欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

多选题:5、研究数据结构就是研究________。

肩高于顶
不见水端
数据结构 包括数据的逻辑结构 和数据的物理结构(也就是存储结构),所以AB正确。 数据结构不研究数据运算方面的问题,只有各种操作算法的实现,而这些操作要么属于数据的逻辑结构 ,要么属于存储结构。 数据结构中,复杂度只用来表示算法的优劣,没有数据的复杂度。但愿对你有所帮助

数据结构只是研究数据的逻辑结构和物理结构,这种观点对吗? 帮忙解释下...

鸡鸣狗吠
炼金术
这种观点不完全对,我感觉数据结构主要研究非数值应用问题中数据之间的逻辑关系和对数据库的操作,同时还研究如何将具有逻辑关系的数据按一定的存储方式存放在计算机内。分析数据之间的逻辑关系和确定数据在计算机内的存储结构

数据结构是一门研究什么内容的学科

其俱是也
林建明
数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。Data_Structure=(D,R)其中D是数据元素的集合,R是该集合中所有元素之间的关系的有限集合-----------------------------------------------------------------------------------------------------------------------以上来自百度百科-----------------------------------------------------------------------------------------------------------------------就我理解,数据结构就是研究针对特殊目的,而找到的相对而言比较好的储存数据的”容器“,和与之配套的算法。

研究算法和数据结构的意义是什么呢。。。

起则于于
夏礼
意义:就是为了提高计算机的运算能力和可扩展性了! 计算机编程的世界里 最讲究的就是算法和数据结构啊!数据结构设计得乱七八糟的,对于今后可扩展性造成一定的限制!如果算法有问题,那么算出来的结果就不准确!要得到同样的结果,假如是1000这个数,你有很多算法可以实现对吧!什么算法计算速度快,就怎么来~假设我要你帮我算一个运载火箭发射卫星时的活动轨迹,单单“算法”就是门大学问!怎么算更精确?这是资料上的官方回答吗。。。要考理论,求个答案本回答被提问者和网友采纳

数据结构的研究内容

路上面
曲偻发背
在计算机科学中,数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象(数据元素)以及它们之间的关系和运算等的学科,而且确保经过这些运算后所得到的新结构仍然是原来的结构类型。“数据结构”作为一门独立的课程在国外是从1968年才开始设立的。 1968年美国唐纳德·克努特(Donald Ervin Knuth)教授开创了数据结构的最初体系,他所著的《计算机程序设计艺术》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的著作。“数据结构”在计算机科学中是一门综合性的专业基础课,数据结构是介于数学、计算机硬件和计算机软件三者之间的一门核心课程。数据结构这一门课的内容不仅是一般程序设计(特别是非数值性程序设计)的基础,而且是设计和实现编译程序、操作系统、数据库系统及其他系统程序的重要基础。计算机科学是一门研究用计算机进行信息表示和处理的科学。这里面涉及到两个问题:信息的表示,信息的处理 。而信息的表示和组织又直接关系到处理信息的程序的效率。随着计算机的普及,信息量的增加,信息范围的拓宽,使许多系统程序和应用程序的规模很大,结构又相当复杂。因此,为了编写出一个“好”的程序,必须分析待处理的对象的特征及各对象之间存在的关系,这就是数据结构这门课所要研究的问题。众所周知,计算机的程序是对信息进行加工处理。在大多数情况下,这些信息并不是没有组织,信息(数据)之间往往具有重要的结构关系,这就是数据结构的内容。数据的结构,直接影响算法的选择和效率。计算机解决一个具体问题时,大致需要经过下列几个步骤:首先要从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法(Algorithm),最后编出程序、进行测试、调整直至得到最终解答。寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。当人们用计算机处理数值计算问题是,所用的数学模型是用数学方程描述。所涉及的运算对象一般是简单的整形、实型和逻辑型数据,因此程序设计者的主要精力集中于程序设计技巧上,而不是数据的存储和组织上。然而,计算机应用的领域是“非数值型计算问题”,它们的数学模型无法用数学方程描述,而是用数据结构描述,解决此类问题的关键是设计出合适的数据结构,描述非数值型问题的数学模型是用线性表、树、图等结构来描述的。计算机算法与数据的结构密切相关,算法无不依附于具体的数据结构,数据结构直接关系到算法的选择和效率。运算是由计算机来完成,这就要设计相应的插入、删除和修改的算法 。也就是说,数据结构还需要给出每种结构类型所定义的各种运算的算法。数据是信息的载体,是可以被计算机识别存储并加工处理的描述客观事物的信息符号的总称。所有能被输入计算机中,且能被计算机处理的符号的集合,它是计算机程序加工处理的对象。客观事物包括数值、字符、声音、图形、图像等,它们本身并不是数据,只有通过编码变成能被计算机识别、存储和处理的符号形式后才是数据。数据元素是数据的基本单位,在计算机程序中通常作为一个整体考虑。一个数据元素由若干个数据项组成。数据项是数据结构中讨论的最小单位。有两类数据元素:若数据元素可再分,则每一个独立的处理单元就是数据项,数据元素是数据项的集合;若数据元素不可再分,则数据元素和数据项是同一概念,如:整数5,字符 N 等。例如描述一个学生的信息的数据元素可由下列6个数据项组成。其中的出生日期又可以由三个数据项:年、月和日组成,则称出生日期为组合项,而其它不可分割的数据项为原子项。关键字指的是能识别一个或多个数据元素的数据项。若能起唯一识别作用,则称之为 主 关键字,否则称之为 次 关键字。数据对象是性质相同的数据元素的集合,是数据的一个子集。数据对象可以是有限的,也可以是无限的。数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。在早期,计算机主要用于科学和工程计算,进入八十年代以后,计算机主要用于数据处理。据有关统计资料表明,计算机用于数据处理的时间比例达到80%以上,随着时间的推移和计算机应用的进一步普及,计算机用于数据处理的时间比例必将进一步增大。

