欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

数学研究性学习课题 高中

戒断期
万世不竭
  “高中数学课程标准”正在积极、紧张的讨论和制订过程中,为了更广泛地了解社会各主要行业对高中数学课程和内容的需求,以便为“标准”的制订提供依据,我们在大学的理、工、文、农(含林医)、经济等专业和社会生活中理、工、文、农(含林医)、经济等行业中选择了有代表性的方向进行了调查、研究,现将有关结论综述如下,本次调查的其它结论见附录三、附录四、附录五、附录六、附录七。  一、调查的对象、内容和调查方式。  本次调查,我们选取了理科的物理、化学、计算机,工科的工程、机械、电工、无线电、文科的文学、艺术、历史、政治,农科的农业、林业、渔业、地理,以及经济学等专业作为主要调查对象。调查内容见附录一。调查方式采用问卷调查、走访提问、资料搜集等形式进行。  二、调查结论。  1.对数学的认识.  调查结果显示,数学在现代社会生产、生活中各个方面的应用越来越广泛,数学已经渗透到各行各业,各个专业方向。从卫星到核电站,从天气预报到家居生活,高技术的高精度、高速度、高自动、高质量、高效率等特点,无不是通过数学模型和数学方法并借助计算机的控制来实现的。产品、工程的设计与制造,产品的质量控制,经济和科技中的预测和管理,信息处理,资源开发和环境保护,经济决策等,无不需要数学的应用。另外,数学文化、数学的思想方法,也处处影响人们的生产和生活。  2.对现行高中数学教学内容使用情况的调查。  本次调查把现行高中数学教材(必修本)和原二省一市,现十省市使用的高中数学教材的15个部分内容分为经常用到、有时用到、偶尔用到和不用等四个方面进行调查(见附录一)。调查结果如下(各个方面的意见不一致,大致统计)。  经常用到:集合与简易逻辑,函数的解析式、图象,幂函数,指数函数,不等式的性质,解一元二次不等式,不等式的证明,解任意三角形,数列的通项公式,等差数列,等比数列,曲线与方程,直线方程,二元一次不等式的图象解法,简单线性规划问题,平面图形直观图的画法,加法原理,乘法原理,排列及排列数公式,组合及组合数公式,概率的意义,等可能事件的概率,互斥事件有一个发生的概率,独立重复试验发生的概率的,离散型随机变量分布列、期望值、方差,抽样方法,正态分布,线性回归,数列的极限,函数的极限,函数的连续性,导数的意义,初等函数的求导,函数的最大与最小值,求简单函数的不定积分,图形的面积计算,图形的体积。  有时用到:映射, 反函数,指数函数 ,对数函数, 数学归纳法, 平面向量的运算,平面向量的坐标表示,平面向量的数量积, 三角函数的诱导公式,三角函数的图象和性质,圆的方程,抛物线及其标准方程,平面及其基本性质,空间向量及其运算,用空间向量处理几何问题,总体分布的估计,复合函数的求导,微分的运算,利用导数研究函数的性质,求简单函数的定积分,微积分基本公式,积分的其它应用,解指数不等式,复数的向量表示。  偶尔用到:解无理不等式,解对数不等式,直线与平面的位置关系,多面体,棱柱,球, 椭圆极其标准方程,双曲线及其标准方程,椭圆、双曲线、抛物线的简单几何性质, 二项式定理,复数的运算。  基本不用:平面与平面的位置关系,异面直线, 三角函数的和差化积与积化和差,棱锥,复数的三角形式运算。  3.对是否可以列入新高中数学课程内容的调查。  本次调查列出24个知识项分为可以与不可以两个方面进行调查(见附录一),结果如下(各个方向的意见不一致,大致统计)。  认为可以列入的有:估算, 算法,向量与变换,行列式,矩阵的代数运算(以二维为主),逻辑量词,离散数学初步,数列的递推,条件概率,概率密度,连续型随机变量的分布列、期望值与方差,区间估计,相关系数,二项分布,探究性问题,用图形计算器解决问题,用计算机探究问题,数学建模。  认为不可以列入的有:迭代法解方程, 矩阵与几何变换,复数的指数形式,复数与三角变换,回归函数,复合函数的积分,分步积分。  对于本次调查的其他部分内容,如应重视哪能数学思想方法,应强调培养哪些数学能力,现行高中教材中“立体几何”“解析几何”“三角函数”等内容的功能和意义如何等项的调查正在进行之中。另外,根据附录一、二在网上调查也正在进行。参考资料:http://www.cbe21.com/subject/maths/printer.php?article_id=1984

