced Peak detection)算法;R 45000用于TMT 11plex和TMTpro(16plex)的分析;兼容FAIMS Pro离子淌度接口;支持DDA, DIA, PRM, t-SIM多种扫描模式;通过Biopharma option的扩展m/z 至8000用于完整蛋白分析;Easy IC的实时内标校正模式使质量轴稳定在1ppm。图1. Orbitrap Exploris 240 MS 超高场 Orbitrap 分析器 质量范围:m/z 40-6000 质量精度内标 <1ppm,外标 <3ppm,Easy IC 实时内标校正 最高分辨率 > 240,000 扫描速度高达 22 Hz 扫描模式:FS, t-SIM, DDA TopN, DDA TopTime, DIA, t-MS2 (PRM), AIF 高级扫描模式:AcquireX, APD, TMT @ 45k 选配:FAIMS Pro,Biopharma optionExploris 240应用于蛋白质组学分析的设计理念Exploris 240质谱平台上融合了蛋白质组学积累的先进技术和工作流程,通过打包的方式呈现给用户。Exploris 240可以开展基于DDA的蛋白质鉴定和定量流程,基于DIA的定量流程,TMT的定量流程,基于PRM的靶向蛋白定量流程,这些工作流程都以方法模板的形式内嵌在质谱方法中,操作人员只需要针对特定的实验设计选择对应的方法即可。同时Exploris 240延续了Exploris 480稳定的硬件设计,可以无间断分析临床大队列样本。图2. Orbitrap Exploris 240 质谱仪-领先的性能,多功能性和易用性二. Exploris 240蛋白质组学工作流程1、深度、快速蛋白质组覆盖全球组学应用开发团队对不加FAIMS Pro的4台Exploris 240进行蛋白鉴定数目测试(1g Hela酶切肽段,60分钟梯度),4台Exploris 240蛋白鉴定数目均在5300个蛋白以上(图3),显示出仪器间具有很好的重现性。图3. Exploris 240在1 g Hela酶切肽段, 60 min LC gradient, Top 20 method, ES803色谱柱,不加FAIMS Pro的情况下肽段和蛋白鉴定数目Exploris 240加载了FAIMS Pro 后,蛋白质组的覆盖深度进一步提高,蛋白鉴定数目可提高25%。1小时梯度,1g Hela酶切肽段中蛋白鉴定数超过了6000个蛋白。图4. Exploris 240在1 g Hela酶切肽段, 60 min LC gradient, Top 20 method, ES803色谱柱,不加装FAIMS Pro,FAIMS单电压CV (-45V), FAIMS双电压 (-50/70V)的条件下肽段和蛋白鉴定数目接着对不同梯度的200ng Hela进行蛋白鉴定深度测试,30分钟可鉴定3432个蛋白,60分钟可鉴定5064个蛋白,90分钟可鉴定5986个蛋白,120分钟可鉴定6335个蛋白。图5.Exploris 240在200ng Hela酶切肽段, 不同色谱梯度, Top 20 method,Ionopticks 25cm column,FAIMS双电压(-50/70V)的条件下肽段和蛋白鉴定数目继续对不同浓度的Hela酶切肽段进行测试,Hela的浓度范围从10ng到1000ng,跨越3个数量级,在每个浓度下Exploris 240均能获得惊人的蛋白鉴定数。即使在10ng低浓度的上样量的情况下,Exploris 240仍然能够鉴定1600个蛋白。