欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

本科计算机 想从事人工智能和医学结合的方向 考研专业选什么?

鸡鸣狗吠
惊天破
人工智能的研究主要有三方面:一是纯理论性的,以强人工智能或者神经网络为回研究方向,答这样的话,本科可以选择神经科学,也可以选修心理学、哲学、计算机科学二是从算法层面对人工智能的优化,这也是大多数人现在对人工智能的理解,本科自然要学计算机科学了,但博弈论之类重视逻辑的小类别学科也有选修或者自学的必要。第三种就是工业应用的方面。楼主的认识很对,这样主要应该学习自动化和机械控制。不知楼主在国内还是国外读大学。在国外,人工智能的理论研究还是很有价值的。国内嘛就别想了。启道考研提供,祝你考研成功 在国内,计算机是现在很火的专业不必多说。选机械控制专业的话就业前景非常好。楼主你是否喜欢硬件方面科技产品设计?若不是机械控制,人工智能目前还主要是研究算法层面的。电子工程这样的硬件专业目前对人工智能还没啥应用。当然楼主有志于在国内研究神经网络那是祖国的骄傲啊^ ^ 人工智能是一门很迷人的学科。希望楼主能找到适合自己的方向好好发展,带动我国的人工智能领域哦!

人工智能涉及哪些学科

恋空
若彼知之
人工智能是一个综合学科,其本身又分为多个方面如神经网络、机器识别、机器视3366303165觉、机器人等。一个人想自学所有人工智能方面并不是很容易的一件事。对于你想知道人工智能在编程方面需要多深的要求。怎么说好呢无论C++还是汇编他都是一门语言主要会灵活运用。大多机器人仿真都用的混合编程模式,也就是运用多种编程软件及语言组合使用。之所以这样是为了弥补语言间的不足。prolog在逻辑演绎方面比突出。C++在硬件接口及windos衔接方面比较突出,MATLAB在数学模型计算方面比较突出。如果单学人工智能算法的话prolog足以,如果想开发机器仿真程序的话VC++ MATLAB应该多学习点。下面是小编整理的相关书籍,仅供参考。1.人工智能算法方面:《人工智能及其应用》第三版、人工智能与知识工程。。第一本感觉能简单并且全面点。这类书其实很多可是大多内容都是重复的所以买一到两本即可。2.机器视觉算法方面:《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。3.机器人方面:新版《机器人技术手册》日译的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。强烈建议买一本。二、学习人工智能AI需要下列最基础的知识:1.需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。2.需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。3.需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。

