欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

初中数学课题研究

一步一鬼
现行
去百度文库,查看完整内容>内容来自用户:中国学术期刊网关于初中数学课题研究摘要:我校是一所较为偏僻的农村学校,加之我校教师的流动较大的特殊情况,在一定程度上我们对于课题研究这个问题,一直以来重视程度不大,省市级的课题研究项目没有,直到2010年,市教研室的一次常规检查,让我对于学校、个人课题研究的重要性有了新的认识,之后在初中数学方面就确定了几个小课题,并且开展的比较顺利,现在已有4个结题。所以我就想把我们在数学课题教研活动中的点滴做法总结一下,以供大家参考。关键词:数学;课题研究;工作方法;课题论证中图分类号:g633.6文献标识码:a文章编号:1009-8631(2013)03-0094-01一、课题研究要有清晰的思路,明确的做法(一)相互合作,共同进步“一堆沙子是松散的,可是它和水泥、石子、水混合后,比花岗岩还坚韧”。依据我校的自身特点,为了尽快提升青年教师的教学、科研能力,教研组本着相互学习、相互提高、互动双赢、力争实效的原则,开展教师“以老带新、师徒结对”活动,老教师努力以自己的良好师德、严谨的态度和鲜明的教育教学风格帮带新教师,做到诲人不倦,尽力使新教师早日成为教育教学有特色、业务过硬的教师。当有教学竞赛活动时,同事之间那种真诚关爱之情,那种集体荣誉感,更表现得格外强烈。如我组青年教师崔小勇在参加市级评比教学能手之前,从教学设计到课件制作,乃至课堂语言表述等细微问题无不渗透着组内所有教师的心血,他讲课的成功与组内和谐共进的良好氛围是

求高中数学研究课题

嬴政
小拳王
  高中数学研究性学习课题选题参考  作者:德化一中数学组  数学研究性学习课题  1、银行存款利息和利税的调查  2、气象学中的数学应用问题  3、如何开发解题智慧  4、多面体欧拉定理的发现  5、购房贷款决策问题  6、有关房子粉刷的预算  7、日常生活中的悖论问题  8、关于数学知识在物理上的应用探索  9、投资人寿保险和投资银行的分析比较  10、黄金数的广泛应用  11、编程中的优化算法问题  12、余弦定理在日常生活中的应用  13、证券投资中的数学  14、环境规划与数学  15、如何计算一份试卷的难度与区分度  16、数学的发展历史  17、以“养老金”问题谈起  18、中国体育彩票中的数学问题  19、“开放型题”及其思维对策  20、解答应用题的思维方法  21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类  22、高中数学的学习活动——解题后的反思——开发解题智慧  23、中国电脑福利彩票中的数学问题  24、各镇中学生生活情况  25、城镇/农村饮食构成及优化设计  26、如何安置军事侦察卫星  27、给人与人的关系(友情)评分  28、丈量成功大厦  29、寻找人的情绪变化规律  30、如何存款最合算  31、哪家超市最便宜  32、数学中的黄金分割  33、通讯网络收费调查统计  34、数学中的最优化问题  35、水库的来水量如何计算  36、计算器对运算能力影响  37、数学灵感的培养  38、如何提高数学课堂效率  39、二次函数图象特点应用  40、统计月降水量  41、如何合理抽税  42、市区车辆构成  43、出租车车费的合理定价  44、衣服的价格、质地、品牌,左右消费者观念多少?  45、购房贷款决策问题  研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)  《 立几部分 》  问题1  平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。  问题2  用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。  问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。  问题4  异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。  问题5  立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。  问题6  作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。  问题7  等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。  问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。  《解几部分 》  问题9  对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。  问题10  我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。  问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。  问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。  问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。  问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。  问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。  问题16  解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。  问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。  问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。  问题19 求轨迹问题中,纯粹性的简捷判别。  问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。  问题21 对平移变换的解题功能进行综述。  问题22  与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。  《函数部分 》  问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。  问题24 整理求定义域的规则及类型(特别是复合函数的类型)。  问题25  求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。  问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。  问题27 利用条件最值的几何背景进行命题演变,与命题分类。  问题28  回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。  问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。  问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。  问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论?  问题32  对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。  问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。  《三角部分 》  问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。  问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。  问题36 整理三角代换的的类型,及其能解决的哪几类问题。  问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为  从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。  问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。  问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。  问题40  三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。  《不等式部分 》  问题41  一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。  问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。  问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。  问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。  问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。  问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。  问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。  问题48 探索绝对值不等式和物理模拟法  如果还有什么相关的课题,请各位同行提出。参考资料:http://sx.dhyz.com/new/Article_Print.asp?ArticleID=174