数据结构包括哪几个方面的内容

零忍
蓝乌
数据结构包括数据的逻辑结构、数据的物理结构、数据存储结构。1、数据的逻辑结构指反映数据元素之间的逻辑关系的数据结构,其中的逻辑关系是指数据元素之间的前后件关系,而与他们在计算机中的存储位置无关。2、数据的物理结构数据的物理结构是数据结构在计算机中的表示(又称映像),它包括数据元素的机内表示和关系的机内表示。由于具体实现的方法有顺序、链接、索引、散列等多种,所以,一种数据结构可表示成一种或多种存储结构。3、数据存储结构数据的逻辑结构在计算机存储空问中的存放形式称为数据的物理结构(也称为存储结构)。一般来说,一种数据结构的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序存储、链式存储、索引存储和哈希存储等。扩展资料:数据结构研究的内容:就是如何按一定的逻辑结构,把数据组织起来,并选择适当的存储表示方法把逻辑结构组织好的数据存储到计算机的存储器里。研究的目的是为了更有效的处理数据,提高数据运算效率。数据的运算是定义在数据的逻辑结构上,但运算的具体实现要在存储结构上进行。一般有以下几种常用运算:1、检索。检索就是在数据结构里查找满足一定条件的节点。一般是给定一个某字段的值,找具有该字段值的节点。 2、插入。往数据结构晕增加新的节点。3、删除。把指定的结点从数据结构中去掉。 4、更新。改变指定节点的一个或多个字段的值。5、排序。把节点按某种指定的顺序重新排列。例如递增或递减。参考资料来源:百度百科—数据结构

数据结构究竟是讨论什么?

温柔乡
不耕而食
如何组织数据以及如何对数据进行算术和逻辑运算。希望采纳数据结构顾名思义就是数据+结构,数据是处理的对象,往往是非数值型数据,常见的是线性表,树,图,网络和集合,所谓结构呢就是这些数据之间的关系,以及怎样把这些数据存储在计算机内并且还可以表示数据原有的关系,另外就是如何更优化更有效的组织这些数据进行一些常用的操作比如查询,排序等等.....

数据结构学的到底是什么?和算法有什么关系?

