欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2004研究生数学二真题及详解

高达
是色而已
去百度文库,查看完整内容>内容来自用户:tanchen125802004年考硕数学(二)真题一.填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上.)(1)设,则的间断点为.(2)设函数由参数方程确定,则曲线向上凸的取值范围为____..(3)_____..(4)设函数由方程确定,则______.(5)微分方程满足的特解为_______.(6)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则______-.二.选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(7)把时的无穷小量,,排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)(B)(C)(D)(8)设,则(A)是的极值点,但不是曲线的拐点.(B)不是的极值点,但是曲线的拐点.(C)是的极值点,且是曲线的拐点.(D)不是的极值点,也不是曲线的拐点.(9)等于(A).(B).(C).(D)(10)设函数连续,且,则存在,使得(A)在内单调增加.(B)在内单调减小.(C)对任意的有.(D)对任意的有.(11)微分方程的特解形式可设为(A).(B).(C).(D)(12)设函数连续,区域,则等于(A).(B).(C).(D)(13)设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得(因为故应选(若

2015年考研数学二真题及答案

今日晏闲
复于不惑
去百度文库,查看完整内容>内容来自用户:100104262015年考研数学二真题一、选择题:(1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。)(1)下列反常积分中收敛的是(A)(B)(C)(D)【答案】D。【解析】题干中给出4个反常积分,分别判断敛散性即可得到正确答案。;;;,因此(D)是收敛的。综上所述,本题正确答案是D。【考点】高等数学—一元函数积分学—反常积分(2)函数在(-∞,+∞)内(A)(B)有可去间断点(C)有跳跃间断点(D)有无穷间断点【答案】B【解析】这是“”型极限,直接有,在处无定义,且所以是的可去间断点,选B。综上所述,本题正确答案是B。【考点】高等数学—函数、极限、连续—两个重要极限(3)设函数().若(A)(B)(C)(D)【答案】A【解析】易求出再有于是,存在此时.当,,=因此,在连续。选A综上所述,本题正确答案是C。【考点】高等数学—函数、极限、连续—函数连续的概念,函数的左极限和右极限(4)设函数在(-∞,+∞)内连续,其二阶导函数的图形如右图所示,则曲线的拐点个数为AOB(A)(B)(C)(D)【答案】C【解析】在(-∞,+∞)内连续,除点外处处二阶可导。的可疑拐点是的点及不存在的点。的零点有两个,如上图所示,A点两侧【考点】高等数学—函数、极限、连续—函数单调性【考点】线性代数-所以

2018考研数学二真题(完整版)

百姓淫乱
十戒
去百度文库,查看完整内容>内容来自用户:文都教育世纪文都教育科技集团股份有限公司2018考研数学(二)真题(完整版)来源:文都教育一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.若lim(ex+ax2+bx)x2=1,则x®011,b=-1.21C.a=,b=1.22.下列函数中,在x=0处不可导的是A.a=A.f(x)=xsinx.C.f(x)=cosx.121D.a=-,b=1.2B.f(x)=xsinD.f(x)=cosB.a=-,b=-1.x.x.ì2-ax,x£-1,ïïìï-1,x<0,ï3.设函数f(x)=g(x)=x,-1<x<0,若f(x)+g(x)在R上连续,则ïî1,x³0,ïïïîx-b,x³0.A.a=3,b=1.C.a=-3,b=1.4.设函数f(x)在[0,1]上二阶可导,且B.a=3,b=2.D.a=-3,b=2.10f(x)dx0,则121D.当f"(x)0时,f()0.2B.当f"(x)0时,f()0.121C.当f'(x)0时,f()0.2A.当f'(x)0时,f()0.5.设M22(1x)21x22dx,Ndx,K(1cosx)dx,则2x1x2e2A.MNK.C.KMN.6.B.MKN.D.KNM.12x2x01dx2x2x(1xy)dydx0(1xy