初中数学课题研究题目收集

果瓜有理
长恨天
去百度文库,查看完整内容>内容来自用户:lanlan66558初中数学课题研究题目收集1.初中数学教学中使用计算器的实践与研究2.练习、作业分层设计的实施3.易错点的提前干预的研究4.“问题串”式教案的设计5.概念引入方法的探索6.对教材“课题学习”教学策略的分析7.初中数学教学中“错误”资源开发和利用实践研究8.课堂引入中情景创设的研究9.教学设计中优化问题设计的策略研究10.初中数学学困生的个案分析11.培养学有余力学生的个案分析12.对教材例题处理策略的研究13.课堂教学中即时反馈策略的研究14.课堂教学中知识探究的运用研究15.初中数学课堂合作学习的低效成因分析及对策研究16.课堂中教师“”的策略研究17.阅读能力培养的策略研究18.概率教学方法的研究19.统计教学方法的研究20.作业批改实效性的策略研究21.中小学衔接教学方法的研究22.课堂教学中教师“小结”的策略研究23.数学史资源在教学中的运用24.数学预习的策略研究25.学生数学小论文撰写的策略研究26.教学设计关注教学目标的策略研究27.课堂观察实施策略的研究28.数学教学中使用“学案”的研究29.复习课教学课例分析的研究30.初中学业考试题的特色与发展趋势的分析46

[实用参考]初中数学小课题研究优秀题目收集(整理)

诡衔窃辔
其热焦火
去百度文库,查看完整内容>内容来自用户:智拓法律初中数学小课题研究优秀题目收集(整理)1.初中数学教学中使用计算器的实践与研究2.练习、作业分层设计的实施3.易错点的提前干预的研究4.“问题串”式教案的设计5.概念引入方法的探索6.对教材“课题学习”教学策略的分析7.初中数学教学中“错误”资源开发和利用实践研究8.课堂引入中情景创设的研究9.教学设计中优化问题设计的策略研究10.初中数学学困生的个案分析11.培养学有余力学生的个案分析12.对教材例题处理策略的研究13.课堂教学中即时反馈策略的研究14.课堂教学中知识探究的运用研究15.初中数学课堂合作学习的低效成因分析及对策研究16.课堂中教师“”的策略研究17.阅读能力培养的策略研究18.概率教学方法的研究19.统计教学方法的研究20.作业批改实效性的策略研究21.中小学衔接教学方法的研究22.课堂教学中教师“小结”的策略研究23.数学史资源在教学中的运用24.数学预习的策略研究25.学生数学小论文撰写的策略研究26.教学设计关注教学目标的策略研究27.课堂观察实施策略的研究28.数学教学中使用“学案”的研究29.复习课教学课例分析的研究30.初中学业考试题的特色与发展趋势的分析46

初中数学小课题研究怎样做

动画师
不可听也
首先数学小课题活动的基本流程为:问题的生成、组建研究小组、制定活动方案、实施活动方案、汇报交流。其次就是要掌握有关课题研究中的格式结构以及课题论证的查找等等方面的事项,更多有关数学小课题研究问题,你可以来亿百出版网,看看。