考研人工智能

心经
海盗
人工智3335313130能的研究领域及应用人工智能的研究领域分支较多,从研究角度来分有三大分支:知识工程(knowledge engineering)、模式识别(pattern recognition)与机器人学(robotoligy)。这里仅择其中几种研究领域进行粗略的介绍。专家系统 1977年费根鲍姆提出“知识工程”,把实用的人工智能称为知识工程,标志着人工智能研究进入实际应用的阶段。他开发出了第一个“专家系统”(expert systems),认为“专家系统是一种智能的计算机程序,它运用知识和推理步骤来解决只有专家才能解决的复杂问题”。专家系统是指利用研究领域的专业知识进行推论,在解决专业的高级问题方面具有和专家相同能力的解决系统,属于人工智能的应用领域。目前,这一领域发展较快,应用也较广,已开发出不少有实际价值的专家系统.与传统的计算机程序相比,专家系统是以知识为中心,注重知识本身而不是确定的算法.专家系统所要解决的是复杂而专门的问题,对这些问题人们还没有精确的描述和严格的分析,因而一般没有解法,而且经常要在不确定或不精确的信息基础上做出判断,需要专家的理论知识和实际经验。标准的计算机程序能精确地区分出每一任务应该如何完成,而专家系统则是告诉计算机做什么,而不区分出如何完成,这是两者最大的区别。另外,专家系统突出了知识的价值,大大减少了知识传授和应用的代价,使专家的知识迅速变成社会的财富。再者,专家系统采用的是人工智能的原理和技术,如符号表示、符号推理、启发式搜索等等,与一般的数据处理系统不同。60年代末,以猜测为基础的第一个专家系统Dendral是由费根鲍姆和莱登伯格在斯坦福大学共同设计的,当时用于分析化合物的化学结构。这一系统至今仍被有机化学家经常使用。70年代中期,肖特列夫开发了Mycin这一专家系统,它是针对传染性血液病的诊断和治疗开发的。把患者的病状输入后,经过Mycin推理,最终由计算机开出处方来。据检测,Mycin的能力通常并不比专门的医生逊色。但它没敢投入实际使用,只是在培养医生的学校当作教材在使用。还有由斯坦福研究所美国地质调查国际组织开发的“探矿人”(Prospector)专家系统,波音公司的专家系统可辅助工程师更快地设计飞机等等。从不同角度,专家系统也可分为多种类型。从其完成的功能来分,可包括诊断、解释、修理、规划、设计、监督、控制等多种类型,这些功能又可分为两大类:分析型和综合型。分析型专家系统所要解决的问题有明确的、有限个数的解,系统的任务在于根据实际的情况选择其中一种或几种解。综合型专家系统的任务是根据实际的需要构造问题的解,包括设计、规划等问题。此外,也可根据知识的特征和推理的类型对专家系统进行分类。专家系统在各个领域的应用已经产生了很可观的经济效益,这从另一方面促进了对专家系统的理论和技术方面的研究。开发专家系统的关键是如何获取知识,如何表示、运用人类专家的知识,这方面的研究也就成了重点。对这一点,范伦特(K.Vanlent,1987)作了充分说明:“我们应该去建构一个专家系统,去模拟专家的问题解决。专家行为,不管是由人或机器产生,都是他(它)的知识产物,但是,用什么能解释知识呢?尽管可以用不同的方式进行测量或限定,但对专家知识的形式和内容的最终解释,是人用来获取知识的学习过程。实际上,对于专家问题解决,学习理论可能是唯一足够科学的理论。”自然语言处理自然语言处理是人工智能早期的研究领域之一,也是一个极为重要的领域,主要包括人机对话和机器翻译两大任务,是一门融语言学、计算机科学、数学于一体的科学。由于以乔姆斯基为代表的新一代语言学派的贡献和计算机技术的发展,自然语言理解正在变得越来越热门.有很多理由值得人们去研究如何使计算机程序能以某种方式使用自然语言的问题。口语是人们进行交际的自然形式,计算机用户希望能与机器对话交流。自然语言输入可以表示成口语,也能从键盘上打入,以文体的形式给出。最早的自然语言理解方面的研究工作是机器翻译。1949年,美国人威弗首先提出了机器翻译设计方案。20世纪60年代,国外对机器翻译曾有大规模的研究工作,耗费了巨额费用,但人们当时显然是低估了自然语言的复杂性,语言处理的理论和技术均不成热,所以进展不大。主要的做法是存储两种语言的单词、短语对应译法的大辞典,翻译时一一对应,技术上只是调整语言的同条顺序。但曰常生活中语言的翻译远不是如此简单,很多时候还要参考某句话前后的意思。例如,英语的一句话:Stay away from the bank.由于bank有银行和河堤两个意思,因此上面这句活应该翻译成“不要靠近那家银行”呢?还是“不要靠近河堤”呢?显然,光翻译这句话本身不看背景场合,不能保证翻译的正确,需要上下文联系起来才能正确翻译,这就是技术难度高之所在。从20世纪70年代末期,随着机器翻译理论和计算机技术的进步,机器翻译有很大的进展。一种常见的做法是将语言的翻译分为“原语言的理解”和“所理解的语言表达成目的语言”两个子过程。这样就需要—种中间语言,只要做好原语言到中间语言以及中间语言到目的语言的转换程序,就可完成翻译。这种办法还容易实现—种语言到多种语言的翻译系统。