如何正确实施高中数学研究性学习

穷有八极
思齐
按照现代的教育学理念,不管是何种教育理论与方式,都必须是学生的自主学习、自主探索才行,也就是说要发挥学生的主体作用,同时重视教师的指导作用。因此要想真正实现高中数学课堂的研究性学习,必须要把学生作为学习探究和解决问题的主体,并注意转变自己的指导方式。作为教师要明确研究性学习是学生在教师指导下的自主性、探索性学习活动,不是老师的活动,学生要在这种学习过程中通过亲身实践获取直接经验,获取探索的情感体验,进而提高综合素质和能力。作为这一活动的组织者和指导者的教师,在指导学生进行研究性学习过程中,既不可以按已有的教学模式包办代替学生的自主学习,也不能放任自流,不闻不问。要达到研究性学习的最终目的,教师的指导必须把握一个度。

如何学习高中数学研究性学习资料

黑美人
鳲鸠
数形结合与联想与构造是学生写的还是老师写的啊?

求有关高中生研究性学习的作文1000字左右!(有关数学方面的)

格杀令
雨之牙
在新的高中数学课程课标中,明确提出高中数学课程应力求通过各种不同形式的自主学习和探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识与应用意识,这说明加强学生研究性学习已经引起了教育界的重视。那么在数学学习中怎样进行研究性学习呢? 问题的提出在“教师讲学生听、教师问学生答”的传统式课堂教学中,学生也许能“多、快、好、省”地获得一个个数学结论,得到一个像样的分数。然而,在这种单一被动的接受式学习模式中,学生的棱角被磨平,个性被抑制,缺失独立思考的精神和意识,会变的越来越机械和循规蹈矩。研究性学习作为一种富有挑战性的学习方式,不仅是专门设置的研究性学习课程学习活动的主要方式,而且可以渗透于各学科的课堂学习活动之中。把研究性学习引进高中教学课堂,学生学习从单纯的接受转向积极的情感体验和深层次的认知与参与,必然会促进学习方式的改进,促进包括高层次的思维在内的全面素质的提高。目前因为高考的压力,关于研究性学习的研究大都是理论色彩较浓,离教学实践很远,教师在教学中很难去真正研究并加以运用。笔者认为,研究性学习必须从专家走向教师,从理论走向实践,从宏观走向微观。 体验性高中数学课堂研究性学习注重过程体验性,即让学生置身于一定的问题情境之中去经历、感受和考察,最终加以认识和掌握。在这样的问题情境之中,学生运用已有的知识、技能和经验,进行有理有据的猜想和推论,并不断变换角度和背景予以重新审视和修正,通过这样的反复思辨,学生在自我否定与自我肯定中去伪存真、去粗取精,逐步探寻问题的实质,最终得出合理的结论。在这个过程中,学生看似仅获得直接的知识经验,实际上学生也同时获得了自身需求的满足、心理的平衡以及对数学的浓厚兴趣。交互性在研究性学习过程中,教师与学生处于对等地位,没有强弱高低之分,教师把学生置于主体地位,充分发挥自身的组织、引导、促进、激励功能,让学生带着自己的知识、经验、思考主动参与研究活动,实现师生互动和教学相长。 素质重构数学教学要充满诱惑力和吸引力,关键在于重构教材中的素材内容,使之具有现实性、趣味性和挑战性。因此,教师要把学生的知识、直接经验、生活世界当成重要的课程资源,努力探究那些发生在学生身边且暗含某种数学现象或数学规律的实际问题,以充分调动学生学习的积极性、主动性和创造性。结构重组传统观念由于侧重于数学知识的获得与数学技能的训练,因而在教学中呈现“例题——习题”式封闭循环的教学模式。教师在课堂教学中,应重构学习材料,注重从教材编排的结构方面对其进行重组和再加工,着力凸显“创设问题情景——现实问题数学化——问题解决与建模——应用与拓展”的逻辑结构,体现让学生“学数学研究数学”的价值取向,为学生的持续和谐发展创造有利条件。 创设情境、提出问题有问题,才会激起碰撞和交流,问题是认识活动的起点,也是研究活动的开始。任何问题都离不开一定的情境。在教学中,所谓创设问题情境就是在教学内容和学生求知心理之间制造一种“不协调”或“冲突”,将他们引入一种与问题有关的情境之中,使之形成问题意识,激发认识冲动。数学是从客观世界的数量关系与空间形式中抽象概括出来的,教师可以通过对数学学习内容采取背景化和丰富化的处理,引导学生调动已有的经验来理解数学,把常识提炼成数学,从而体会数学的趣味和作用。 提高时空、自主探讨教师的主要任务是:确定研究形式数学课堂研究性学习的形式主要有:①学生独立探究。每个学生根据自己的体验,以自己的思维方式自由地、开放地进行探究和发现,对研究的问题形成个性化的理解和表达。这样可以增强自主意识,培养学生的探究精神和创新意识。②分组或全班合作探究与交流。学生在独立探究的基础上,再进行合作或交流,可以满足学生自我表现的欲望,实现自我价值,同时可以进一步探究和整合教学资源,通过师生之间、同学之间的合作交流,可以使学生在交流中分享探究成果。 选择研究方法依据高中数学内容的不同特点,在教学中可以用到下列方法:实验调查。对与生活相近的内容可以要学生通过一定的数据调查,然后再分析总结,找出合理的答案,如分期付款问题。观察归纳。让学生从已有的知识和经验出发,通过整理、分类、观察、计算,从具体事例中归纳和发现事物的一般规律。通过这样的探索与发现、观察与分析、归纳与验证等一系列活动,使学生加强探寻规律的思想方法。