富豪榜
天当
首先,数据结构是一门计算机语言学的基础学科,它不属于任何一门语言,其体现的是几乎所有标准语言的算法的思想。上面的概念有一些模糊,我们现在来具体说一说,相信你门的数据结构使用的是一门具体的语言比如C/C++语言来说明,那是为了辅助的学习数据结构,而数据结构本身不属于任何语言(相信你把书上的程序敲到电脑里面是不能通过的吧,其只是描述了过程,要调试程序,还需要修改和增加一些东西)。你们的书上开始应该在讲究数据的物理存储结构/逻辑存储结构等概念,说明数据结构首先就是“数据的结构”,在内存上的存储方式,就是物理的存储结构,在程序使用人员的思想上它是逻辑的。比如:你们在C/C++中学习到链表,那么链表是什么一个概念,你们使用指针制向下一个结点的首地址,让他们串联起来,形成一个接一个的结点,就像显示生活中的火车一样。而这只是对于程序员的概念,但是在内存中存储的方式是怎样的那?对于你程序员来说这是“透明”的,其内部分配空间在那里,都是随机的,而内存中也没有一个又一根的线将他们串联起来,所以,这是一个物理与逻辑的概念,对于我们程序员只需要知道这些就可以了,而我们主要要研究的是“逻辑结构”。我可以给你一个我自己总结的一个概念:所有的算法必须基于数据结构生存。也就是说,我们对于任何算法的编写,必须依赖一个已经存在的数据结构来对它进行操作,数据结构成为算法的操作对象,这也是为什么算法和数据结构两门分类不分家的概念,算法在没有数据结构的情况下,没有任何存在的意义;而数据结构没有算法就等于是一个尸体而没有灵魂。