到现在为止,西语系的一些语言(例如法语、英语)之间的互译技术已经比较成熟,双向翻译辅助系统准确性比较高,不过,翻译完后,还要对译文稍作修改。1995年,松下公司试制成功一种可进行曰英文对译的可视电话,引起了人们的广泛兴趣。该系统由计算机语音识别、声音合成和可视电话通信三个子系统组成,使用者可以用各自的语言进行交谈,通过分析语音波形的变化,该系统可从3000个例句中选择出语意最接近的单词,其识别率达到98%。据称,只要备有专用词典,就可以用它来流利地进行会话。对于我们每天使用的汉语,总的来说,与其他语言的互译水平还不太高,其中与英语的互译水平稍微高—些,市面上已有多种翻译软件出售。主要是我们对汉语的形式化研究还不够,特别是汉语与西方语言不是一个语系,翻译起来难度较大。总之,要真正建立一个能够生成和理解自然语言的计算机处理系统是相当困难的。因为,语言的生成和理解是一个极为复杂的编码和解码过程,一个能理解用自然语言来表达信息的计算机系绕,就应像人那样,不仅需要掌握上下文知识和语境等有关信息,而且还要能够利用这些知识进行推理,人具备大量的经验以及拥有自己的观点和对世界的看法,而现在的机器还做不到这一点。机器翻译离达到“自然的理解和表达”这个最终目标还有相当大的距离。 目前所能做到的仍然是人工辅助型的翻译系统,即靠人对翻译的结果进行修正,来获得自然的翻译。推理人类智力的优越性表现在人能思维、判断和决策。思维是人e68a8462616964757a686964616f31333335313130类在感性认识的基础上形成的理性认识,是通过分析和综合过程来实现的,而人类思维中的分析综合过程则产生了质变,在一般的分析和综合基础上,产生了抽象和概括,比较和分类、系统化和具体化等一系列新的、高级的、复杂的思维能力,在头脑中运用概念作出判断和推理。要使机器具有智能,就必须使其具有推理的功能。推理是由一个或几个判断推出另一个判断的一种思维形式,也即从已有事实推出新的事实的过程。在形式逻辑中,推理由前提(已知判断)、结论(被推出的判断)和推理形式(前提和结论之间的联系方式)组成。人类之所以能高效率地解决一些复杂的问题,这除了拥有大量的专门知识外,还由于人具有合理选择知识和运用知识的能力,也即推理能力和推理策略。以符号逻辑为基础的人工智能,是以逻辑思维和推理为主要内容的。传统的形式化推理技术,是以经典的谓词逻辑也即演绎推理为基础,广泛应用于早期的问题求解和定理证明中,但随着人工智能研究的不断深入,人们在研究中碰到的许多复杂问题不能用严格的演绎推理来解决,因而对非单调逻辑推理等方式的研究正迅速发展起来,已成为人工智能的重要研究内容之一.感知问题感知问题是人工智能的一个经典研究课题,涉及神经生理学、视觉心理学、物理学、化学等学科领域,具体包括计算机视觉和声音处理等。计算机视觉研究的是,如何对由视觉传感器(如摄像机)获得的外部世界的景物和信息进行分析和理解,也就是说如何使计算机“看见”周围的东西。声音处理则是研究如何使计算机“听见”讲话的声音,对语音信息等进行分析和理解。感知问题的关键是必须把数量巨大的感知数据以一种易于处理的精练的方式,进行简练、有效的表征和描述。对计算机视觉做出卓越贡献的是马尔(D.Marr)教授,他认为视觉是一个复杂的信息处理过程,并有不同的信息表达方式和不同层次的处理过程,而最终的目的是实现计算机对外部世界的描述。由此,他提出了三十层次的研究方法,包括计算理论、算法和硬件实现。他的理论奠定了计算机视觉研究的理论基础,并明确指出了研究内容和研究目标.目前,计算机视觉已在图像处理、立体与运动视觉、三维物体建模和识别等方面取得了很大的进展,但离建构一个实用的计算机视觉系统还有很大的距离。在2002年岁末,有关“智能人机交互”领域的重要研究内容之一“面像识别技术”在我国取得了突破性进展,其稳定性、识别率等都达到了国际先进水平,初步达到了实用阶段。面像识别技术使计算机“人性化”、“智能化”的水平大大提高。探索在下棋或思考问题或寻求迷宫出口时,人们总要探索解决问题的原理,这就需要对之进行专门的研究。探索是人工智能研究的核心内容之一。早期的人工智能研究成果如通用问题求解系统、几何定理证明、博弈等都是围绕着如何进行有效的搜索,以获得满意的问题求解。探索是人工智能研究和应用的基本技术领域。人工智能中的问题求解和通常的数值计算不同。人工智能的问题求解首先对一个给定的问题进行描述,然后通过搜索推理以求得问题的解,而数值计算是通过程序设计的算法来实现数值的运算。人工智能问题求解的过程就是状态空间中从初始状态到目标状态的探索推理的过程。探索的主要任务是确定如何选出一个合适的操作规则。探索有两种基本方式,一种是盲目探索,即不考虑给定问题的具体知识,而根据事先确定的某种固定顺序来调用操作规则。盲目探索技术主要有深度优先搜索、广度优先搜索;另一种是启发式搜索,考虑问题可应用的知识,动态地优先调用操作规则,探索就会变得更快。探索技术中重点是启发式搜索。一般地,对给定的问题有很多不同的表示方法,但它们对问题求解具有不同的效率。