研究性学习课题 高中数学思想方法探究

黄头发
本觉
我们在学习数学的同时,是在不断的训练自己的逻辑和推理能力,给你什么条件,你能得出什么结论或者验证什么结论。平常学习的时候,一想、二做、三验证。就是我们平常做数学题目的时候,需要做到如下三点一想:其实就是多思考,只有不断的在大脑里进行思考,你的数学才能被挖掘出来,通过思考你可能会发现几种不同的解题思路。二做:前面思考好了之后,就开始下笔做,做的过程会让你把思路理顺的更清晰。三验证:就是将自己所做的答案与习题参考答案进行验证,也许通过对答案的验证,你有时候会发现比答案更厉害的解答方案

高中数学研究性学习论文怎么写啊,第一次写,不知道如何下手。

若果是也
夏夏夏
美国教育学家布卢姆在其“目标分类学”和“掌握学习策略”的理论中指出,以目标为核心,运用评价手段,构成教学过程三要素。教学目标是教学活动的指南,教学评价的依据。布卢姆认为学生学业成绩的差异与教学方法及教学内容呈现顺序有关。所以教师如何合理安排内容,制订符合学生认知规律的实施程序,便尤为重要。同时,思维科学表明,人类思维是一个整体性的活动过程,又是一个系统结构,而且是一种有层次的系统结构。不同的思维表现为不同的思维层次,思维“是由模糊→清晰→高一层次模糊→高一层次清晰…螺旋上升的”。故教师在设计教学过程时,既要适合学生现有的思维水平,又要考虑为下一个思维阶段的发展奠定基础。以下是关于二面角的平面角的目标层次(思维)教学,望与同行共勉。目标层次教学过程  层次1  知识目标:理解二面角的平面角的概念,寻找“三要素”,模拟“三步曲”。  能力目标:通过二面角的平面角的空间模型,培养空间想象能力。  情感目标:建立学习数学的自信心,培养学习数学的兴趣。  教学难点:由于取点P的任意性引起作图的不确定,容易造成学生思维不稳定性。就这点而言,需要教师通过具体模型,进行比较、辨别,使解题与作图过程简洁,自然。  展示过程:  (1)展示空间模型,强化“三要素”(二面α,β,一棱l)。(图1)             (图2)  (2)依托空间模型,模拟“三步曲”(二垂直、一连接)。  第1步:在面α内任取一点P,作P,B⊥面β,点B为垂足。  第2步:在面β内作BA⊥l,交l于点A。  第3步:连接A、P,此时∠PAB为二面角α-l-β的平面角(其中图2二面角的平面角为∠PBA的补角)。  举例测评:  例1 已知三棱锥V-ABC(如图3)。作出:①二面角V-AB-C的平面角;②二面角B-AV-C的平面角;③二面角A-VB-C的平面角。(图3)          (图4)  反馈评注:  (1)显然对数学的恐惧心理,使得部分学生在解题1之前整整捉摸了5、6分钟,让他们为难的是不知点V的射影应落在何处。在再三鼓励与督促下,终于作图如4。老师及时强化三要素,定式三步曲,目的是使其在思维上造成一种定式、定图,学会模仿,形成一个具体的感性认识和一个具体思维框架。此后再找二面角V-CB-A的平面角,显然就容易多了。  (2)面对问2,图形的经过翻转,部分学生又显得措手无策了。这暴露了他们空间想象能力的缺乏,平时忽视对概念的本质的正确认识和深层次理解,同时思维也缺乏广阔性与灵活性。如何让他们有空间立体的概念?我用铅丝制作了一个立体模型,在注重情感交流的同时,更注重了让他们有一个“观察,模拟,表达,总结”的过程,去伪存真,把握问题的实质。在完成问题2之后,问题3的解决似乎并不是很艰难的。  层次2  让学生原有认知结构中相应的旧知识与所学新知识产生同化和顺应,促进认知结构的不断更新。要从学生已掌握的知识水平基础上创设最近发展区,并促进学生知识的提高和水平的发展。  知识目标:掌握二面角平面角的作法(巧练“三元素”,定式“三步曲”)。  能力目标:培养空间想象能力与逻辑推理能力,尤其是批判性思维能力。  情感目标:增强学生学习的自信心,体验成功的喜悦。  教学难点:对于三步曲中的第一步曲:过点作面的垂线,分成三个层次:  (1)直接找(从已有的边上找,如例2);  (2)面内作(通常作法,如例3);  (3)空间作(转化为面作,如例2)。  举例展示:  例2 在正四棱柱ABCD-A1B1C1D1中,底面边长为a,侧棱长为2a,如图5。求二面角A-B1C-B的平面角。  分析 思考过点A作还是过点B作垂线。  (1)发现AB⊥面BCB1:(找到垂线)  (2)过点B作棱B1C的垂线交B1C于点E;  (3)连点AE。即∠AEB就是二面角A-B1C-B的平面角。