数据结构

春风镇
红肚兜
何谓数据结构 ? 数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。 数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。 ? 数据结构主要研究什么? ? 数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的操作(或算法)。通常,算法的?设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。 ? 什么是数据结构?什么是逻辑结构和物理结构? ? 数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、操作、和相应的语义)组成的元素的集合。结构是元素之间的关系的集合。通常来说,一个数据结构DS 可以表示为一个二元组: ?DS=(D,S), //i.e., data-structure=(data-part,logic-structure-part) 这里D是数据元素的集合(或者是“结点”,可能还含有“数据项”或“数据域”),S是定义在D(或其他集合)上的关系的集合,S = { R | R : D×D×...},称之为元素的逻辑结构。 逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。表和树是最常用的两种高效数据结构,许多高效的算法可以用这两种数据结构来设计实现。表是线性结构的(全序关系),树(偏序或层次关系)和图(局部有序(weak/local orders))是非线性结构。 ? 数据结构的物理结构是指逻辑结构的存储镜像(image)。数据结构 DS 的物理结构 P对应于从 DS 的数据元素到存储区M(维护着逻辑结构S)的一个映射: ? (PD,S) -- > M 存储器模型:一个存储器 M 是一系列固定大小的存储单元,每个单元 U 有一个唯一的地址 A(U),该地址被连续地编码。每个单元 U 有一个唯一的后继单元 U'=succ(U)。 P 的四种基本映射模型:顺序(sequential)、链接(linked)、索引(indexed)和散列(hashing)映射。 ?因此,我们至少可以得到4×4种可能的物理数据结构: ?sequential (sets) linked lists indexed trees hash graphs ? (并不是所有的可能组合都合理)???? 数据结构DS上的操作:所有的定义在DS上的操作在改变数据元素(节点)或节点的域时必须保持DS的逻辑和物理结构。 ? DS上的基本操作:任何其他对DS的高级操作都可以用这些基本操作来实现。最好将DS和他的所有基本操作看作一个整体——称之为模块。我们可以进一步将该模块抽象为数据类型(其中DS的存储结构被表示为私有成员,基本操作被表示为公共方法),称之为ADT。作为ADT,堆栈和队列都是一种特殊的表,他们拥有表的操作的子集。 对于DATs的高级操作可以被设计为(不封装的)算法,利用基本操作对DS进行处理。 ? 好的和坏的DS:如果一个DS可以通过某种“线性规则”被转化为线性的DS(例如线性表),则称它为好的DS。好的DS通常对应于好的(高效的)算法。这是由计算机的计算能力决定的,因为计算机本质上只能存取逻辑连续的内存单元,因此如何没有线性化的结构逻辑上是不可计算的。比如对一个图进行操作,要访问图的所有结点,则必须按照某种顺序来依次访问所有节点(要形成一个偏序),必须通过某种方式将图固有的非线性结构转化为线性结构才能对图进行操作。 ? 树是好的DS——它有非常简单而高效的线性化规则,因此可以利用树设计出许多非常高效的算法。树的实现和使用都很简单,但可以解决大量特殊的复杂问题,因此树是实际编程中最重要和最有用的一种数据结构。树的结构本质上有递归的性质——每一个叶节点可以被一棵子树所替代,反之亦然。实际上,每一种递归的结构都可以被转化为(或等价于)树形结构。? 从机器语言到高级语言的抽象 ? 我们知道,算法被定义为一个运算序列。这个运算序列中的所有运算定义在一类特定的数据模型上,并以解决一类特定问题为目标。这个运算序列应该具备下列四个特征。 有限性,即序列的项数有限,且每一运算项都可在有限的时间内完成;确定性,即序列的每一项运算都有明确的定义,无二义性;可以没有输入运算项,但一定要有输出运算项;可行性,即对于任意给定的合法的输入都能得到相应的正确的输出。这些特征可以用来判别一个确定的运算序列是否称得上是一个算法。 但是,我们现在的问题不是要判别一个确定的运算序列是否称得上是一个算法,而是要对一个己经称得上是算法的运算序列,回顾我们曾经如何用程序设计语言去表达它。 ? 算法的程序表达,归根到底是算法要素的程序表达,因为一旦算法的每一项要素都用程序清楚地表达,整个算法的程序表达也就不成问题。 ? 作为运算序列的算法,有三个要素。 作为运算序列中各种运算的运算对象和运算结果的数据;运算序列中的各种运算;运算序列中的控制转移。这三种要素依序分别简称为数据、运算和控制。 