求高中数学研究性小课题一篇

介者移画
依依不舍
高中数学研究性学习课题集锦 一、课本知识延伸型 1、空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的 各类问题。 2、整理求定义域的规则及类型(特别是复合函数的类型) 。 3、求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出 现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如 配方法、带余除法等) 。 4、 总结求函数值域的有关方法, 探索判别式法的一般情形——实根分布的条件用于求值域。 5、利用条件最值的几何背景进行命题演变,与命题分类。 6、回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层 函数的符号) ,我们称之为“给函数更衣” ,于是我们可以随心所欲地将方程(不等式)进行 演变。你能利用这一点编拟一些好题吗。 7、探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这 种方程的类型。 8、在原点有定义的奇函数,其隐含条件是 f(0)=0,试以这一事实编拟、演变命题。 9、把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一 事实数学化吗?若把轴对称改为中心对称又怎么结论? 10、对于含参数的方程(不等式) ,若已知解的情况确定参数的取值范围,我们通常用函数 思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 11、 改变含参数的方程 (不等式) 的主元与参数的地位进行命题的演变。 探索换主元的功能。 12、数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘, 试探它在解决三角问题中的数形结合功能。 13、整理三角代换的的类型,及其能解决的哪几类问题。 14、一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 15、三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化, 即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 16、一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑 其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法” ,试整 理常见的类型的补集法。 17、概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 18、观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 19、探求一些著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深 对不等式的理解。 20、整理常用的一些代换(三角代换、均值代换等) ,探索它在命题转化中的功能。 21、考虑均值不等式的变换,及改变之后的不等式的背景意义。 22、分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换, 将分母为多项式的转化为单项式。 23、关于数学知识在物理上的应用探索 24、对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两 点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题, 试研究解几中的各种公式逆用,以充实构造法证明。 25、我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的 行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 26、 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材, 如用点斜式而忽视斜 率存在,截距式而忽视截距为零等。 27、 利用角参数与距离参数的相互转化以实现命题的演变, 达到以点带面, 触类旁通的目的。 28、研究求轨迹问题中的坐标转移法与参数法的相互联系。 29、关于斜率为 1 的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题 策略。 30、解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲 线(包括其退化情形如两条相交线,平行线等)的圆化处理。 31、整理与焦半径有关的问题,并将之“纯代数化” ,进而研究其“纯代数解法” ,从中探索 新方法。 32、把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 33、在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想” , 扩大这思想在解几中的地位或功能。 34、与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种 方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 35、平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简 单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问 题进行升维处理。即把它转化为立几问世题加以解答。 36、用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中 的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 37、 作为降维处理的一个例子: 可考虑异面直线距离的几种转化, 如转化为线面距、 点线距、 面面距等。 38、异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观 点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 39、立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。 于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 40、等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们 所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的 相应方法探索之。 二、生活应用型(需要学生自己动手去有关部门搜集和整理原始资料) 1、银行存款利息和利税的调查 2、购房贷款决策问题 3、有关房子粉刷的预算 4、关于数学知识在物理上的应用探索 5、投资人寿保险和投资银行的分析比较 6、编程中的优化算法问题 7、余弦定理在日常生活中的应用 8、证券投资中的数学 9、环境规划与数学 10、如何计算一份试卷的难度与区分度 11、中国体育彩票中的数学问题 12、 “开放型题”及其思维对策 13、中国电脑福利彩票中的数学问题 14、城镇/农村饮食构成及优化设计 15、如何安置军事侦察卫星 16、如何存款最合算 17、哪家超市最便宜 18、数学中的黄金分割 29、通讯网络收费调查统计 20、数学中的最优化问题 21、水库的来水量如何计算 22、计算器对运算能力影响 23、统计铜陵市月降水量 24、出租车车费的合理定价 25、购房贷款决策问题 26、设计未来的中学数学课堂 27、电视机荧屏曲线的拟合函数的分析 28、用计算机软件编制数学游戏 29、制作一个数学的练习与检查反馈软件 30、制作较为复杂的数据统计表格与分析软件 31、制作一个中学生数学网站 32、如何计算一份试卷的难度与区分度 33、多媒体辅助教学在数学教学中的作用调查 34、零件供应站(最省问题) 35、拍照取景角最大问题 36、当地耕地而积的变化情况,预测今后的耕地而积 37、衣服的价格、质地、品牌,左右消费者观念多少? 38、如何提高数学课堂效率 39、数学的发展历史 40、“开放型题”及其思维对策 嘿嘿,我把我做过的研学课题和你说一下吧。多米诺骨牌的轨道设计

初中数学研究性学习与数学课题学习的区别?