(图5)            (图6)  例3 如图6,直面三棱柱ABC-A1B1C1,底面为直角三角形,∠ABC=90°,棱长AA1=6,AB=4,BC=3,求面A1BC1与面ACC1A1的二面角。  分析 过点B作垂线。  (1)在面ABC内过点B作BE⊥AC,交AC于点E;  (2)过E作EF⊥A1C1,交A1C1于F;  (3)连接BF,即得∠EFB为所求二面角B-A1C1-A的平面角。  例2中如过点B作面ACB1的垂线就面临着在空间过点作面垂线问题了,应选作一个垂面,在面内作垂线。  分析:过点B作BE⊥B1C,连AE,先证B1C⊥面ABE,易得面ABE⊥AB1C,找到垂面,在△ABE中作BF⊥AE得BF⊥面AB1C,易证∠AEB就是二面角A-B1C-B的平面角。  反馈评注:  (1)对于图5求二面角A-B1C-B的平面角来讲,过点B显然过于繁杂,故仅作为一种解题的思路来介绍。但事实上,经过例2过点A还是过点B的对比练习,使学生对于取点做垂线问题有了更深的理解。让学生自己意识到在平时解题过程中,优化思维、优化解法的重要性。培养学生认真审题的习惯,会利用题中的已知、求证关系,进行分析、比较。在平时教学过程中要求学生不要盲目做题,强调思维过程的教学,加强数学思想方法的培养。这样才有利于提高学生进行正确分析比较,分清事物本质,使学生能够合理选择思维的起点,增强思维的灵活性。  (2)在层次2的教学中更注重数学交流的过程,让学生袒露自己的想法与思路,用自己的语言阐述数学思维的过程。不仅有利于学生增强学习数学的兴趣,更有利于学生找到问题的所在,发现不良的学习方法和思维角度。同时数学交流有利于培养学生的责任感,与人分享数学学习的经验,诚信合作,互相帮助。  层次3  知识目标:熟练掌握二面角平面角的作法,会灵活的运用。  能力目标:提高分析问题能力,培养辨证思维能力及思维品质,激发思维的创造性。  情感目标:帮助学生养成多角度,多方向进行思考的习惯。  教学难点:对于三步曲中的第二步:过垂足作棱的垂线,分成三个层次:  (1)垂足在线段上(如例3);  (2)垂足在线段延长线上(如例4);  (3)无棱(添辅助线(如例5)。举例展示:  例4 如图7,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD=3。  (1)求证:BD⊥面PAD;  (2)若PD与底面ABCD成60°的角,求二面角P-BC-A的大小。  分析 (1)略。(2)如图7,由BD⊥面PAD,得面PAD⊥面ABCD,过点P在面PAD中作PE⊥AD,交AD于E,可得PE⊥面ABCD,过E在面ABCD内作BC的垂线交CB延长线于F。易证∠PFE为二面角P-BC-A的平面角。(图7)            (图8)  例5 如图8,正三棱柱ABC-A1B1C1,其中E为CC1的中点,2BD=BC=EC,且△ABC的面积为a2。求面ADE与底面ABC的二面角的平面角。  分析 由于EC⊥面ABC,难点在于二面的交线(即棱)。延长ED、CB交于点F,连AF,可知AF为二面的棱。在△AFC中,可证∠FAC=90°,易得∠EAC就是二面角的平面角。  反馈评注:  (1)层次3的例题设计是在学生已熟练掌握层次2的基础上,且遵循知识的认识规律,恪守循序渐进的原则,充分体现层次教学,同时让学生参与揭示知识发生的全过程,让学生参与例题分析的全过程,让学生参与数学思想方法总结的全过程,体现学生的主体性。(目标层次设计如下表)目标 层次1 层次2 层次3 知识目标 理解概念,模拟过程 掌握方法,巧练定式 熟练掌握,灵活运用 能力目标 空间想象能力 判断性思维能力 创造性思维能力 情感目标 建立自信心 体验成功的喜悦 数学精神与品质 数学交流 鼓励、尝试 交流、协作 自主探索  (2)同时层次(思维)教学是将知识按层次进行教学,实质就是将知识条理化,思维层次化。所以每一个学生必须将知识予以归纳条理化,来调整自己的认知结构。  (知识条理如下表)  三步曲垂直(点到面)直接找面内作空间化(转化)垂直(点到棱)在线段上在线段的延长线上添辅助线(无棱)连接 点到点(垂足)  (3)对于例5,在解题过程中如取DB为垂线,势必要过点B作BH⊥AF,交AF于点H,连HD,∠DHB也是二面角的平面角。当然也可以用射影定理cosθ=S△ABC/S△ADE来求。但在解题过程中反映出学生思路狭窄,缺乏良好的思维品质,对学生批判性思维能力培养不够。出现这种情况的主要原因是教师满堂灌,搞一言堂,没有时间留给学生思考质疑,搞题海战术,没有真正做到问题教学,思维过程教学,没有发挥一题多解的作用。素质教育势在必行,如何培养学生思维能力将是我们一线教师所孜孜以求的。