图6. Exploris 240在不同浓度HeLa digest,90min色谱梯度,FAIMS Pro 2 CV (-50/-70), Ionopticks 25cm column, Proteome Discoverer 2.4 Mspep谱图库检索,1%FDR的肽段和蛋白鉴定数目需要注意的是,FAIMS Pro在多肽分离上具有完全正交性,如图7所示,200ng Hela 30min梯度-50V和-70V鉴定到的肽段中只有3%的肽段是重复鉴定的。图7. 200ng Hela, 30min梯度CV -50V和-70V的肽段的Overlap图,只有3%肽段重复鉴定此外,针对很多蛋白质科学平台老师日常工作中常见的IP蛋白鉴定样品,Exploris 240可以将IP样品分析的时间缩短至30分钟。免疫富集AKT/mTOR通路中12个蛋白的样品在30分钟梯度内就可以鉴定到超过1600个蛋白,大大缩短了分析的周期。图8. 高通量IP蛋白鉴定。免疫富集 AKT/mTOR通路的12个蛋白,进行蛋白酶切,使用15min和30min梯度蛋白质鉴定2、深度、精确蛋白质定量定量蛋白质组学是蛋白质分析的必备手段,Exploris 240可实现非标记定量(图9),DIA定量,TMT定量(图10)和PRM靶标定量(图11)4种模式,满足定量蛋白质组学分析的多种需求。Exploris 240源于Orbitrap的定量技术,定量性能可达amol级别灵敏度,并实现 5个数量级的线性范围。图9. Exploris 240非标记定量性能。两种蛋白质混合物的精确非标记定量。酵母蛋白消化液以1:10,1:5,1:2的比例加入到200 ng Pierce HeLa消化液标准品的背景中。在Orbitrap Exploris 240 质谱上对两种蛋白混合物进行分析,然后在Proteome Discoverer2.4软件中使用Minora feature detector 模块进行LFQ数据处理。图10. 基于TMT的高准确度定量的可重现性。A) 在带有FAIMS Pro接口的Orbitrap Exploris 240 质谱上使用两种补偿电压(-50和-70 CV),对500ng TMT 11plex 标记的酵母消化标准品进行60分钟梯度的定量分析。该标准样本为用户提供了一个工具,用于不同仪器测量TMT方法的准确性、精密度和蛋白质组深度的考察。B)所示的是FDR卡值为1%以下的蛋白质和多肽的定量数量。C)所有重复的无干扰指数均达到75%。图11. Exploris 240准确的PRM定量性能。Pull-down AKT/mTOR通路的12个蛋白,加入AKT/mTOR SureQuant kit轻标和重标肽段,含有30个高纯度的重标和轻标肽段,进行PRM定量分析。83%肽段CV<10%,可达5个数量级的动态范围。3、应用于临床大队列分析蛋白组大队列分析是很多临床和转化医学实验室的诉求,Exploris 240继承了Exploris 480稳定和易用的硬件设计,真正做到不停歇的蛋白组分析。蛋白质组分析流程,自动化的样品前处理每天可以处理500个样本,高通量的LC-MS分析可以实现60个样品/天的通量。图12. 大规模临床队列分析实验流程。自动化的样品前处理酶切方法每天可以处理500个样本,1台Exploris 240可以实现60样品/天的分析速度,分析1000个样品只需要18天的机时。同时不同Exploris 240质谱之间数据结果具有高度一致性,实现多台质谱同时分析。Exploris 240可以加配FAIMS Pro离子淌度接口,质谱分析中,FAIMS Pro只选择特定的肽段离子进入质谱,阻挡了很多干扰物离子,大大缩短仪器的维护周期,用户只需要定期对FAIMS Pro进行维护即可,而维护FAIMS Pro只需要短短半个小时的时间。同时比较了在清洗FAIMS Pro前后,TMT标记的蛋白鉴定数目和IFI指数几乎一致,用户无需担心维护FAIMS Pro会导致实验重现性的差异。图13. FAIMS Source Pro易于安装和维护,同时支持气相分离,并通过去除污染物提高了仪器的可靠性。在清洗FAIMS Pro前后,蛋白的鉴定数目和共隔离指数一致。如需合作转载本文,请文末留言。