白樱桃
冥王星
研究性学习不仅仅是一种学习方式,更是一种先进的教育思想、教学方法。不论从学生发展的角度,教师发展的角度还是从初中数学学科自身的特点来说,在初中数学教学中开展研究性学习都将成为一种必然。 当今的社会是一个信息充斥的社会,研究意识与能力已经成为人的一项基本素质,研究问题的能力也成为衡量人才水平的一个重要指标。课题学习在中学教学中越来越显示出其重要作用。通过第一讲的学习我充分认识到,在数学学习中课题学习需要更先进的学习方法,研究性学习对课题学习是一种十分有效的方法。 随着基础教育课程改革在全国范围内的实施,教育界十分重视对中学生进行“研究性学习”方式的培养。作为现代教育理念集中体现的研究性学习,除了作为一门独立的学科课程形式存在外,还必将作为一种重要的学习方式和教学策略渗透于各学科教学之中,对我国教育的发展起到极大的推动和促进作用。因此,能否在初中数学课题教学中适切性地开展研究性学习,已经成为当前初中数学教师必须要面对的一个重要课题。 研究性学习注重学习的过程,关注学习过程中学生的思维方式、个人体验及对信息、资料的整理与综合。它通过学生的主动探究过程来培养他们的创新精神、动手能力和解决实际问题的能力。学生在这个过程中增强了研究意识、问题意识,学会了如何学习、如何去解决问题。 研究性学习强调学生通过亲身实践获取直接经验,其过程是一个开放的教学过程。而数学开放题体现了数学研究的思想方法,解答过程是探究的过程,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成就感,使学生体验到数学的美感。 在新的课程理念中,学生学习知识不再是简单地对教材中既定知识结论的接受和记忆,课程知识成为学生反思、批判、运用并促进学生重新理解的材料。改变学生的学习方式,走向“研究性学习”,我国基础教育课程改革顺应了这种趋势。在初中数学教学中适切性地开展研究性学习既是新课程改革的需要,数学学科、数学教师发展的需要,更是学生发展的需要。 课题学习是初中数学课程新设置的数学学习领域,也是一种新型的学习方式。它改变了传统教学模式中以知识记忆为主的陈旧方法,而且有鲜明的实践性、过程性、挑战性、综合性、开放性等特征。要提高课题学习的教学效果,教师需要十分注意讲究教学策略。 一、要有全新的教学观念 要顺利实施课题学习,教师观念的转变是前提。教师要着力树立正确的课程理念、教学观念、教学目标观念以及新型的教师观。课程,不再只是特定知识的载体,而是教师和学生共同探求新知识的过程。教学,不再是教学生学,而是师生交往、积极互动,共同发展的过程。课堂教学目标,不再是单一的知识与技能,而是知识与技能、过程与方法以及情感、态度与价值观三方面的整合。课堂教学功能,不再是以知识为本位,而是以发展为本位。这就要求教师要注重结论与过程的统一、认知与情感的统一,使数学过程成为激情与智慧综合的过程。 二、要精心进行课题学习素材选择 课题学习的素材最注重实践性和问题性。因此,选择课题学习题材时要注意从学生的生活实践性出发,通过切合学生生活实际和认知实际的现实问题,加强数学学习与学生生活联系,培养学生学习的主动性和数学应用的意识,帮助学生对数学知识主体的掌握。同时,具有现实背景的课题学习题材,也容易体现课程的人文精神和德育价值。课题学习的实际目的是通过活动促进学生的自主学习,这就要求这一学习形式能够充分发挥学生的积极性、主动性和创造性,体现对学生的兴趣、才能、志向的理解和尊重。选择的课题既要含有通过探索才能解决的未知问题,又要有一定的梯度或层次,满足不同能力水平的学生需求。 三、灵活选择合适的形式 课题学习的开展形式是多样化的,如数学调查、数学制作与设计、问题解决、数学探究等等。它既可以通过课堂学习方式完成,也可以通过作业形式,要求学生经过一段时间实践去完成。选择课内学习的方式展开课题学习的活动时,要注意以探索为活动主线,并在探索过程中发挥学生的主体性,加强学生的自主性,从而真正让学生经历自主的问题解决和研究过程,获得一定的“微科研”的研究经验。为此,在具体教学时,应给予学生较为充分的时间与空间,同时增大问题设置的梯度,保证学生有较大的探索余地和思考空间。 四、充分发挥学生的主体作用 课题学习是师生共同探索新知的学习过程;是在教师的指导下,学生自主确定研究课题,自主探究解决问题的方法并自己得出结论的过程。在整个教学过程中,不论是备课,还是实施教学,都要从学生的实际出发,尽量使学生动口、动手、动脑,创设愉悦和谐的学习气氛,极大地调动学生学习的积极性和主动性,促进学生主动参与、主动探索、主动思考、主动实践。要尽可能地使教学内容的设计贴近学生的“最近发展区”,促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略。要通过观察、思考、讨论等形式诱导学生积极参与知识形成发展的全过程,让学生多观察、多思考、多讨论,在实践中发展智力,在实践中培养能力。数学课题?就是那期刊文献上的?其实差不多吧,就是程度问题,总不能初中就有矩阵吧,其实就是个数学模型,初中的就做做简单的身边的前人做过的或者忽略的条件特别多的吧

高中数学课题具体有哪些选择?有范例吗?

不顾于虑
单身夜
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。采纳哦数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。

初中数学:什么是课题学习

何晏
荷尔蒙
“个人课题”一般是指由教师个人独立或教师小组合作承担的课题。它是一种切合教师自己教育教学实际的、对改进教师自己教育教学有用的、能够促进教师自己专业发展的课题你是找书,还是找题。