关于高一数学的研究性学习的解答

爱与战
芒种
楼主的数学一定很好吧,你提的几个问题都是很有研究性的,能够提的出有研究性的问题是学好数学的第一步.1,对于镜子里的像呈周期性的问题,你能联想到数学三角函数里的周期性问题,是把数学运用到生活中去的好例子,三角函数中的正旋函数的对称中心就是余旋函数的对称轴,反过来也适用,这说明正旋函数与余旋函数是可以互相转化的,这就要用到他的周期性问题.2数形结合确实是研究数学的好方法,具有直观性的特点,把数与形结合起来,常见在一元二次函数里面.3单位圆具有圆上任意一点到圆心的距离都相等的特点,圆上这点到横轴的线叫正旋线,到众轴的线叫余旋线,再看象限来定正负.可以把直角三角形的一些知识运用到里边去,对于比较在一个范围内正余旋的大小的临界点分析是很有帮助的.4对于化简求值的问题用的比较多,齐次式,正切化旋.5例如由sin(派/2-a)=cosa,sin(派/2+a)=cosa,cos(派/2-a)=sina,cos(a-派/2)=sina,cos(a+派/2)=-sina,sin(派/4+a)=sin(派/2-派/4+a)=cos(派/4-a)6比如说求得三边相等,那么三角相等并等于60度也就出来了.7运用均值不等式解题公式a+b>2根号ab,ab最好是定值,像tanacota之类的8三角转化为均值,就是把函数问题变位比较大小,反之亦然.9这种变换在高一上学期用的比较多,有些题变换主元能让题目边得比较简单,要根据题目来定.10.(1)作差,再看得数大于还是小于0,有时还需要对差进行分解公因式,或者再运用一些二次函数的知识一类的.(2)变形作差,性质和前一个一样的,只是要运用一些技巧,比如平方作差啦(3)作商,前提要是在两个都是正数,看商是大于或小于或等于1(4)平方作差,前提是两个都是正数.

中学研究性学习课程活动记录表(100分)