在许多的问题求解中,有很多与问题有关的信息可利用,使整个问题解决过程加快,这类与问题有关的信息称为启发信息,而利用启发信息的探索就是启发式探索。启发式探索利用启发信息评估解题路径中有希望的节点进行排序,优先扩展最有希望的节点,以实现问题解决的最佳方案。博弈博弈,指赌博的学说,对抗的学问,起源于下棋。让计算机学会下棋是人们使机器具有智能的最早尝试。早在1956年,人工智能的先驱之一 ——塞缪尔就研制出跳棋程序,这个程序能够从棋谱中进行学习,并能从实战中总结经验。当时最轰动的一条新闻是塞缪尔的跳棋程序下赢了美国一个州的跳棋冠军。不过,在随后几年与世界冠军的较量中它没能占到便宜。今天的个人计算机家用软件上一般都有跳棋程序、象棋程序、五子棋程序甚至是围棋程序。即使你选择的是初级水平,要赢计算机一盘棋还真不容易呢。事实上,对于跳棋、象棋、五子棋以及围棋等博弈游戏,其过程完全可用一棵博弈树来表示,利用最基本的状态空间搜索技术来找到一条必胜的下棋路线。遗憾的是,这棵博弈树往往大得惊人,特别是像象棋程序和围棋程序。即使计算机的存储空间能够装得下所有的状态,花在搜索上的时间(也就是通常所谓朝前看几步的时间)常常长得令人不能忍受。好在现在计算机的性能越来越高,存储空间也越来越大,给人感觉上好像计算机的棋力提高了。另外,现有的计算机下棋程序建立在传统的状态空间搜索技术基础上,通过—些启发式算法对棋局中间状态获胜的可能性进行估计,并以此来决定下—步该怎么走。这一方法可以大大减少状态空间的存储和搜索,从而为现代高性能计算机战胜国际—流下棋高手进一步铺平道路。从20世纪50年代起,计算机与国际象棋高手、大师的比赛一直是人们很感兴趣的话题,计算机通过与高手的比赛来不断改进程序,计算机界有人原以为计算机可以在80年代战胜国际象棋冠军,但实际时间却有所推延。IBM公司一直有开发博弈程序这样一个传统,当年的塞缪尔就隶属于IBM公司。90年代,IBM公司先后开发了多种高性能计算机及相应的下棋软件,并把经过不断改进的下棋程序和“深蓝”计算机的矛头直接对准当今国际象棋头号高手——俄国人卡斯帕罗夫。在新闻媒体的推波助澜之下,1997年5月在美国纽约,卡氏和“深蓝”展开了令全球瞩目的又一轮人机大战。前两盘,双方下成一比一平,之后,双方连下三盘和棋,在关键性的第六盘比赛中,“深蓝”计算机发挥出色,赢得了胜利,从而以“2胜3平1负”的总比分战胜了对手,令全球观众哗然;有人形容这是一场“像人一样的机器和像机器一样的人之间的比赛”。虽然 “深蓝”计算机取胜了,但是也不能说明人工智能取得了突破性的成就。正如卡氏所说,他们之间的较量是不公平的,“深蓝”计算机掌握了他与别人下棋的大量棋谱,用到的仍然是状态空间搜索、模式匹配等传统的人工智能技术,只不过是计算机速度大幅度提高罢了。计算机取胜卡氏另外一个重要的原因是除了计算机工程师之外,IBM公司还有一帮深谙国际象棋规则和计算机知识的高手躲在“深蓝”计算机后面帮助它出谋划策,及时调整程序,如此一来,卡氏岂有不输的道理,输棋只是时间早晚的问题。如果换一种棋,比如说用计算机和人下围棋,情况又会怎样呢?目前计算机要战胜围棋一流高手恐怕还有相当大的困难,这是因为围棋的状态空间又大了很多,又复杂了很多。机器人学机器人和机器人学是人工智能研究的另一个重要的应用领域,促进了许多人工智能思想的发展,由它衍生而来的一些技术可用来模拟现实世界的状态,描述从一种状态到另一种状态的变化过程,而且对于规划如何产生动作序列以及监督规划执行提供了较好的帮助。机器人的应用范围越来越广,已开始走向第三产业,如商业中心、办公室自动化等。目前机器人学的研究方向主要是研制智能机器人。智能机器人将极大地扩展机器人应用领域。智能机器人本身能够认识工作环境、工作对象及其状态,根据人给予的指令和自身的知识,独立决定工作方式,由操作机构和移动机构实现任务,并能适应工作环境的变化。智能机器人只要告诉它做什么,而不用告诉怎么做。它共有四种基本功能,分别是:(1)运动功能,类似于人的手、臂和腿的基本功能,对外界环境施加作用。(2)感知功能,获取外界信息的功能。(3)思维功能,求解问题的认识、判断、推理的功能。(4)人机通信功能,理解指示,输出内部状态,与人进行信息交流的功能。智能机器人是以一种“认知——适应”方式进行操作的。著名的机器人和人工智能专家布拉迪(Brady)曾总结了机器人学当前面临的30个难题,包括传感器、视觉、机动性、设计、控制、典型操作、推理和系统等几个方面,指出了机器人学当前急需解决的难题。只有在这些方面有所突破,机器人应用和机器人学才能更适应社会的要求,成为开发人类智力的帮手。今天,在仿真人各种外在功能的各个方面,机器人的设计都有很大的进展。现在有一些科学家在研究如何从生物工程的角度去研制高逼真度的仿真机器人。目前的机器人离人们心目中的能够做各种家务活,任劳任怨,并会揣摩主人心思的所谓“机器仆人”的目标还相去甚远。因为机器人所表现的智能行为都是由人预先编好的程序决定的,机器人只会做人要他做的事。人的创造性、意念、联想、随机应变乃至当机立断等都难以在机器人身上体现出来。要想使机器人融入人类的生活,看来还是比较遥远的事情。本回答被网友采纳