由于算法层出不穷,变化万千,其中的运算所作用的对象数据和所得到的结果数据名目繁多,不胜枚举。最简单最基本的有布尔值数据、字符数据、整数和实数数据等;稍复杂的有向量、矩阵、记录等数据;更复杂的有集合、树和图,还有声音、图形、图像等数据。 同样由于算法层出不穷,变化万千,其中运算的种类五花八门、多姿多彩。最基本最初等的有赋值运算、算术运算、逻辑运算和关系运算等;稍复杂的有算术表达式和逻辑表达式等;更复杂的有函数值计算、向量运算、矩阵运算、集合运算,以及表、栈、队列、树和图上的运算等:此外,还可能有以上列举的运算的复合和嵌套。 关于控制转移,相对单纯。在串行计算中,它只有顺序、分支、循环、递归和无条件转移等几种。 ? 我们来回顾一下,自从计算机问世以来,算法的上述三要素的程序表达,经历过一个怎样的过程。 ?最早的程序设计语言是机器语言,即具体的计算机上的一个指令集。当时,要在计算机上运行的所有算法都必须直接用机器语言来表达,计算机才能接受。算法的运算序列包括运算对象和运算结果都必须转换为指令序列。其中的每一条指令都以编码(指令码和地址码)的形式出现。与算法语言表达的算法,相差十万八千里。对于没受过程序设计专门训练的人来说,一份程序恰似一份"天书",让人看了不知所云,可读性?极差。 ? 用机器语言表达算法的运算、数据和控制十分繁杂琐碎,因为机器语言所提供的指令太初等、原始。机器语言只接受算术运算、按位逻辑运算和数的大小比较运算等。对于稍复杂的运算,都必须一一分解,直到到达最初等的运算才能用相应的指令替代之。机器语言能直接表达的数据只有最原始的位、字节、和字三种。算法中即使是最简单的数据如布尔值、字符、整数、和实数,也必须一一地映射到位、字节和字中,还得一一分配它们的存储单元。对于算法中有结构的数据的表达则要麻烦得多。机器语言所提供的控制转移指令也只有无条件转移、条件转移、进入子程序和从子程序返回等最基本的几种。用它们来构造循环、形成分支、调用函数和过程得事先做许多的准备,还得靠许多的技巧。 直接用机器语言表达算法有许多缺点。 ? 大量繁杂琐碎的细节牵制着程序员,使他们不可能有更多的时间和精力去从事创造性的劳动,执行对他们来说更为重要的任务。如确保程序的正确性、高效性。程序员既要驾驭程序设计的全局又要深入每一个局部直到实现的细节,即使智力超群的程序员也常常会顾此失彼,屡出差错,因而所编出的程序可靠性差,且开发周期长。 由于用机器语言进行程序设计的思维和表达方式与人们的习惯大相径庭,只有经过较长时间职业训练的程序员才能胜任,使得程序设计曲高和寡。因为它的书面形式全是"密"码,所以可读性差,不便于交流与合作。因为它严重地依赖于具体的计算机,所以可移植性差,重用性差。这些弊端造成当时的计算机应用未能迅速得到推广。? 克服上述缺点的出路在于程序设计语言的抽象,让它尽可能地接近于算法语言。 为此,人们首先注意到的是可读性和可移植性,因为它们相对地容易通过抽象而得到改善。于是,很快就出现汇编语言。这种语言对机器语言的抽象,首先表现在将机器语言的每一条指令符号化:指令码代之以记忆符号,地址码代之以符号地址,使得其含义显现在符号上而不再隐藏在编码中,可让人望"文"生义。其次表现在这种语言摆脱了具体计算机的限制,可在不同指令集的计算机上运行,只要该计算机配上汇编语言的一个汇编程序。这无疑是机器语言朝算法语言靠拢迈出的一步。但是,它离算法语言还太远,以致程序员还不能从分解算法的数据、运算和控制到汇编才能直接表达的指令等繁杂琐碎的事务中解脱出来。 到了50年代中期,出现程序设计的高级语言如Fortran,Algol60,以及后来的PL/l, Pascal等,算法的程序表达才产生一次大的飞跃。 ? 诚然,算法最终要表达为具体计算机上的机器语言才能在该计算机上运行,得到所需要的结果。但汇编语言的实践启发人们,表达成机器语言不必一步到位,可以分两步走或者可以筑桥过河。即先表达成一种中介语言,然后转成机器语言。汇编语言作为一种中介语言,并没有获得很大成功,原因是它离算法语?言还太远。这便指引人们去设计一种尽量接近算法语言的规范语言,即所谓的高级语言,让程序员可以用它方便地表达算法,然后借助于规范的高级语言到规范的机器语言的"翻译",最终将算法表达为机器语言。而且,由于高级语言和机器语言都具有规范性,这里的"翻译"完全可以机械化地由计算机来完成,就像汇编语言被翻译成机器语言一样,只要计算机配上一个编译程序。 上述两步,前一步由程序员去完成,后一步可以由编译程序去完成。在规定清楚它们各自该做什么之后,这两步是完全独立的。它们各自该如何做互不相干。前一步要做的只是用高级语言正确地表达给定的算法,产生一个高级语言程序;后一步要做的只是将第一步得到的高级语言程序翻译成机器语言程序。至于程序员如何用高级语言表达算法和编译程序如何将高级语言表达的算法翻译成机器语言表达的算法,显然毫不相干。 ? 处理从算法语言最终表达成机器语言这一复杂过程的上述思想方法就是一种抽象。汇编语言和高级语言的出现都是这种抽象的范例。 与汇编语言相比,高级语言的巨大成功在于它在数据、运算和控制三方?面的表达中引入许多接近算法语言的概念和工具,大大地提高抽象地表达算法的能力。 