国家昏乱
方生方死
教你怎么写吧,还是自己写的好: 看完全书后简明扼要地写下自己的收获、体会,或者对全文或某些部分加以评析,鉴赏或质疑、批评,这就是学习心得。 学习心得的内容多样、形式灵活,有观点、有材料、有头有尾、层次清楚、结构完整,这里最重要的是有观点,也就是有“心得”,要把“心得”准确地表达出来。其次是有材料,可以是摘抄读过的诗文原句,也可以概述原文大意。 初学者,可以分两步。 第一步,以摘抄原文为主,然后适当作一些分析,谈自己的认识,体会,这样做,难度不大。 第二步,对原文只作概述,并采用夹叙夹议方式,同时写出自己的心得,这样写以自己的语言为主,难度较高。 给你一些片段,自己照写吧,抄也可以: 学习数学,重要的是理解,而不是像其它科目一样死背下来.数学有一个特点,那就是"举一反三”.做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好.学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是粗心大意.往往一道题目会做,却因粗心做错了,是很不值得的.所以在考数学的时候,一定不要太急,要条理清楚的去计算,思考;这样速度可能会稍慢,但却可以使你不丢分.相比之下,我会采取稍慢的计算方法来全面分析题目,尽量做到不漏.学习是一生的事情,不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果. 我一直认为数学不是靠做题做出来的.方法永远比单纯做题更重要.在第二天讲课前,最好先预习一下.用笔划出不懂的地方.在老师讲课时认真听讲,并在原先预习时不懂的地方加以解释,写好步骤.在课上,有选择的听和记老师所讲的例题.首先要听懂,然后再记下些重要的步骤和方法以及易错的地方和自己不容易想到的地方.还有,重要的定理和结论一定要熟记.课后要善于总结本堂课的内容,并在脑中梳理自己不懂的但经老师讲后才明白的例题的步骤,梳理1至2遍.课后要按时完成作业.一般先看老师钩的题目,看完后再自己动手做一遍.至于那些老师没有钩的题目,可选择性的做一些.若想的时间太久,就需要"放弃"了. 数学的学习是一个积累和运用的过程,因此,学好数学的一个必要前提便是要注重平时的积累和运用。而在日常时对于数学的学习还是有许多方法的。 数学学习做题是极为必要的,因此做题之后的总结工作也是极为重要的,否则只能是杂而不精,无法将知识融会贯通,合理运用。总结工作具体而言我们可以这样做:一,常备改错本,将自己做错的题目摘录下来,并将自己的错误做法和正确的作法一同记录下来,,以此警惕自己;二,正确把握考点,抓好典型,以此举一反三,我们在做题的过程中应该对题目考察的知识点有一定的认识,不可盲目做题,在此过程中我们可以提取一些具有某知识点的典型考法的题目,将其拟于一个标题之下记录,以此不变而应万变;三,对于许多学有余力的同学而言,仅有以上两点,想要得到进一步的提高还是远远不够的,我们还需要对解题方法有一个思辩的理解,从许许多多 的解法中选取适于自己的解题方式,而对于一些灵活的题目而言,我们还应该在做题中对许许多多的情况进行总结,以便在考试中将方法灵活运用,防止死做与定性思维的产生。 教你怎么写吧,还是自己写的好: 看完全书后简明扼要地写下自己的收获、体会,或者对全文或某些部分加以评析,鉴赏或质疑、批评,这就是学习心得。 