2019年考研数学二考试题完整版

冉有
掘墓人
去百度文库,查看完整内容>内容来自用户:文都教育2019考研数学二考试真题(完整版)来源:文都教育一、选择题1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当x→0时,xtanx与xk同阶,求k(A.1B.2C.3D.42.yxsinx2cosxx()3,)的拐点坐标22A.2,22B.0,2C.,2D.(33,)223.下列反常积分收敛的是A.B.C.0xexdxxexdx20arctanxdx1x2xD.dx01x204.已知微分方程yaybycex的通解为y(C1C2x)ee,则a、b、c依次为xxA.1,0,1B.1,0,2C.2,1,3D.2,1,45.已知积分区域D{(x,y)xy2,I1x2y2dxdy,I2sinx2y2dxdy,I3(1cosx2y2)dxdy,试比较I1,I2,I3的大DDD小A.I3I2I1B.I1I2I3C.I2I1I3D.I2I3I16.已知f(x),g(x)二阶导数且在x=a处连续,请问f(x),g(x)相切于a且曲率相等是limxaf(x)g(x)0的什么条件?(xa)2A.充分非必要条件.B.充分必要条件.C.必要非充分条件.D.既非充分又非必要条件.7.设A是四阶矩阵,A*是

2015年考研数学真题(数二)

决然无主
赵王
去百度文库,查看完整内容>内容来自用户:生命如歌1993一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)下列反常积分中收敛的是()(A)(B)(C)(D)(2)函数在内()(A)连续(B)有可去间断点(C)有跳跃间断点(D)有无穷间断点(3)设函数,若在处连续,则()(A)(B)(C)(D)(4)设函数在连续,其二阶导函数的图形如右图所示,则曲线的拐点个数为()(A)0 (B)1 (C)2 (D)3(5).设函数满足,则与依次是()(A),0 (B)0,(C)-,0 (D)0 ,-(6).设D是第一象限中曲线与直线围成的平面区域,函数在D上连续,则=()(A)(B)(C)(D)(7).设矩阵A=,b=,若集合Ω=,则线性方程组有无穷多个解的充分必要条件为()(A)(B)(C)(D)(8)设二次型在正交变换下的标准形为其中,若,则在正交变换下的标准形为()(A):(B)(C)(D)二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)设(10)函数在处的n阶导数(11)设函数连续,若,,则(12)设函数是微分方程的解,且在处取值3,则=(13)若函数由方程确定,则=(14)设3阶矩阵A的特征值为2,-2,1,,其中E为3阶单位矩阵,则行列式=三、解答题:15~23小题,共94分.请将解答写在已知函数

数学二考研真题谁的好?

结婚吧
不得复使
记得以前考研报的文登考研,题做的是书上的习题和买的李永乐的题,数学二不考概率论,难度没有数一大,建议做的时候,关键是做好选择题,还有后边大题的第一问。

考研数学历年真题点评/数学二 怎么样? 张天德的

何哉
秘密战
你好,获取真题的途径主要有以下五个:一是直接找该大学的学生学长要;二是去该大学找找校内或周边的复印店,一般复印店都会留有以前的试卷以方便后人来复印;三是去该大学找校内书店、考研代理机构来代购;四是上该校BBS、考研论坛之类的论坛找;五是上淘宝之类的购物网站搜索购买。祝你成功:)

考研数学一和数学二有什么区别?

安用礼乐
实实在在
本视频依据最新的考研大纲,从高数角度解析了考研数学在不同类别考生之间的区别,包含内容的区别,考试难度的区别等。理清楚这些区别后便于考生在考研数学复习中找到明确的方向。

2009年考研数学二试题及答案解析

进乎技矣
是亦因彼
去百度文库,查看完整内容>内容来自用户:羽翼10292009年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数为123无穷多个【答案】【解析】由于,则当取任何整数时,均无意义.故的间断点有无穷多个,但可去间断点为极限存在的点,故应是的解.故可去间断点为3个,即.(2)当时,与是等价无穷小,则【答案】【解析】,故排除.另外,存在,蕴含了,故排除.所以本题选.(3)设函数的全微分为,则点不是的连续点不是的极值点是的极大值点是的极小值点【答案】【解析】因可得.,又在处,,,故为函数的一个极小值点.(4)设函数连续,则【答案】【解析】的积分区域为两部分:,,将其写成一块,故二重积分可以表示为,故答案为.(5)若不变号,且曲线在点上的曲率圆为,则函数在区间内有极值点,无零点无极值点,有零点有极值点,有零点无极值点,无零点【答案】【解析】由题意可知,是一个凸函数,即,且在点处的曲率,而,由此可得,.在上,,即单调减少,没有极值点.对于,(拉格朗日中值定理)而,由零点定理知,在上,有零点.故应选.(6)设函数在区间上的图形为:【解析】(Ⅱ)若二次型