在运算方面,高级语言如Pascal,除允许原封不动地运用算法语言的四则运算、逻辑运算、关系运算、算术表达式、逻辑表达式外,还引入强有力的函数与过程的工具,并让用户自定义。这一工具的重要性不仅在于它精简了重复的程序文本段,而且在于它反映出程序的两级抽象。? 在函数与过程调用级,人们只关心它能做什么,不必关心它如何做。只是到函数与过程的定义时,人们才给出如何做的细节。用过高级语言的读者都知道,一旦函数与过程的名称、参数和功能被规定清楚,那么,在程序中调用它们便与在程序的头部说明它们完全分开。你可以修改甚至更换函数体与过程体,而不影响它们的被调用。如果把函数与过程名看成是运算名,把参数看成是运算的对象或运算的结果,那么?,函数与过程的调用和初等运算的引用没有两样。利用函数和过程以及它们的复合或嵌套可以很自然地表达算法语言中任何复杂的运算。? 在数据方面,高级语言如Pascal引人了数据类型的概念,即把所有的数据加以分类。每一个数据(包括表达式)或每一个数据变量都属于其中确定的一类。称这一类数据为一个数据类型。 因此,数据类型是数据或数据变量类属的说明,它指示该数据或数据变量可能取的值的全体。对于无结构的数据,高级语言如Pascal,除提供标准的基本数据类型--布尔型、字符型、整型和实型外,还提供用户可自定义的枚举类、子界类型和指针类型。这些类型(除指针外),其使用方式都顺应人们在算法语言中使用的习惯。对于有结构的数据,高级语言如Pascal,提供了数组、记录、有限制的集合和文件等四种标准的结构数据类型。其中,数组是科学计算中的向量、矩阵的抽象;记录是商业和管理中的记录的抽象;有限制的集合是数学中足够小的集合的势集的抽象;文件是诸如磁盘等外存储数据的抽象。? 人们可以利用所提供的基本数据类型(包括标准的和自定义的),按数组、记录、有限制的集合和文件的构造规则构造有结构的数据。 此外,还允许用户利用标准的结构数据类型,通过复合或嵌套构造更复杂更高层的结构数据。这使得高级语言中的数据类型呈明显的分层。 高级语言中数据类型的分层是没有穷尽的,因而用它们可以表达算法语言中任何复杂层次的数据。 在控制方面,高级语言如Pascal,提供了表达算法控制转移的六种方式。 ? (1)缺省的顺序控制";"。 ? (2)条件(分支)控制:"if表达式(为真)then S1 else S2;" 。 ? (3)选择(情况)控制: ? "Case 表达式 of ? 值1: S1 值2: S2 ... 值n: Sn end" ? (4)循环控制: ? "while 表达式(为真) do S;" 或 "repeat S until 表达式(为真);" 或 "for变量名:=初值 to/downto 终值do S;" ? (5)函数和过程的调用,包括递归函数和递归过程的调用。 ? (6)无条件转移goto。 这六种表达方式不仅覆盖了算法语言中所有控制表达的要求,而且不再像机器语言或汇编语言那样原始、那样繁琐、那样隐晦,而是如上面所看到的,与自然语言的表达相差无几。 程序设计语言从机器语言到高级语言的抽象,带来的主要好处是: 高级语言接近算法语言,易学、易掌握,一般工程技术人员只要几周时间的培训就可以胜任程序员的工作;高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;高级语言远离机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好,重用率高; 由于把繁杂琐碎的事务交给了编译程序去做,所以自动化程度高,开发周期短,且程、序员得到解脱,可以集中时间和精力去从事对于他们来说更为重要的创造性劳动,以提高、程序的质量。 ? 数据结构、数据类型和抽象数据类型 ? 数据结构、数据类型和抽象数据类型,这三个术语在字面上既不同又相近,反映出它们在含义上既有区别又有联系。 ? 数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由哪些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,物理上的数据结构反映成分数据在计算机内的存储安排。数据结构是数据存在的形式。 ? 数据是按照数据结构分类的,具有相同数据结构的数据属同一类。同一类数据的全体称为一个数据类型。在程序设计高级语言中,数据类型用来说明一个数据在数据分类中的归属。它是数据的一种属性。这个属性限定了该数据的变化范围。为了解题的需要,根据数据结构的种类,高级语言定义了一系列的数据类型。不同的高级语言所定义的数据类型不尽相同。Pascal语言所定义的数据类型的种类。 ? 其中,简单数据类型对应于简单的数据结构;构造数据类型对应于复杂的数据结构;在复杂的数据结构里,允许成分数据本身具有复杂的数据结构,因而,构造数据类型允许复合嵌套;指针类型对应于数据结构中成分数据之间的关系,表面上属简单数据类型,实际上都指向复杂的成分数据即构造数据类型中的数据,因此这里没有把它划入简单数据类型,也没有划入构造数据类型,而单独划出一类。 ? 数据结构反映数据内部的构成方式,它常常用一个结构图来描述:数据中的每一项成分数据被看作一个结点,并用方框或圆圈表示,成分数据之间的关系用相应的结点之间带箭号的连线表示。