本科计算机科学与技术需要考研吗?研究生阶段主要干什么?

礼相伪也
谋杀者
  计算机科学  计算机科学是一门3337613133包含各种各样与计算和信息处理相关主题的系统学科,从抽象的算法分析、形式化语法等等,到更具体的主题如编程语言、程序设计、软件和硬件等。作为一门学科,它与数学、计算机程序设计、软件工程和计算机工程有显著的不同,却通常被混淆,尽管这些学科之间存在不同程度的交叉和覆盖。  计算机科学研究的课题是:  计算机程序能做什么和不能做什么(可计算性);   如何使程序更高效的执行特定任务(算法和复杂性理论);   程序如何存取不同类型的数据(数据结构和数据库);   程序如何显得更具有智能(人工智能);   人类如何与程序沟通(人机互动和人机界面)。   计算机科学的大部分研究是基于“冯·诺依曼计算机”和“图灵机”的,它们是绝大多数实际机器的计算模型。作为此模型的开山鼻祖,邱奇-图灵论题(Church-Turing Thesis)表明,尽管在计算的时间,空间效率上可能有所差异,现有的各种计算设备在计算的能力上是等同的。尽管这个理论通常被认为是计算机科学的基础,可是科学家也研究其它种类的机器,如在实际层面上的并行计算机和在理论层面上概率计算机、oracle 计算机和量子计算机。在这个意义上来讲,计算机只是一种计算的工具:著名的计算机科学家 Dijkstra 有一句名言“计算机科学之关注于计算机并不甚于天文学之关注于望远镜。”。  计算机科学根植于电子工程、数学和语言学,是科学、工程和艺术的结晶。它在20世纪最后的三十年间兴起成为一门独立的学科,并发展出自己的方法与术语。  早期,虽然英国的剑桥大学和其他大学已经开始教授计算机科学课程,但它只被视为数学或工程学的一个分支,并非独立的学科。剑桥大学声称有世界上第一个传授计算的资格。世界上第一个计算机科学系是由美国的普渡大学在1962年设立,第一个计算机学院于1980年由美国的东北大学设立。现在,多数大学都把计算机科学系列为独立的部门,一部分将它与工程系、应用数学系或其他学科联合。  计算机科学领域的最高荣誉是ACM设立的图灵奖,被誉为是计算机科学的诺贝尔奖。它的获得者都是本领域最为出色的科学家和先驱。华人中首获图灵奖的是姚期智先生.他于2000年以其对计算理论做出的诸多“根本性的、意义重大的”贡献而获得这一崇高荣誉。  目录  1 计算机系统   1.1 硬件   1.2 计算机系统组织   1.3 软件   1.4 数据和信息系统   2 主要的研究领域   2.1 形式化基础   2.2 理论计算机科学   2.3 计算方法学   2.4 计算机应用   2.5 特定技术   3 计算科学史   4 相关学科   5 卓越的先驱者   6 参见   7 外部链接   计算机系统  计算机系统可划分为软件系统与硬件系统两大类。  硬件  结构控制和指令系统   算法和逻辑结构   存储器结构   冯·诺伊曼结构   哈佛结构   输入/输出和数据通信   数字逻辑   逻辑设计   集成电路   计算机系统组织  计算机系统结构   计算机网络   分布式计算   网络安全   计算机系统实现   软件  系统软件