深科·浅说蛋白质组研究:生命天书的新解码?前不久,《自然》杂志在线发表了中国科学家在早期肝细胞癌蛋白质组研究领域取得的重大科研成果。这一研究测定了早期肝细胞癌的蛋白质组表达谱和磷酸化蛋白质组图谱,发现了肝细胞癌精准治疗的潜在新靶点——胆固醇酯化酶SOAT1。90%以上的肝癌属于肝细胞癌。对于普通人来说,这一研究最耀眼的成绩,是给治疗最凶险的一类肝细胞癌带来了希望;对于蛋白质组相关科研人员来说,这一成果是“中国人类蛋白质组计划迎来的第一道曙光”。该成果论文的通讯作者、国家蛋白质科学中心(北京)首席科学家贺福初院士认为:“这一成果证明,基因组学不能独打天下,现在轮到蛋白质组学上场了。”回顾此前有关癌症的研究成果,“基因”这个词是在抗癌场景中出现的高频词——科学家相信:人类的某些基因隐藏着打开癌症开关的钥匙。这一思路符合学界对基因组学的一贯期待,贺福初院士介绍:“人们1985年开始酝酿基因组计划的主要动力,就是希望能够通过描绘和破解基因蓝图,揭示人类生老病死的规律和本质。”但人们将基因图谱这本“天书”印出来后,发现解读“天书”依旧是一大难题。1994年澳大利亚科学家Marc Wikins首先提出蛋白质组学这一概念。简单来说,基因承载着人类的遗传物质,而蛋白质是遗传物质传递的最后一个环节,是生命活动的执行者,蛋白质是组成人体所有细胞和组织的重要成分。一个生物系统在特定状态下表达的所有种类的蛋白质就是蛋白质组。1998年,“认为基因组学的发展或许遇到了瓶颈”的贺福初开始转向蛋白质组学研究。2002年,贺福初成为“国际人类蛋白质组计划”的重要参与者,并带领中国科学家牵头实施人类肝脏蛋白质组计划,他相信“基因组学解决不了的问题,或许蛋白质组学能解决”。目前贺福初团队的研究思路与一些美国同行不同。据介绍,贺福初团队的思路是用蛋白质组学驱动的精准医学“领跑”国际精准医疗;而美国的研究主流策略是“蛋白基因组学”,即将蛋白质组的数据用于基因组的注释,蛋白质组的研究仍然需要“背靠”基因组、转录组。科学家们对蛋白质组学研究的价值存在争议。贺福初说,学界更为主流的观点是,蛋白质组学的研究只是基因组学研究的“注解”。而贺福初认为蛋白组研究不是基因组研究的“附庸”。以本次发表在《自然》杂志在线的研究为例,他希望更多人认同蛋白质组研究的价值和作用。贺福初团队的这项研究持续了5年。研究发现,在最凶险的一类肝细胞癌中,胆固醇稳态失调与病发有直接联系,具体来说,胆固醇酯化酶越活跃,这类患者的手术后复发或死亡风险越大。而如果胆固醇酯化酶SOAT1得到抑制,肿瘤的增殖和迁移能力也同时受到有效抑制。他们的研究还发现,胆固醇酯化酶SOAT1在头颈癌、胃癌、前列腺癌、肾癌和甲状腺癌中均和患者较差的术后转移和死亡表现正相关。贺福初认为,这种基于蛋白质组研究的“抗代谢失稳”的抗癌思路,或可成为继抗增殖抗癌疗法和免疫抑制抗癌疗法之后的抗癌新方向。在前不久举行的成果发布会上,施普林格 自然旗下自然科研大中华区总监保罗 埃文斯在祝贺视频中说:“《自然》杂志约有93%的拒稿率,因此这样一篇论文发表出来是一项很大的成就,我深信这项研究工作将为蛋白质组学所引导的精准医学的发展作出有力贡献。”“蛋白组是解读生命天书的利器。”该成果的第一作者、军事科学院军事医学研究院研究员姜颖相信:“蛋白质组学驱动的精准医学时代正向我们走来。”据悉,此前在“蛋白基因组学”研究模式的指导下,美国等国的科学家们已经完成的精准医疗分子分型包括:结直肠癌、乳腺癌、卵巢癌和胃癌等。张茜 来源:中国青年报