学习心得的内容多样、形式灵活,有观点、有材料、有头有尾、层次清楚、结构完整,这里最重要的是有观点,也就是有“心得”,要把“心得”准确地表达出来。其次是有材料,可以是摘抄读过的诗文原句,也可以概述原文大意。 初学者,可以分两步。 第一步,以摘抄原文为主,然后适当作一些分析,谈自己的认识,体会,这样做,难度不大。 第二步,对原文只作概述,并采用夹叙夹议方式,同时写出自己的心得,这样写以自己的语言为主,难度较高。 给你一些片段,自己照写吧,抄也可以: 学习数学,重要的是理解,而不是像其它科目一样死背下来.数学有一个特点,那就是"举一反三”.做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好.学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是粗心大意.往往一道题目会做,却因粗心做错了,是很不值得的.所以在考数学的时候,一定不要太急,要条理清楚的去计算,思考;这样速度可能会稍慢,但却可以使你不丢分.相比之下,我会采取稍慢的计算方法来全面分析题目,尽量做到不漏.学习是一生的事情,不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果. 我一直认为数学不是靠做题做出来的.方法永远比单纯做题更重要.在第二天讲课前,最好先预习一下.用笔划出不懂的地方.在老师讲课时认真听讲,并在原先预习时不懂的地方加以解释,写好步骤.在课上,有选择的听和记老师所讲的例题.首先要听懂,然后再记下些重要的步骤和方法以及易错的地方和自己不容易想到的地方.还有,重要的定理和结论一定要熟记.课后要善于总结本堂课的内容,并在脑中梳理自己不懂的但经老师讲后才明白的例题的步骤,梳理1至2遍.课后要按时完成作业.一般先看老师钩的题目,看完后再自己动手做一遍.至于那些老师没有钩的题目,可选择性的做一些.若想的时间太久,就需要"放弃"了. 数学的学习是一个积累和运用的过程,因此,学好数学的一个必要前提便是要注重平时的积累和运用。而在日常时对于数学的学习还是有许多方法的。 数学学习做题是极为必要的,因此做题之后的总结工作也是极为重要的,否则只能是杂而不精,无法将知识融会贯通,合理运用。总结工作具体而言我们可以这样做:一,常备改错本,将自己做错的题目摘录下来,并将自己的错误做法和正确的作法一同记录下来,,以此警惕自己;二,正确把握考点,抓好典型,以此举一反三,我们在做题的过程中应该对题目考察的知识点有一定的认识,不可盲目做题,在此过程中我们可以提取一些具有某知识点的典型考法的题目,将其拟于一个标题之下记录,以此不变而应万变;三,对于许多学有余力的同学而言,仅有以上两点,想要得到进一步的提高还是远远不够的,我们还需要对解题方法有一个思辩的理解,从许许多多 的解法中选取适于自己的解题方式,而对于一些灵活的题目而言,我们还应该在做题中对许许多多的情况进行总结,以便在考试中将方法灵活运用,防止死做与定性思维的产生。 v

提供一些数学研究课题,可以写高中数学论文的那种

天菩萨
冬之蝉
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。参考资料:http://sx.dhyz.com/new/Article_Print.asp?ArticleID=174参考资料:爱o不释手