电子信息工程(机器人与人工智能)专业考研的话是考什么专业,我没有看到人工智能专业啊。

费欧娜
阿尔坎
电子信息工程对着的硕士专业应该是信息与通信工程(学硕)或者电子与通信工版程(专硕),但是权感觉做AI的话,好像计算机那边做的比较多,题主可以考虑一下。考研的话主要还是看对应的专业课要考什么吧,题主是电信专业的,应该还是对口通信电信的研,这个专业硕士也有一些导师会做AI的。一些学校招生的时候专业方向分的比较细的会直接说招AI方向,不按方向细分招生的就找不到AI这个专业了。个人意见,仅供参考。那我这个专业考研专业科是考什么?考编程?

人工智能考研如何选择学校

伏胜
粹之至也
你要根据自己兴趣和能力慎重选择专业,院校和导师。首先,专业。相关专业:计算机类3365656639+数学类+自动化类+软件类+电子类+信息科学类(信息管理和图书情报),学院与之对应。其次,对应专业的院校。考量指标:院校级别和排名+正教授人数及学者头衔数量+基金类目、级别及数量+博士后流动站有无和数量+国家重点实验室有无和数量+科研成果产出质量数量。最后,相关领域的导师。确定思路:搜人工智能大牛>他们的学校,专业和导师>他们所在公司部门的同事和下属>同事下属的学校,专业和导师>相关导师的研究领域,项目课题和文章主题>相关导师的弟子们现在的文章质量数量,发展路径和发展情况。选择院校优先级:名牌重点大学(9校联盟和国际排名前50)相关专业>双一流学校的重点专业>211学校对应专业优秀博导>普通本科学校相关专业学科带头人。启道教育提供,祝你考研成功原因:平台的高低决定项目的优劣,基金支持力度,决定你直博深造的机会大小,决定你见识和历练的程度,决定你文凭的认可度,兼顾院校的项目聚焦性,项目主题与院校领域背景密切相关。结论:尖括号所指方向报考难度较低一些。选择导师优先级:项目课题质量>导师能力品德>学校和专业>实验室或工作室环境原因:好的项目可以顺利产出高质量论文并练就真正本领;导师的能力和专长对你的方向影响极大,导师的德品决定你的辛苦和幸福指数;学校和工作室硬件环境影响你有没有安心学术的条件。结论:尖括号所指方向重要性较低一些。提醒:如果你足够优秀,请在大三就关注名校暑期夏令营以及保研免试推荐政策,及早联系导师争取名额和护佑。想读博时这些更加重要。

南京理工大学与南京大学研究生的人工智能

泷岛
谜中秘
- -上面那位是南理工的复,可能不知制道周志华老师。我是南大计算机系的,但是目前还不是研究生,还在校读本科。南大虽然工科普遍不是出类拔萃的但是计算机系绝对是灰常强悍的,是国家一级重点学科。而且我们系比较特殊,并不像其他院校计算机系偏向工科,我们比较偏重理科(学长告诉我们,毕业的时候拿到的是理科学士学位,不知是否真相),而南大的理科……强悍程度不用我说了吧。非本校的没有什么影响,我们也常有本校同学复试分数低被外校同学挤到别的系别的,一般不会有暗箱。非本专业的话就看你专业课的能力了。。。因为偏重理论,所以考试的话可能面会比较广泛,也就比较难。说到底,如果考试成绩没问题的话,你的要求应该就没问题了。 另外,复试的话一般应该是笔试离散数学和编译原理,上机C++。

关于计算机读研人工智能方面!

烤鸭香
专诸
人工智能包括很多方面, 机器学习是其中一种, 你的方向正是可以理解人在学习过程中的一版些微妙的逻辑, 如果你权把这个过程模拟到计算机的程序里面去运行, 你就可以实现机器学习的功能了。 机器学习, 人工智能领域的,一般大公司才会有这方面的需求, 腾讯,百度我看到有招这方面的人才。

车辆工程研究生学人工智能算跨专业吗?

陈骈
好婚姻
算是,不过人工智能确实火,可以来这里看看