如果成分数据本身又有它自身的结构,则结构出现嵌套。这里嵌套还允许是递归的嵌套。 ? 由于指针数据的引入,使构造各种复杂的数据结构成为可能。按数据结构中的成分数据之间的关系,数据结构有线性与非线性之分。在非线性数据结构中又有层次与网状之分。 由于数据类型是按照数据结构划分的,因此,一类数据结构对应着一种数据类型。数据类型按照该类型中的数据所呈现的结构也有线性与非线性之分,层次与网状之分。一个数据变量,在高级语言中的类型说明必须是读变量所具有的数据结构所对应的数据类型。最常用的数据结构是数组结构和记录结构。数组结构的特点是: ? 成分数据的个数固定,它们之间的逻辑关系由成分数据的序号(或叫数组的下标)来体现。这些成分数据按照序号的先后顺序一个挨一个地排列起来。每一个成分数据具有相同的结构(可以是简单结构,也可以是复杂结构),因而属于同一个数据类型(相应地是简单数据类型或构造数据类型)。这种同一的数据类型称为基类型。所有的成分数据被依序安排在一片连续的存储单元中。 概括起来,数组结构是一个线性的、均匀的、其成分数据可随机访问的结构。? 由于这、种结构有这些良好的特性,所以最常被人们所采用。在高级语言中,与数组结构相对应的、数据类型是数组类型,即数组结构的数据变量必须说明为array [i] of T0 ,其中i是数组、结构的下标类型,而T0是数组结构的基类型。 记录结构是另一种常用的数据结构。它的特点是:与数组结构一样,成分数据的个数固定。但成分数据之间没有自然序,它们处于平等地位。每一个成分数据被称为一个域并赋予域名。不同的域有不同的域名。不同的域允许有不同的结构,因而允许属于不同的数据类型。与数组结构一样,它们可以随机访问,但访问的途径靠的是域名。在高级语言中记录结构对应的数据类型是记录类型。记录结构的数据的变量必须说明为记录类型。 ? 抽象数据类型的含义在上一段已作了专门叙述。它可理解为数据类型的进一步抽象。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。对于抽象数据类型的描述,除了必须描述它的数据结构外,还必须描述定义在它上面的运算(过程或函数)。抽象数据类型上定义的过程和函数以该抽象数据类型的数据所应具有的数据结构为基础。 ? 泛型设计和数据结构与算法 ? 下面我想再说说关于泛型程序设计模型对于数据结构和算法方面的最新推动,泛型思想已经把数据结?构和算法方面的基本思想抽象到了一个前所未有的高度,现在有多种程序设计语言支持泛型设计,比如ADA,C++,而且据说在JAVA的下一版本和C#中也将对泛型设计进行全面的支持。? 先说说泛型设计的基本思想:泛型编程(generic programming,以下直接以GP称呼)是一种全新的程序设计思想,和OO,OB,PO这些为人所熟知的程序设计想法不同的是GP抽象度更高,基于GP设计的组件之间偶合度底,没有继承关系,所以其组件间的互交性和扩展性都非常高。我们都知道,任何算法都是作用在一种特定的数据结构上的,最简单的例子就是快速排序算法最根本的实现条件就是所排序的对象是存贮在数组里面,因为快速排序就是因为要用到数组的随机存储特性,即可以在单位时间内交换远距离的对象,而不只是相临的两个对象,而如果用联表去存储对象,由于在联表中取得对象的时间是线性的既O[n],这样将使快速排序失去其快速的特点。也就是说,我们在设计一种算法的时候,我们总是先要考虑其应用的数据结构,比如数组查找,联表查找,树查找,图查找其核心都是查找,但因为作用的数据结构不同?将有多种不同的表现形式。数据结构和算法之间这样密切的关系一直是我们以前的认识。泛型设计的根本思想就是想把算法和其作用的数据结构分离,也就是说,我们设计算法的时候并不去考虑我们设计的算法将作用于何种数据结构之上。泛型设计的理想状态是一个查找算法将可以作用于数组,联表,树,图等各种数据结构之上,变成一个通用的,泛型的算法。这样的理想是不是很诱惑人? ? 泛型编程带来的是前所未有的弹性以及不会损失效率的抽象性,GP和OO不同,它不要求你通过额外的间接层来调用函数:它让你撰写完全一般化并可重复使用的算法,其效率与针对特定数据结构而设计的算法旗鼓相当。我们大家都知道数据结构在C++中可以用用户定义类型来表示,而C++中的模板技术就是以类型作为参数,那么我可以想象利用模板技术可以实现我们开始的GP思想,即一个模板函数可以对于各种传递进来的类型起作用,而这些类型就可以是我们定义的各种数据结构。? 泛型算法抽离于特定类型和特定数据结构之外,使得其适应与尽可能的一般化类型,算法本身只是为了实现算法其需要表达的逻辑本质而不去被为各种数据结构的实现细节所干扰。这意味着一个泛型算法实际具有两部分。1,用来描叙算法本质逻辑的实际指令;2,正确指定其参数类型必须满足的性质的一组需求条件。到此,相信有不少人已经开始糊涂了,呵呵,不要紧。毕竟GP是一种抽象度非常高的程序设计思想,里面的核心就是抽象条件成为成为程序设计过程中的核心,从而取代了类型这在OO里面的核心地位,正是因为类型不在是我们考虑的重点,类型成为了抽象条件的外衣,所以我们称这样的程序思想为泛型思想------把类型泛化。满意请采纳。